• For Individuals
  • For Businesses
  • For Universities
  • For Governments
  • Online Degrees
  • Find your New Career
  • Join for Free

What Are Critical Thinking Skills and Why Are They Important?

Learn what critical thinking skills are, why they’re important, and how to develop and apply them in your workplace and everyday life.

[Featured Image]:  Project Manager, approaching  and analyzing the latest project with a team member,

We often use critical thinking skills without even realizing it. When you make a decision, such as which cereal to eat for breakfast, you're using critical thinking to determine the best option for you that day.

Critical thinking is like a muscle that can be exercised and built over time. It is a skill that can help propel your career to new heights. You'll be able to solve workplace issues, use trial and error to troubleshoot ideas, and more.

We'll take you through what it is and some examples so you can begin your journey in mastering this skill.

What is critical thinking?

Critical thinking is the ability to interpret, evaluate, and analyze facts and information that are available, to form a judgment or decide if something is right or wrong.

More than just being curious about the world around you, critical thinkers make connections between logical ideas to see the bigger picture. Building your critical thinking skills means being able to advocate your ideas and opinions, present them in a logical fashion, and make decisions for improvement.

Coursera Plus

Build job-ready skills with a Coursera Plus subscription

  • Get access to 7,000+ learning programs from world-class universities and companies, including Google, Yale, Salesforce, and more
  • Try different courses and find your best fit at no additional cost
  • Earn certificates for learning programs you complete
  • A subscription price of $59/month, cancel anytime

Why is critical thinking important?

Critical thinking is useful in many areas of your life, including your career. It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice.

According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]:

Crucial for the economy

Essential for improving language and presentation skills

Very helpful in promoting creativity

Important for self-reflection

The basis of science and democracy 

Critical thinking skills are used every day in a myriad of ways and can be applied to situations such as a CEO approaching a group project or a nurse deciding in which order to treat their patients.

Examples of common critical thinking skills

Critical thinking skills differ from individual to individual and are utilized in various ways. Examples of common critical thinking skills include:

Identification of biases: Identifying biases means knowing there are certain people or things that may have an unfair prejudice or influence on the situation at hand. Pointing out these biases helps to remove them from contention when it comes to solving the problem and allows you to see things from a different perspective.

Research: Researching details and facts allows you to be prepared when presenting your information to people. You’ll know exactly what you’re talking about due to the time you’ve spent with the subject material, and you’ll be well-spoken and know what questions to ask to gain more knowledge. When researching, always use credible sources and factual information.

Open-mindedness: Being open-minded when having a conversation or participating in a group activity is crucial to success. Dismissing someone else’s ideas before you’ve heard them will inhibit you from progressing to a solution, and will often create animosity. If you truly want to solve a problem, you need to be willing to hear everyone’s opinions and ideas if you want them to hear yours.

Analysis: Analyzing your research will lead to you having a better understanding of the things you’ve heard and read. As a true critical thinker, you’ll want to seek out the truth and get to the source of issues. It’s important to avoid taking things at face value and always dig deeper.

Problem-solving: Problem-solving is perhaps the most important skill that critical thinkers can possess. The ability to solve issues and bounce back from conflict is what helps you succeed, be a leader, and effect change. One way to properly solve problems is to first recognize there’s a problem that needs solving. By determining the issue at hand, you can then analyze it and come up with several potential solutions.

How to develop critical thinking skills

You can develop critical thinking skills every day if you approach problems in a logical manner. Here are a few ways you can start your path to improvement:

1. Ask questions.

Be inquisitive about everything. Maintain a neutral perspective and develop a natural curiosity, so you can ask questions that develop your understanding of the situation or task at hand. The more details, facts, and information you have, the better informed you are to make decisions.

2. Practice active listening.

Utilize active listening techniques, which are founded in empathy, to really listen to what the other person is saying. Critical thinking, in part, is the cognitive process of reading the situation: the words coming out of their mouth, their body language, their reactions to your own words. Then, you might paraphrase to clarify what they're saying, so both of you agree you're on the same page.

3. Develop your logic and reasoning.

This is perhaps a more abstract task that requires practice and long-term development. However, think of a schoolteacher assessing the classroom to determine how to energize the lesson. There's options such as playing a game, watching a video, or challenging the students with a reward system. Using logic, you might decide that the reward system will take up too much time and is not an immediate fix. A video is not exactly relevant at this time. So, the teacher decides to play a simple word association game.

Scenarios like this happen every day, so next time, you can be more aware of what will work and what won't. Over time, developing your logic and reasoning will strengthen your critical thinking skills.

Learn tips and tricks on how to become a better critical thinker and problem solver through online courses from notable educational institutions on Coursera. Start with Introduction to Logic and Critical Thinking from Duke University or Mindware: Critical Thinking for the Information Age from the University of Michigan.

Article sources

University of the People, “ Why is Critical Thinking Important?: A Survival Guide , https://www.uopeople.edu/blog/why-is-critical-thinking-important/.” Accessed May 18, 2023.

Keep reading

Coursera staff.

Editorial Team

Coursera’s editorial team is comprised of highly experienced professional editors, writers, and fact...

This content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 11 January 2023

The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature

  • Enwei Xu   ORCID: orcid.org/0000-0001-6424-8169 1 ,
  • Wei Wang 1 &
  • Qingxia Wang 1  

Humanities and Social Sciences Communications volume  10 , Article number:  16 ( 2023 ) Cite this article

18k Accesses

21 Citations

3 Altmetric

Metrics details

  • Science, technology and society

Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field of education as well as a key competence for learners in the 21st century. However, the effectiveness of collaborative problem-solving in promoting students’ critical thinking remains uncertain. This current research presents the major findings of a meta-analysis of 36 pieces of the literature revealed in worldwide educational periodicals during the 21st century to identify the effectiveness of collaborative problem-solving in promoting students’ critical thinking and to determine, based on evidence, whether and to what extent collaborative problem solving can result in a rise or decrease in critical thinking. The findings show that (1) collaborative problem solving is an effective teaching approach to foster students’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]); (2) in respect to the dimensions of critical thinking, collaborative problem solving can significantly and successfully enhance students’ attitudinal tendencies (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI[0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI[0.58, 0.82]); and (3) the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have an impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. On the basis of these results, recommendations are made for further study and instruction to better support students’ critical thinking in the context of collaborative problem-solving.

Similar content being viewed by others

how is learning critical thinking a social process

A meta-analysis of the effects of design thinking on student learning

how is learning critical thinking a social process

Fostering twenty-first century skills among primary school students through math project-based learning

how is learning critical thinking a social process

A meta-analysis to gauge the impact of pedagogies employed in mixed-ability high school biology classrooms

Introduction.

Although critical thinking has a long history in research, the concept of critical thinking, which is regarded as an essential competence for learners in the 21st century, has recently attracted more attention from researchers and teaching practitioners (National Research Council, 2012 ). Critical thinking should be the core of curriculum reform based on key competencies in the field of education (Peng and Deng, 2017 ) because students with critical thinking can not only understand the meaning of knowledge but also effectively solve practical problems in real life even after knowledge is forgotten (Kek and Huijser, 2011 ). The definition of critical thinking is not universal (Ennis, 1989 ; Castle, 2009 ; Niu et al., 2013 ). In general, the definition of critical thinking is a self-aware and self-regulated thought process (Facione, 1990 ; Niu et al., 2013 ). It refers to the cognitive skills needed to interpret, analyze, synthesize, reason, and evaluate information as well as the attitudinal tendency to apply these abilities (Halpern, 2001 ). The view that critical thinking can be taught and learned through curriculum teaching has been widely supported by many researchers (e.g., Kuncel, 2011 ; Leng and Lu, 2020 ), leading to educators’ efforts to foster it among students. In the field of teaching practice, there are three types of courses for teaching critical thinking (Ennis, 1989 ). The first is an independent curriculum in which critical thinking is taught and cultivated without involving the knowledge of specific disciplines; the second is an integrated curriculum in which critical thinking is integrated into the teaching of other disciplines as a clear teaching goal; and the third is a mixed curriculum in which critical thinking is taught in parallel to the teaching of other disciplines for mixed teaching training. Furthermore, numerous measuring tools have been developed by researchers and educators to measure critical thinking in the context of teaching practice. These include standardized measurement tools, such as WGCTA, CCTST, CCTT, and CCTDI, which have been verified by repeated experiments and are considered effective and reliable by international scholars (Facione and Facione, 1992 ). In short, descriptions of critical thinking, including its two dimensions of attitudinal tendency and cognitive skills, different types of teaching courses, and standardized measurement tools provide a complex normative framework for understanding, teaching, and evaluating critical thinking.

Cultivating critical thinking in curriculum teaching can start with a problem, and one of the most popular critical thinking instructional approaches is problem-based learning (Liu et al., 2020 ). Duch et al. ( 2001 ) noted that problem-based learning in group collaboration is progressive active learning, which can improve students’ critical thinking and problem-solving skills. Collaborative problem-solving is the organic integration of collaborative learning and problem-based learning, which takes learners as the center of the learning process and uses problems with poor structure in real-world situations as the starting point for the learning process (Liang et al., 2017 ). Students learn the knowledge needed to solve problems in a collaborative group, reach a consensus on problems in the field, and form solutions through social cooperation methods, such as dialogue, interpretation, questioning, debate, negotiation, and reflection, thus promoting the development of learners’ domain knowledge and critical thinking (Cindy, 2004 ; Liang et al., 2017 ).

Collaborative problem-solving has been widely used in the teaching practice of critical thinking, and several studies have attempted to conduct a systematic review and meta-analysis of the empirical literature on critical thinking from various perspectives. However, little attention has been paid to the impact of collaborative problem-solving on critical thinking. Therefore, the best approach for developing and enhancing critical thinking throughout collaborative problem-solving is to examine how to implement critical thinking instruction; however, this issue is still unexplored, which means that many teachers are incapable of better instructing critical thinking (Leng and Lu, 2020 ; Niu et al., 2013 ). For example, Huber ( 2016 ) provided the meta-analysis findings of 71 publications on gaining critical thinking over various time frames in college with the aim of determining whether critical thinking was truly teachable. These authors found that learners significantly improve their critical thinking while in college and that critical thinking differs with factors such as teaching strategies, intervention duration, subject area, and teaching type. The usefulness of collaborative problem-solving in fostering students’ critical thinking, however, was not determined by this study, nor did it reveal whether there existed significant variations among the different elements. A meta-analysis of 31 pieces of educational literature was conducted by Liu et al. ( 2020 ) to assess the impact of problem-solving on college students’ critical thinking. These authors found that problem-solving could promote the development of critical thinking among college students and proposed establishing a reasonable group structure for problem-solving in a follow-up study to improve students’ critical thinking. Additionally, previous empirical studies have reached inconclusive and even contradictory conclusions about whether and to what extent collaborative problem-solving increases or decreases critical thinking levels. As an illustration, Yang et al. ( 2008 ) carried out an experiment on the integrated curriculum teaching of college students based on a web bulletin board with the goal of fostering participants’ critical thinking in the context of collaborative problem-solving. These authors’ research revealed that through sharing, debating, examining, and reflecting on various experiences and ideas, collaborative problem-solving can considerably enhance students’ critical thinking in real-life problem situations. In contrast, collaborative problem-solving had a positive impact on learners’ interaction and could improve learning interest and motivation but could not significantly improve students’ critical thinking when compared to traditional classroom teaching, according to research by Naber and Wyatt ( 2014 ) and Sendag and Odabasi ( 2009 ) on undergraduate and high school students, respectively.

The above studies show that there is inconsistency regarding the effectiveness of collaborative problem-solving in promoting students’ critical thinking. Therefore, it is essential to conduct a thorough and trustworthy review to detect and decide whether and to what degree collaborative problem-solving can result in a rise or decrease in critical thinking. Meta-analysis is a quantitative analysis approach that is utilized to examine quantitative data from various separate studies that are all focused on the same research topic. This approach characterizes the effectiveness of its impact by averaging the effect sizes of numerous qualitative studies in an effort to reduce the uncertainty brought on by independent research and produce more conclusive findings (Lipsey and Wilson, 2001 ).

This paper used a meta-analytic approach and carried out a meta-analysis to examine the effectiveness of collaborative problem-solving in promoting students’ critical thinking in order to make a contribution to both research and practice. The following research questions were addressed by this meta-analysis:

What is the overall effect size of collaborative problem-solving in promoting students’ critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills)?

How are the disparities between the study conclusions impacted by various moderating variables if the impacts of various experimental designs in the included studies are heterogeneous?

This research followed the strict procedures (e.g., database searching, identification, screening, eligibility, merging, duplicate removal, and analysis of included studies) of Cooper’s ( 2010 ) proposed meta-analysis approach for examining quantitative data from various separate studies that are all focused on the same research topic. The relevant empirical research that appeared in worldwide educational periodicals within the 21st century was subjected to this meta-analysis using Rev-Man 5.4. The consistency of the data extracted separately by two researchers was tested using Cohen’s kappa coefficient, and a publication bias test and a heterogeneity test were run on the sample data to ascertain the quality of this meta-analysis.

Data sources and search strategies

There were three stages to the data collection process for this meta-analysis, as shown in Fig. 1 , which shows the number of articles included and eliminated during the selection process based on the statement and study eligibility criteria.

figure 1

This flowchart shows the number of records identified, included and excluded in the article.

First, the databases used to systematically search for relevant articles were the journal papers of the Web of Science Core Collection and the Chinese Core source journal, as well as the Chinese Social Science Citation Index (CSSCI) source journal papers included in CNKI. These databases were selected because they are credible platforms that are sources of scholarly and peer-reviewed information with advanced search tools and contain literature relevant to the subject of our topic from reliable researchers and experts. The search string with the Boolean operator used in the Web of Science was “TS = (((“critical thinking” or “ct” and “pretest” or “posttest”) or (“critical thinking” or “ct” and “control group” or “quasi experiment” or “experiment”)) and (“collaboration” or “collaborative learning” or “CSCL”) and (“problem solving” or “problem-based learning” or “PBL”))”. The research area was “Education Educational Research”, and the search period was “January 1, 2000, to December 30, 2021”. A total of 412 papers were obtained. The search string with the Boolean operator used in the CNKI was “SU = (‘critical thinking’*‘collaboration’ + ‘critical thinking’*‘collaborative learning’ + ‘critical thinking’*‘CSCL’ + ‘critical thinking’*‘problem solving’ + ‘critical thinking’*‘problem-based learning’ + ‘critical thinking’*‘PBL’ + ‘critical thinking’*‘problem oriented’) AND FT = (‘experiment’ + ‘quasi experiment’ + ‘pretest’ + ‘posttest’ + ‘empirical study’)” (translated into Chinese when searching). A total of 56 studies were found throughout the search period of “January 2000 to December 2021”. From the databases, all duplicates and retractions were eliminated before exporting the references into Endnote, a program for managing bibliographic references. In all, 466 studies were found.

Second, the studies that matched the inclusion and exclusion criteria for the meta-analysis were chosen by two researchers after they had reviewed the abstracts and titles of the gathered articles, yielding a total of 126 studies.

Third, two researchers thoroughly reviewed each included article’s whole text in accordance with the inclusion and exclusion criteria. Meanwhile, a snowball search was performed using the references and citations of the included articles to ensure complete coverage of the articles. Ultimately, 36 articles were kept.

Two researchers worked together to carry out this entire process, and a consensus rate of almost 94.7% was reached after discussion and negotiation to clarify any emerging differences.

Eligibility criteria

Since not all the retrieved studies matched the criteria for this meta-analysis, eligibility criteria for both inclusion and exclusion were developed as follows:

The publication language of the included studies was limited to English and Chinese, and the full text could be obtained. Articles that did not meet the publication language and articles not published between 2000 and 2021 were excluded.

The research design of the included studies must be empirical and quantitative studies that can assess the effect of collaborative problem-solving on the development of critical thinking. Articles that could not identify the causal mechanisms by which collaborative problem-solving affects critical thinking, such as review articles and theoretical articles, were excluded.

The research method of the included studies must feature a randomized control experiment or a quasi-experiment, or a natural experiment, which have a higher degree of internal validity with strong experimental designs and can all plausibly provide evidence that critical thinking and collaborative problem-solving are causally related. Articles with non-experimental research methods, such as purely correlational or observational studies, were excluded.

The participants of the included studies were only students in school, including K-12 students and college students. Articles in which the participants were non-school students, such as social workers or adult learners, were excluded.

The research results of the included studies must mention definite signs that may be utilized to gauge critical thinking’s impact (e.g., sample size, mean value, or standard deviation). Articles that lacked specific measurement indicators for critical thinking and could not calculate the effect size were excluded.

Data coding design

In order to perform a meta-analysis, it is necessary to collect the most important information from the articles, codify that information’s properties, and convert descriptive data into quantitative data. Therefore, this study designed a data coding template (see Table 1 ). Ultimately, 16 coding fields were retained.

The designed data-coding template consisted of three pieces of information. Basic information about the papers was included in the descriptive information: the publishing year, author, serial number, and title of the paper.

The variable information for the experimental design had three variables: the independent variable (instruction method), the dependent variable (critical thinking), and the moderating variable (learning stage, teaching type, intervention duration, learning scaffold, group size, measuring tool, and subject area). Depending on the topic of this study, the intervention strategy, as the independent variable, was coded into collaborative and non-collaborative problem-solving. The dependent variable, critical thinking, was coded as a cognitive skill and an attitudinal tendency. And seven moderating variables were created by grouping and combining the experimental design variables discovered within the 36 studies (see Table 1 ), where learning stages were encoded as higher education, high school, middle school, and primary school or lower; teaching types were encoded as mixed courses, integrated courses, and independent courses; intervention durations were encoded as 0–1 weeks, 1–4 weeks, 4–12 weeks, and more than 12 weeks; group sizes were encoded as 2–3 persons, 4–6 persons, 7–10 persons, and more than 10 persons; learning scaffolds were encoded as teacher-supported learning scaffold, technique-supported learning scaffold, and resource-supported learning scaffold; measuring tools were encoded as standardized measurement tools (e.g., WGCTA, CCTT, CCTST, and CCTDI) and self-adapting measurement tools (e.g., modified or made by researchers); and subject areas were encoded according to the specific subjects used in the 36 included studies.

The data information contained three metrics for measuring critical thinking: sample size, average value, and standard deviation. It is vital to remember that studies with various experimental designs frequently adopt various formulas to determine the effect size. And this paper used Morris’ proposed standardized mean difference (SMD) calculation formula ( 2008 , p. 369; see Supplementary Table S3 ).

Procedure for extracting and coding data

According to the data coding template (see Table 1 ), the 36 papers’ information was retrieved by two researchers, who then entered them into Excel (see Supplementary Table S1 ). The results of each study were extracted separately in the data extraction procedure if an article contained numerous studies on critical thinking, or if a study assessed different critical thinking dimensions. For instance, Tiwari et al. ( 2010 ) used four time points, which were viewed as numerous different studies, to examine the outcomes of critical thinking, and Chen ( 2013 ) included the two outcome variables of attitudinal tendency and cognitive skills, which were regarded as two studies. After discussion and negotiation during data extraction, the two researchers’ consistency test coefficients were roughly 93.27%. Supplementary Table S2 details the key characteristics of the 36 included articles with 79 effect quantities, including descriptive information (e.g., the publishing year, author, serial number, and title of the paper), variable information (e.g., independent variables, dependent variables, and moderating variables), and data information (e.g., mean values, standard deviations, and sample size). Following that, testing for publication bias and heterogeneity was done on the sample data using the Rev-Man 5.4 software, and then the test results were used to conduct a meta-analysis.

Publication bias test

When the sample of studies included in a meta-analysis does not accurately reflect the general status of research on the relevant subject, publication bias is said to be exhibited in this research. The reliability and accuracy of the meta-analysis may be impacted by publication bias. Due to this, the meta-analysis needs to check the sample data for publication bias (Stewart et al., 2006 ). A popular method to check for publication bias is the funnel plot; and it is unlikely that there will be publishing bias when the data are equally dispersed on either side of the average effect size and targeted within the higher region. The data are equally dispersed within the higher portion of the efficient zone, consistent with the funnel plot connected with this analysis (see Fig. 2 ), indicating that publication bias is unlikely in this situation.

figure 2

This funnel plot shows the result of publication bias of 79 effect quantities across 36 studies.

Heterogeneity test

To select the appropriate effect models for the meta-analysis, one might use the results of a heterogeneity test on the data effect sizes. In a meta-analysis, it is common practice to gauge the degree of data heterogeneity using the I 2 value, and I 2  ≥ 50% is typically understood to denote medium-high heterogeneity, which calls for the adoption of a random effect model; if not, a fixed effect model ought to be applied (Lipsey and Wilson, 2001 ). The findings of the heterogeneity test in this paper (see Table 2 ) revealed that I 2 was 86% and displayed significant heterogeneity ( P  < 0.01). To ensure accuracy and reliability, the overall effect size ought to be calculated utilizing the random effect model.

The analysis of the overall effect size

This meta-analysis utilized a random effect model to examine 79 effect quantities from 36 studies after eliminating heterogeneity. In accordance with Cohen’s criterion (Cohen, 1992 ), it is abundantly clear from the analysis results, which are shown in the forest plot of the overall effect (see Fig. 3 ), that the cumulative impact size of cooperative problem-solving is 0.82, which is statistically significant ( z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]), and can encourage learners to practice critical thinking.

figure 3

This forest plot shows the analysis result of the overall effect size across 36 studies.

In addition, this study examined two distinct dimensions of critical thinking to better understand the precise contributions that collaborative problem-solving makes to the growth of critical thinking. The findings (see Table 3 ) indicate that collaborative problem-solving improves cognitive skills (ES = 0.70) and attitudinal tendency (ES = 1.17), with significant intergroup differences (chi 2  = 7.95, P  < 0.01). Although collaborative problem-solving improves both dimensions of critical thinking, it is essential to point out that the improvements in students’ attitudinal tendency are much more pronounced and have a significant comprehensive effect (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]), whereas gains in learners’ cognitive skill are slightly improved and are just above average. (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

The analysis of moderator effect size

The whole forest plot’s 79 effect quantities underwent a two-tailed test, which revealed significant heterogeneity ( I 2  = 86%, z  = 12.78, P  < 0.01), indicating differences between various effect sizes that may have been influenced by moderating factors other than sampling error. Therefore, exploring possible moderating factors that might produce considerable heterogeneity was done using subgroup analysis, such as the learning stage, learning scaffold, teaching type, group size, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, in order to further explore the key factors that influence critical thinking. The findings (see Table 4 ) indicate that various moderating factors have advantageous effects on critical thinking. In this situation, the subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), learning scaffold (chi 2  = 9.03, P  < 0.01), and teaching type (chi 2  = 7.20, P  < 0.05) are all significant moderators that can be applied to support the cultivation of critical thinking. However, since the learning stage and the measuring tools did not significantly differ among intergroup (chi 2  = 3.15, P  = 0.21 > 0.05, and chi 2  = 0.08, P  = 0.78 > 0.05), we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving. These are the precise outcomes, as follows:

Various learning stages influenced critical thinking positively, without significant intergroup differences (chi 2  = 3.15, P  = 0.21 > 0.05). High school was first on the list of effect sizes (ES = 1.36, P  < 0.01), then higher education (ES = 0.78, P  < 0.01), and middle school (ES = 0.73, P  < 0.01). These results show that, despite the learning stage’s beneficial influence on cultivating learners’ critical thinking, we are unable to explain why it is essential for cultivating critical thinking in the context of collaborative problem-solving.

Different teaching types had varying degrees of positive impact on critical thinking, with significant intergroup differences (chi 2  = 7.20, P  < 0.05). The effect size was ranked as follows: mixed courses (ES = 1.34, P  < 0.01), integrated courses (ES = 0.81, P  < 0.01), and independent courses (ES = 0.27, P  < 0.01). These results indicate that the most effective approach to cultivate critical thinking utilizing collaborative problem solving is through the teaching type of mixed courses.

Various intervention durations significantly improved critical thinking, and there were significant intergroup differences (chi 2  = 12.18, P  < 0.01). The effect sizes related to this variable showed a tendency to increase with longer intervention durations. The improvement in critical thinking reached a significant level (ES = 0.85, P  < 0.01) after more than 12 weeks of training. These findings indicate that the intervention duration and critical thinking’s impact are positively correlated, with a longer intervention duration having a greater effect.

Different learning scaffolds influenced critical thinking positively, with significant intergroup differences (chi 2  = 9.03, P  < 0.01). The resource-supported learning scaffold (ES = 0.69, P  < 0.01) acquired a medium-to-higher level of impact, the technique-supported learning scaffold (ES = 0.63, P  < 0.01) also attained a medium-to-higher level of impact, and the teacher-supported learning scaffold (ES = 0.92, P  < 0.01) displayed a high level of significant impact. These results show that the learning scaffold with teacher support has the greatest impact on cultivating critical thinking.

Various group sizes influenced critical thinking positively, and the intergroup differences were statistically significant (chi 2  = 8.77, P  < 0.05). Critical thinking showed a general declining trend with increasing group size. The overall effect size of 2–3 people in this situation was the biggest (ES = 0.99, P  < 0.01), and when the group size was greater than 7 people, the improvement in critical thinking was at the lower-middle level (ES < 0.5, P  < 0.01). These results show that the impact on critical thinking is positively connected with group size, and as group size grows, so does the overall impact.

Various measuring tools influenced critical thinking positively, with significant intergroup differences (chi 2  = 0.08, P  = 0.78 > 0.05). In this situation, the self-adapting measurement tools obtained an upper-medium level of effect (ES = 0.78), whereas the complete effect size of the standardized measurement tools was the largest, achieving a significant level of effect (ES = 0.84, P  < 0.01). These results show that, despite the beneficial influence of the measuring tool on cultivating critical thinking, we are unable to explain why it is crucial in fostering the growth of critical thinking by utilizing the approach of collaborative problem-solving.

Different subject areas had a greater impact on critical thinking, and the intergroup differences were statistically significant (chi 2  = 13.36, P  < 0.05). Mathematics had the greatest overall impact, achieving a significant level of effect (ES = 1.68, P  < 0.01), followed by science (ES = 1.25, P  < 0.01) and medical science (ES = 0.87, P  < 0.01), both of which also achieved a significant level of effect. Programming technology was the least effective (ES = 0.39, P  < 0.01), only having a medium-low degree of effect compared to education (ES = 0.72, P  < 0.01) and other fields (such as language, art, and social sciences) (ES = 0.58, P  < 0.01). These results suggest that scientific fields (e.g., mathematics, science) may be the most effective subject areas for cultivating critical thinking utilizing the approach of collaborative problem-solving.

The effectiveness of collaborative problem solving with regard to teaching critical thinking

According to this meta-analysis, using collaborative problem-solving as an intervention strategy in critical thinking teaching has a considerable amount of impact on cultivating learners’ critical thinking as a whole and has a favorable promotional effect on the two dimensions of critical thinking. According to certain studies, collaborative problem solving, the most frequently used critical thinking teaching strategy in curriculum instruction can considerably enhance students’ critical thinking (e.g., Liang et al., 2017 ; Liu et al., 2020 ; Cindy, 2004 ). This meta-analysis provides convergent data support for the above research views. Thus, the findings of this meta-analysis not only effectively address the first research query regarding the overall effect of cultivating critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills) utilizing the approach of collaborative problem-solving, but also enhance our confidence in cultivating critical thinking by using collaborative problem-solving intervention approach in the context of classroom teaching.

Furthermore, the associated improvements in attitudinal tendency are much stronger, but the corresponding improvements in cognitive skill are only marginally better. According to certain studies, cognitive skill differs from the attitudinal tendency in classroom instruction; the cultivation and development of the former as a key ability is a process of gradual accumulation, while the latter as an attitude is affected by the context of the teaching situation (e.g., a novel and exciting teaching approach, challenging and rewarding tasks) (Halpern, 2001 ; Wei and Hong, 2022 ). Collaborative problem-solving as a teaching approach is exciting and interesting, as well as rewarding and challenging; because it takes the learners as the focus and examines problems with poor structure in real situations, and it can inspire students to fully realize their potential for problem-solving, which will significantly improve their attitudinal tendency toward solving problems (Liu et al., 2020 ). Similar to how collaborative problem-solving influences attitudinal tendency, attitudinal tendency impacts cognitive skill when attempting to solve a problem (Liu et al., 2020 ; Zhang et al., 2022 ), and stronger attitudinal tendencies are associated with improved learning achievement and cognitive ability in students (Sison, 2008 ; Zhang et al., 2022 ). It can be seen that the two specific dimensions of critical thinking as well as critical thinking as a whole are affected by collaborative problem-solving, and this study illuminates the nuanced links between cognitive skills and attitudinal tendencies with regard to these two dimensions of critical thinking. To fully develop students’ capacity for critical thinking, future empirical research should pay closer attention to cognitive skills.

The moderating effects of collaborative problem solving with regard to teaching critical thinking

In order to further explore the key factors that influence critical thinking, exploring possible moderating effects that might produce considerable heterogeneity was done using subgroup analysis. The findings show that the moderating factors, such as the teaching type, learning stage, group size, learning scaffold, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, could all support the cultivation of collaborative problem-solving in critical thinking. Among them, the effect size differences between the learning stage and measuring tool are not significant, which does not explain why these two factors are crucial in supporting the cultivation of critical thinking utilizing the approach of collaborative problem-solving.

In terms of the learning stage, various learning stages influenced critical thinking positively without significant intergroup differences, indicating that we are unable to explain why it is crucial in fostering the growth of critical thinking.

Although high education accounts for 70.89% of all empirical studies performed by researchers, high school may be the appropriate learning stage to foster students’ critical thinking by utilizing the approach of collaborative problem-solving since it has the largest overall effect size. This phenomenon may be related to student’s cognitive development, which needs to be further studied in follow-up research.

With regard to teaching type, mixed course teaching may be the best teaching method to cultivate students’ critical thinking. Relevant studies have shown that in the actual teaching process if students are trained in thinking methods alone, the methods they learn are isolated and divorced from subject knowledge, which is not conducive to their transfer of thinking methods; therefore, if students’ thinking is trained only in subject teaching without systematic method training, it is challenging to apply to real-world circumstances (Ruggiero, 2012 ; Hu and Liu, 2015 ). Teaching critical thinking as mixed course teaching in parallel to other subject teachings can achieve the best effect on learners’ critical thinking, and explicit critical thinking instruction is more effective than less explicit critical thinking instruction (Bensley and Spero, 2014 ).

In terms of the intervention duration, with longer intervention times, the overall effect size shows an upward tendency. Thus, the intervention duration and critical thinking’s impact are positively correlated. Critical thinking, as a key competency for students in the 21st century, is difficult to get a meaningful improvement in a brief intervention duration. Instead, it could be developed over a lengthy period of time through consistent teaching and the progressive accumulation of knowledge (Halpern, 2001 ; Hu and Liu, 2015 ). Therefore, future empirical studies ought to take these restrictions into account throughout a longer period of critical thinking instruction.

With regard to group size, a group size of 2–3 persons has the highest effect size, and the comprehensive effect size decreases with increasing group size in general. This outcome is in line with some research findings; as an example, a group composed of two to four members is most appropriate for collaborative learning (Schellens and Valcke, 2006 ). However, the meta-analysis results also indicate that once the group size exceeds 7 people, small groups cannot produce better interaction and performance than large groups. This may be because the learning scaffolds of technique support, resource support, and teacher support improve the frequency and effectiveness of interaction among group members, and a collaborative group with more members may increase the diversity of views, which is helpful to cultivate critical thinking utilizing the approach of collaborative problem-solving.

With regard to the learning scaffold, the three different kinds of learning scaffolds can all enhance critical thinking. Among them, the teacher-supported learning scaffold has the largest overall effect size, demonstrating the interdependence of effective learning scaffolds and collaborative problem-solving. This outcome is in line with some research findings; as an example, a successful strategy is to encourage learners to collaborate, come up with solutions, and develop critical thinking skills by using learning scaffolds (Reiser, 2004 ; Xu et al., 2022 ); learning scaffolds can lower task complexity and unpleasant feelings while also enticing students to engage in learning activities (Wood et al., 2006 ); learning scaffolds are designed to assist students in using learning approaches more successfully to adapt the collaborative problem-solving process, and the teacher-supported learning scaffolds have the greatest influence on critical thinking in this process because they are more targeted, informative, and timely (Xu et al., 2022 ).

With respect to the measuring tool, despite the fact that standardized measurement tools (such as the WGCTA, CCTT, and CCTST) have been acknowledged as trustworthy and effective by worldwide experts, only 54.43% of the research included in this meta-analysis adopted them for assessment, and the results indicated no intergroup differences. These results suggest that not all teaching circumstances are appropriate for measuring critical thinking using standardized measurement tools. “The measuring tools for measuring thinking ability have limits in assessing learners in educational situations and should be adapted appropriately to accurately assess the changes in learners’ critical thinking.”, according to Simpson and Courtney ( 2002 , p. 91). As a result, in order to more fully and precisely gauge how learners’ critical thinking has evolved, we must properly modify standardized measuring tools based on collaborative problem-solving learning contexts.

With regard to the subject area, the comprehensive effect size of science departments (e.g., mathematics, science, medical science) is larger than that of language arts and social sciences. Some recent international education reforms have noted that critical thinking is a basic part of scientific literacy. Students with scientific literacy can prove the rationality of their judgment according to accurate evidence and reasonable standards when they face challenges or poorly structured problems (Kyndt et al., 2013 ), which makes critical thinking crucial for developing scientific understanding and applying this understanding to practical problem solving for problems related to science, technology, and society (Yore et al., 2007 ).

Suggestions for critical thinking teaching

Other than those stated in the discussion above, the following suggestions are offered for critical thinking instruction utilizing the approach of collaborative problem-solving.

First, teachers should put a special emphasis on the two core elements, which are collaboration and problem-solving, to design real problems based on collaborative situations. This meta-analysis provides evidence to support the view that collaborative problem-solving has a strong synergistic effect on promoting students’ critical thinking. Asking questions about real situations and allowing learners to take part in critical discussions on real problems during class instruction are key ways to teach critical thinking rather than simply reading speculative articles without practice (Mulnix, 2012 ). Furthermore, the improvement of students’ critical thinking is realized through cognitive conflict with other learners in the problem situation (Yang et al., 2008 ). Consequently, it is essential for teachers to put a special emphasis on the two core elements, which are collaboration and problem-solving, and design real problems and encourage students to discuss, negotiate, and argue based on collaborative problem-solving situations.

Second, teachers should design and implement mixed courses to cultivate learners’ critical thinking, utilizing the approach of collaborative problem-solving. Critical thinking can be taught through curriculum instruction (Kuncel, 2011 ; Leng and Lu, 2020 ), with the goal of cultivating learners’ critical thinking for flexible transfer and application in real problem-solving situations. This meta-analysis shows that mixed course teaching has a highly substantial impact on the cultivation and promotion of learners’ critical thinking. Therefore, teachers should design and implement mixed course teaching with real collaborative problem-solving situations in combination with the knowledge content of specific disciplines in conventional teaching, teach methods and strategies of critical thinking based on poorly structured problems to help students master critical thinking, and provide practical activities in which students can interact with each other to develop knowledge construction and critical thinking utilizing the approach of collaborative problem-solving.

Third, teachers should be more trained in critical thinking, particularly preservice teachers, and they also should be conscious of the ways in which teachers’ support for learning scaffolds can promote critical thinking. The learning scaffold supported by teachers had the greatest impact on learners’ critical thinking, in addition to being more directive, targeted, and timely (Wood et al., 2006 ). Critical thinking can only be effectively taught when teachers recognize the significance of critical thinking for students’ growth and use the proper approaches while designing instructional activities (Forawi, 2016 ). Therefore, with the intention of enabling teachers to create learning scaffolds to cultivate learners’ critical thinking utilizing the approach of collaborative problem solving, it is essential to concentrate on the teacher-supported learning scaffolds and enhance the instruction for teaching critical thinking to teachers, especially preservice teachers.

Implications and limitations

There are certain limitations in this meta-analysis, but future research can correct them. First, the search languages were restricted to English and Chinese, so it is possible that pertinent studies that were written in other languages were overlooked, resulting in an inadequate number of articles for review. Second, these data provided by the included studies are partially missing, such as whether teachers were trained in the theory and practice of critical thinking, the average age and gender of learners, and the differences in critical thinking among learners of various ages and genders. Third, as is typical for review articles, more studies were released while this meta-analysis was being done; therefore, it had a time limit. With the development of relevant research, future studies focusing on these issues are highly relevant and needed.

Conclusions

The subject of the magnitude of collaborative problem-solving’s impact on fostering students’ critical thinking, which received scant attention from other studies, was successfully addressed by this study. The question of the effectiveness of collaborative problem-solving in promoting students’ critical thinking was addressed in this study, which addressed a topic that had gotten little attention in earlier research. The following conclusions can be made:

Regarding the results obtained, collaborative problem solving is an effective teaching approach to foster learners’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]). With respect to the dimensions of critical thinking, collaborative problem-solving can significantly and effectively improve students’ attitudinal tendency, and the comprehensive effect is significant (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

As demonstrated by both the results and the discussion, there are varying degrees of beneficial effects on students’ critical thinking from all seven moderating factors, which were found across 36 studies. In this context, the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have a positive impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. Since the learning stage (chi 2  = 3.15, P  = 0.21 > 0.05) and measuring tools (chi 2  = 0.08, P  = 0.78 > 0.05) did not demonstrate any significant intergroup differences, we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving.

Data availability

All data generated or analyzed during this study are included within the article and its supplementary information files, and the supplementary information files are available in the Dataverse repository: https://doi.org/10.7910/DVN/IPFJO6 .

Bensley DA, Spero RA (2014) Improving critical thinking skills and meta-cognitive monitoring through direct infusion. Think Skills Creat 12:55–68. https://doi.org/10.1016/j.tsc.2014.02.001

Article   Google Scholar  

Castle A (2009) Defining and assessing critical thinking skills for student radiographers. Radiography 15(1):70–76. https://doi.org/10.1016/j.radi.2007.10.007

Chen XD (2013) An empirical study on the influence of PBL teaching model on critical thinking ability of non-English majors. J PLA Foreign Lang College 36 (04):68–72

Google Scholar  

Cohen A (1992) Antecedents of organizational commitment across occupational groups: a meta-analysis. J Organ Behav. https://doi.org/10.1002/job.4030130602

Cooper H (2010) Research synthesis and meta-analysis: a step-by-step approach, 4th edn. Sage, London, England

Cindy HS (2004) Problem-based learning: what and how do students learn? Educ Psychol Rev 51(1):31–39

Duch BJ, Gron SD, Allen DE (2001) The power of problem-based learning: a practical “how to” for teaching undergraduate courses in any discipline. Stylus Educ Sci 2:190–198

Ennis RH (1989) Critical thinking and subject specificity: clarification and needed research. Educ Res 18(3):4–10. https://doi.org/10.3102/0013189x018003004

Facione PA (1990) Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations. Eric document reproduction service. https://eric.ed.gov/?id=ed315423

Facione PA, Facione NC (1992) The California Critical Thinking Dispositions Inventory (CCTDI) and the CCTDI test manual. California Academic Press, Millbrae, CA

Forawi SA (2016) Standard-based science education and critical thinking. Think Skills Creat 20:52–62. https://doi.org/10.1016/j.tsc.2016.02.005

Halpern DF (2001) Assessing the effectiveness of critical thinking instruction. J Gen Educ 50(4):270–286. https://doi.org/10.2307/27797889

Hu WP, Liu J (2015) Cultivation of pupils’ thinking ability: a five-year follow-up study. Psychol Behav Res 13(05):648–654. https://doi.org/10.3969/j.issn.1672-0628.2015.05.010

Huber K (2016) Does college teach critical thinking? A meta-analysis. Rev Educ Res 86(2):431–468. https://doi.org/10.3102/0034654315605917

Kek MYCA, Huijser H (2011) The power of problem-based learning in developing critical thinking skills: preparing students for tomorrow’s digital futures in today’s classrooms. High Educ Res Dev 30(3):329–341. https://doi.org/10.1080/07294360.2010.501074

Kuncel NR (2011) Measurement and meaning of critical thinking (Research report for the NRC 21st Century Skills Workshop). National Research Council, Washington, DC

Kyndt E, Raes E, Lismont B, Timmers F, Cascallar E, Dochy F (2013) A meta-analysis of the effects of face-to-face cooperative learning. Do recent studies falsify or verify earlier findings? Educ Res Rev 10(2):133–149. https://doi.org/10.1016/j.edurev.2013.02.002

Leng J, Lu XX (2020) Is critical thinking really teachable?—A meta-analysis based on 79 experimental or quasi experimental studies. Open Educ Res 26(06):110–118. https://doi.org/10.13966/j.cnki.kfjyyj.2020.06.011

Liang YZ, Zhu K, Zhao CL (2017) An empirical study on the depth of interaction promoted by collaborative problem solving learning activities. J E-educ Res 38(10):87–92. https://doi.org/10.13811/j.cnki.eer.2017.10.014

Lipsey M, Wilson D (2001) Practical meta-analysis. International Educational and Professional, London, pp. 92–160

Liu Z, Wu W, Jiang Q (2020) A study on the influence of problem based learning on college students’ critical thinking-based on a meta-analysis of 31 studies. Explor High Educ 03:43–49

Morris SB (2008) Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods 11(2):364–386. https://doi.org/10.1177/1094428106291059

Article   ADS   Google Scholar  

Mulnix JW (2012) Thinking critically about critical thinking. Educ Philos Theory 44(5):464–479. https://doi.org/10.1111/j.1469-5812.2010.00673.x

Naber J, Wyatt TH (2014) The effect of reflective writing interventions on the critical thinking skills and dispositions of baccalaureate nursing students. Nurse Educ Today 34(1):67–72. https://doi.org/10.1016/j.nedt.2013.04.002

National Research Council (2012) Education for life and work: developing transferable knowledge and skills in the 21st century. The National Academies Press, Washington, DC

Niu L, Behar HLS, Garvan CW (2013) Do instructional interventions influence college students’ critical thinking skills? A meta-analysis. Educ Res Rev 9(12):114–128. https://doi.org/10.1016/j.edurev.2012.12.002

Peng ZM, Deng L (2017) Towards the core of education reform: cultivating critical thinking skills as the core of skills in the 21st century. Res Educ Dev 24:57–63. https://doi.org/10.14121/j.cnki.1008-3855.2017.24.011

Reiser BJ (2004) Scaffolding complex learning: the mechanisms of structuring and problematizing student work. J Learn Sci 13(3):273–304. https://doi.org/10.1207/s15327809jls1303_2

Ruggiero VR (2012) The art of thinking: a guide to critical and creative thought, 4th edn. Harper Collins College Publishers, New York

Schellens T, Valcke M (2006) Fostering knowledge construction in university students through asynchronous discussion groups. Comput Educ 46(4):349–370. https://doi.org/10.1016/j.compedu.2004.07.010

Sendag S, Odabasi HF (2009) Effects of an online problem based learning course on content knowledge acquisition and critical thinking skills. Comput Educ 53(1):132–141. https://doi.org/10.1016/j.compedu.2009.01.008

Sison R (2008) Investigating Pair Programming in a Software Engineering Course in an Asian Setting. 2008 15th Asia-Pacific Software Engineering Conference, pp. 325–331. https://doi.org/10.1109/APSEC.2008.61

Simpson E, Courtney M (2002) Critical thinking in nursing education: literature review. Mary Courtney 8(2):89–98

Stewart L, Tierney J, Burdett S (2006) Do systematic reviews based on individual patient data offer a means of circumventing biases associated with trial publications? Publication bias in meta-analysis. John Wiley and Sons Inc, New York, pp. 261–286

Tiwari A, Lai P, So M, Yuen K (2010) A comparison of the effects of problem-based learning and lecturing on the development of students’ critical thinking. Med Educ 40(6):547–554. https://doi.org/10.1111/j.1365-2929.2006.02481.x

Wood D, Bruner JS, Ross G (2006) The role of tutoring in problem solving. J Child Psychol Psychiatry 17(2):89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Wei T, Hong S (2022) The meaning and realization of teachable critical thinking. Educ Theory Practice 10:51–57

Xu EW, Wang W, Wang QX (2022) A meta-analysis of the effectiveness of programming teaching in promoting K-12 students’ computational thinking. Educ Inf Technol. https://doi.org/10.1007/s10639-022-11445-2

Yang YC, Newby T, Bill R (2008) Facilitating interactions through structured web-based bulletin boards: a quasi-experimental study on promoting learners’ critical thinking skills. Comput Educ 50(4):1572–1585. https://doi.org/10.1016/j.compedu.2007.04.006

Yore LD, Pimm D, Tuan HL (2007) The literacy component of mathematical and scientific literacy. Int J Sci Math Educ 5(4):559–589. https://doi.org/10.1007/s10763-007-9089-4

Zhang T, Zhang S, Gao QQ, Wang JH (2022) Research on the development of learners’ critical thinking in online peer review. Audio Visual Educ Res 6:53–60. https://doi.org/10.13811/j.cnki.eer.2022.06.08

Download references

Acknowledgements

This research was supported by the graduate scientific research and innovation project of Xinjiang Uygur Autonomous Region named “Research on in-depth learning of high school information technology courses for the cultivation of computing thinking” (No. XJ2022G190) and the independent innovation fund project for doctoral students of the College of Educational Science of Xinjiang Normal University named “Research on project-based teaching of high school information technology courses from the perspective of discipline core literacy” (No. XJNUJKYA2003).

Author information

Authors and affiliations.

College of Educational Science, Xinjiang Normal University, 830017, Urumqi, Xinjiang, China

Enwei Xu, Wei Wang & Qingxia Wang

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Enwei Xu or Wei Wang .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Additional information.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary tables, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Xu, E., Wang, W. & Wang, Q. The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature. Humanit Soc Sci Commun 10 , 16 (2023). https://doi.org/10.1057/s41599-023-01508-1

Download citation

Received : 07 August 2022

Accepted : 04 January 2023

Published : 11 January 2023

DOI : https://doi.org/10.1057/s41599-023-01508-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Impacts of online collaborative learning on students’ intercultural communication apprehension and intercultural communicative competence.

  • Hoa Thi Hoang Chau
  • Hung Phu Bui
  • Quynh Thi Huong Dinh

Education and Information Technologies (2024)

Exploring the effects of digital technology on deep learning: a meta-analysis

The impacts of computer-supported collaborative learning on students’ critical thinking: a meta-analysis.

  • Yoseph Gebrehiwot Tedla
  • Hsiu-Ling Chen

Sustainable electricity generation and farm-grid utilization from photovoltaic aquaculture: a bibliometric analysis

  • A. A. Amusa
  • M. Alhassan

International Journal of Environmental Science and Technology (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

how is learning critical thinking a social process

Classroom Q&A

With larry ferlazzo.

In this EdWeek blog, an experiment in knowledge-gathering, Ferlazzo will address readers’ questions on classroom management, ELL instruction, lesson planning, and other issues facing teachers. Send your questions to [email protected]. Read more from this blog.

Eight Instructional Strategies for Promoting Critical Thinking

how is learning critical thinking a social process

  • Share article

(This is the first post in a three-part series.)

The new question-of-the-week is:

What is critical thinking and how can we integrate it into the classroom?

This three-part series will explore what critical thinking is, if it can be specifically taught and, if so, how can teachers do so in their classrooms.

Today’s guests are Dara Laws Savage, Patrick Brown, Meg Riordan, Ph.D., and Dr. PJ Caposey. Dara, Patrick, and Meg were also guests on my 10-minute BAM! Radio Show . You can also find a list of, and links to, previous shows here.

You might also be interested in The Best Resources On Teaching & Learning Critical Thinking In The Classroom .

Current Events

Dara Laws Savage is an English teacher at the Early College High School at Delaware State University, where she serves as a teacher and instructional coach and lead mentor. Dara has been teaching for 25 years (career preparation, English, photography, yearbook, newspaper, and graphic design) and has presented nationally on project-based learning and technology integration:

There is so much going on right now and there is an overload of information for us to process. Did you ever stop to think how our students are processing current events? They see news feeds, hear news reports, and scan photos and posts, but are they truly thinking about what they are hearing and seeing?

I tell my students that my job is not to give them answers but to teach them how to think about what they read and hear. So what is critical thinking and how can we integrate it into the classroom? There are just as many definitions of critical thinking as there are people trying to define it. However, the Critical Think Consortium focuses on the tools to create a thinking-based classroom rather than a definition: “Shape the climate to support thinking, create opportunities for thinking, build capacity to think, provide guidance to inform thinking.” Using these four criteria and pairing them with current events, teachers easily create learning spaces that thrive on thinking and keep students engaged.

One successful technique I use is the FIRE Write. Students are given a quote, a paragraph, an excerpt, or a photo from the headlines. Students are asked to F ocus and respond to the selection for three minutes. Next, students are asked to I dentify a phrase or section of the photo and write for two minutes. Third, students are asked to R eframe their response around a specific word, phrase, or section within their previous selection. Finally, students E xchange their thoughts with a classmate. Within the exchange, students also talk about how the selection connects to what we are covering in class.

There was a controversial Pepsi ad in 2017 involving Kylie Jenner and a protest with a police presence. The imagery in the photo was strikingly similar to a photo that went viral with a young lady standing opposite a police line. Using that image from a current event engaged my students and gave them the opportunity to critically think about events of the time.

Here are the two photos and a student response:

F - Focus on both photos and respond for three minutes

In the first picture, you see a strong and courageous black female, bravely standing in front of two officers in protest. She is risking her life to do so. Iesha Evans is simply proving to the world she does NOT mean less because she is black … and yet officers are there to stop her. She did not step down. In the picture below, you see Kendall Jenner handing a police officer a Pepsi. Maybe this wouldn’t be a big deal, except this was Pepsi’s weak, pathetic, and outrageous excuse of a commercial that belittles the whole movement of people fighting for their lives.

I - Identify a word or phrase, underline it, then write about it for two minutes

A white, privileged female in place of a fighting black woman was asking for trouble. A struggle we are continuously fighting every day, and they make a mockery of it. “I know what will work! Here Mr. Police Officer! Drink some Pepsi!” As if. Pepsi made a fool of themselves, and now their already dwindling fan base continues to ever shrink smaller.

R - Reframe your thoughts by choosing a different word, then write about that for one minute

You don’t know privilege until it’s gone. You don’t know privilege while it’s there—but you can and will be made accountable and aware. Don’t use it for evil. You are not stupid. Use it to do something. Kendall could’ve NOT done the commercial. Kendall could’ve released another commercial standing behind a black woman. Anything!

Exchange - Remember to discuss how this connects to our school song project and our previous discussions?

This connects two ways - 1) We want to convey a strong message. Be powerful. Show who we are. And Pepsi definitely tried. … Which leads to the second connection. 2) Not mess up and offend anyone, as had the one alma mater had been linked to black minstrels. We want to be amazing, but we have to be smart and careful and make sure we include everyone who goes to our school and everyone who may go to our school.

As a final step, students read and annotate the full article and compare it to their initial response.

Using current events and critical-thinking strategies like FIRE writing helps create a learning space where thinking is the goal rather than a score on a multiple-choice assessment. Critical-thinking skills can cross over to any of students’ other courses and into life outside the classroom. After all, we as teachers want to help the whole student be successful, and critical thinking is an important part of navigating life after they leave our classrooms.

usingdaratwo

‘Before-Explore-Explain’

Patrick Brown is the executive director of STEM and CTE for the Fort Zumwalt school district in Missouri and an experienced educator and author :

Planning for critical thinking focuses on teaching the most crucial science concepts, practices, and logical-thinking skills as well as the best use of instructional time. One way to ensure that lessons maintain a focus on critical thinking is to focus on the instructional sequence used to teach.

Explore-before-explain teaching is all about promoting critical thinking for learners to better prepare students for the reality of their world. What having an explore-before-explain mindset means is that in our planning, we prioritize giving students firsthand experiences with data, allow students to construct evidence-based claims that focus on conceptual understanding, and challenge students to discuss and think about the why behind phenomena.

Just think of the critical thinking that has to occur for students to construct a scientific claim. 1) They need the opportunity to collect data, analyze it, and determine how to make sense of what the data may mean. 2) With data in hand, students can begin thinking about the validity and reliability of their experience and information collected. 3) They can consider what differences, if any, they might have if they completed the investigation again. 4) They can scrutinize outlying data points for they may be an artifact of a true difference that merits further exploration of a misstep in the procedure, measuring device, or measurement. All of these intellectual activities help them form more robust understanding and are evidence of their critical thinking.

In explore-before-explain teaching, all of these hard critical-thinking tasks come before teacher explanations of content. Whether we use discovery experiences, problem-based learning, and or inquiry-based activities, strategies that are geared toward helping students construct understanding promote critical thinking because students learn content by doing the practices valued in the field to generate knowledge.

explorebeforeexplain

An Issue of Equity

Meg Riordan, Ph.D., is the chief learning officer at The Possible Project, an out-of-school program that collaborates with youth to build entrepreneurial skills and mindsets and provides pathways to careers and long-term economic prosperity. She has been in the field of education for over 25 years as a middle and high school teacher, school coach, college professor, regional director of N.Y.C. Outward Bound Schools, and director of external research with EL Education:

Although critical thinking often defies straightforward definition, most in the education field agree it consists of several components: reasoning, problem-solving, and decisionmaking, plus analysis and evaluation of information, such that multiple sides of an issue can be explored. It also includes dispositions and “the willingness to apply critical-thinking principles, rather than fall back on existing unexamined beliefs, or simply believe what you’re told by authority figures.”

Despite variation in definitions, critical thinking is nonetheless promoted as an essential outcome of students’ learning—we want to see students and adults demonstrate it across all fields, professions, and in their personal lives. Yet there is simultaneously a rationing of opportunities in schools for students of color, students from under-resourced communities, and other historically marginalized groups to deeply learn and practice critical thinking.

For example, many of our most underserved students often spend class time filling out worksheets, promoting high compliance but low engagement, inquiry, critical thinking, or creation of new ideas. At a time in our world when college and careers are critical for participation in society and the global, knowledge-based economy, far too many students struggle within classrooms and schools that reinforce low-expectations and inequity.

If educators aim to prepare all students for an ever-evolving marketplace and develop skills that will be valued no matter what tomorrow’s jobs are, then we must move critical thinking to the forefront of classroom experiences. And educators must design learning to cultivate it.

So, what does that really look like?

Unpack and define critical thinking

To understand critical thinking, educators need to first unpack and define its components. What exactly are we looking for when we speak about reasoning or exploring multiple perspectives on an issue? How does problem-solving show up in English, math, science, art, or other disciplines—and how is it assessed? At Two Rivers, an EL Education school, the faculty identified five constructs of critical thinking, defined each, and created rubrics to generate a shared picture of quality for teachers and students. The rubrics were then adapted across grade levels to indicate students’ learning progressions.

At Avenues World School, critical thinking is one of the Avenues World Elements and is an enduring outcome embedded in students’ early experiences through 12th grade. For instance, a kindergarten student may be expected to “identify cause and effect in familiar contexts,” while an 8th grader should demonstrate the ability to “seek out sufficient evidence before accepting a claim as true,” “identify bias in claims and evidence,” and “reconsider strongly held points of view in light of new evidence.”

When faculty and students embrace a common vision of what critical thinking looks and sounds like and how it is assessed, educators can then explicitly design learning experiences that call for students to employ critical-thinking skills. This kind of work must occur across all schools and programs, especially those serving large numbers of students of color. As Linda Darling-Hammond asserts , “Schools that serve large numbers of students of color are least likely to offer the kind of curriculum needed to ... help students attain the [critical-thinking] skills needed in a knowledge work economy. ”

So, what can it look like to create those kinds of learning experiences?

Designing experiences for critical thinking

After defining a shared understanding of “what” critical thinking is and “how” it shows up across multiple disciplines and grade levels, it is essential to create learning experiences that impel students to cultivate, practice, and apply these skills. There are several levers that offer pathways for teachers to promote critical thinking in lessons:

1.Choose Compelling Topics: Keep it relevant

A key Common Core State Standard asks for students to “write arguments to support claims in an analysis of substantive topics or texts using valid reasoning and relevant and sufficient evidence.” That might not sound exciting or culturally relevant. But a learning experience designed for a 12th grade humanities class engaged learners in a compelling topic— policing in America —to analyze and evaluate multiple texts (including primary sources) and share the reasoning for their perspectives through discussion and writing. Students grappled with ideas and their beliefs and employed deep critical-thinking skills to develop arguments for their claims. Embedding critical-thinking skills in curriculum that students care about and connect with can ignite powerful learning experiences.

2. Make Local Connections: Keep it real

At The Possible Project , an out-of-school-time program designed to promote entrepreneurial skills and mindsets, students in a recent summer online program (modified from in-person due to COVID-19) explored the impact of COVID-19 on their communities and local BIPOC-owned businesses. They learned interviewing skills through a partnership with Everyday Boston , conducted virtual interviews with entrepreneurs, evaluated information from their interviews and local data, and examined their previously held beliefs. They created blog posts and videos to reflect on their learning and consider how their mindsets had changed as a result of the experience. In this way, we can design powerful community-based learning and invite students into productive struggle with multiple perspectives.

3. Create Authentic Projects: Keep it rigorous

At Big Picture Learning schools, students engage in internship-based learning experiences as a central part of their schooling. Their school-based adviser and internship-based mentor support them in developing real-world projects that promote deeper learning and critical-thinking skills. Such authentic experiences teach “young people to be thinkers, to be curious, to get from curiosity to creation … and it helps students design a learning experience that answers their questions, [providing an] opportunity to communicate it to a larger audience—a major indicator of postsecondary success.” Even in a remote environment, we can design projects that ask more of students than rote memorization and that spark critical thinking.

Our call to action is this: As educators, we need to make opportunities for critical thinking available not only to the affluent or those fortunate enough to be placed in advanced courses. The tools are available, let’s use them. Let’s interrogate our current curriculum and design learning experiences that engage all students in real, relevant, and rigorous experiences that require critical thinking and prepare them for promising postsecondary pathways.

letsinterrogate

Critical Thinking & Student Engagement

Dr. PJ Caposey is an award-winning educator, keynote speaker, consultant, and author of seven books who currently serves as the superintendent of schools for the award-winning Meridian CUSD 223 in northwest Illinois. You can find PJ on most social-media platforms as MCUSDSupe:

When I start my keynote on student engagement, I invite two people up on stage and give them each five paper balls to shoot at a garbage can also conveniently placed on stage. Contestant One shoots their shot, and the audience gives approval. Four out of 5 is a heckuva score. Then just before Contestant Two shoots, I blindfold them and start moving the garbage can back and forth. I usually try to ensure that they can at least make one of their shots. Nobody is successful in this unfair environment.

I thank them and send them back to their seats and then explain that this little activity was akin to student engagement. While we all know we want student engagement, we are shooting at different targets. More importantly, for teachers, it is near impossible for them to hit a target that is moving and that they cannot see.

Within the world of education and particularly as educational leaders, we have failed to simplify what student engagement looks like, and it is impossible to define or articulate what student engagement looks like if we cannot clearly articulate what critical thinking is and looks like in a classroom. Because, simply, without critical thought, there is no engagement.

The good news here is that critical thought has been defined and placed into taxonomies for decades already. This is not something new and not something that needs to be redefined. I am a Bloom’s person, but there is nothing wrong with DOK or some of the other taxonomies, either. To be precise, I am a huge fan of Daggett’s Rigor and Relevance Framework. I have used that as a core element of my practice for years, and it has shaped who I am as an instructional leader.

So, in order to explain critical thought, a teacher or a leader must familiarize themselves with these tried and true taxonomies. Easy, right? Yes, sort of. The issue is not understanding what critical thought is; it is the ability to integrate it into the classrooms. In order to do so, there are a four key steps every educator must take.

  • Integrating critical thought/rigor into a lesson does not happen by chance, it happens by design. Planning for critical thought and engagement is much different from planning for a traditional lesson. In order to plan for kids to think critically, you have to provide a base of knowledge and excellent prompts to allow them to explore their own thinking in order to analyze, evaluate, or synthesize information.
  • SIDE NOTE – Bloom’s verbs are a great way to start when writing objectives, but true planning will take you deeper than this.

QUESTIONING

  • If the questions and prompts given in a classroom have correct answers or if the teacher ends up answering their own questions, the lesson will lack critical thought and rigor.
  • Script five questions forcing higher-order thought prior to every lesson. Experienced teachers may not feel they need this, but it helps to create an effective habit.
  • If lessons are rigorous and assessments are not, students will do well on their assessments, and that may not be an accurate representation of the knowledge and skills they have mastered. If lessons are easy and assessments are rigorous, the exact opposite will happen. When deciding to increase critical thought, it must happen in all three phases of the game: planning, instruction, and assessment.

TALK TIME / CONTROL

  • To increase rigor, the teacher must DO LESS. This feels counterintuitive but is accurate. Rigorous lessons involving tons of critical thought must allow for students to work on their own, collaborate with peers, and connect their ideas. This cannot happen in a silent room except for the teacher talking. In order to increase rigor, decrease talk time and become comfortable with less control. Asking questions and giving prompts that lead to no true correct answer also means less control. This is a tough ask for some teachers. Explained differently, if you assign one assignment and get 30 very similar products, you have most likely assigned a low-rigor recipe. If you assign one assignment and get multiple varied products, then the students have had a chance to think deeply, and you have successfully integrated critical thought into your classroom.

integratingcaposey

Thanks to Dara, Patrick, Meg, and PJ for their contributions!

Please feel free to leave a comment with your reactions to the topic or directly to anything that has been said in this post.

Consider contributing a question to be answered in a future post. You can send one to me at [email protected] . When you send it in, let me know if I can use your real name if it’s selected or if you’d prefer remaining anonymous and have a pseudonym in mind.

You can also contact me on Twitter at @Larryferlazzo .

Education Week has published a collection of posts from this blog, along with new material, in an e-book form. It’s titled Classroom Management Q&As: Expert Strategies for Teaching .

Just a reminder; you can subscribe and receive updates from this blog via email (The RSS feed for this blog, and for all Ed Week articles, has been changed by the new redesign—new ones won’t be available until February). And if you missed any of the highlights from the first nine years of this blog, you can see a categorized list below.

  • This Year’s Most Popular Q&A Posts
  • Race & Racism in Schools
  • School Closures & the Coronavirus Crisis
  • Classroom-Management Advice
  • Best Ways to Begin the School Year
  • Best Ways to End the School Year
  • Student Motivation & Social-Emotional Learning
  • Implementing the Common Core
  • Facing Gender Challenges in Education
  • Teaching Social Studies
  • Cooperative & Collaborative Learning
  • Using Tech in the Classroom
  • Student Voices
  • Parent Engagement in Schools
  • Teaching English-Language Learners
  • Reading Instruction
  • Writing Instruction
  • Education Policy Issues
  • Differentiating Instruction
  • Math Instruction
  • Science Instruction
  • Advice for New Teachers
  • Author Interviews
  • Entering the Teaching Profession
  • The Inclusive Classroom
  • Learning & the Brain
  • Administrator Leadership
  • Teacher Leadership
  • Relationships in Schools
  • Professional Development
  • Instructional Strategies
  • Best of Classroom Q&A
  • Professional Collaboration
  • Classroom Organization
  • Mistakes in Education
  • Project-Based Learning

I am also creating a Twitter list including all contributors to this column .

The opinions expressed in Classroom Q&A With Larry Ferlazzo are strictly those of the author(s) and do not reflect the opinions or endorsement of Editorial Projects in Education, or any of its publications.

Sign Up for EdWeek Update

Edweek top school jobs.

Whales flying in the sky above dreamlike mountains. Surreal image of creative thoughts. Childhood imagination.

Sign Up & Sign In

module image 9

how is learning critical thinking a social process

  • The Open University
  • Accessibility hub
  • Guest user / Sign out
  • Study with The Open University

My OpenLearn Profile

Personalise your OpenLearn profile, save your favourite content and get recognition for your learning

Critical thinking – A skill and a process

angels with a book statue

Now, that oversimplified approach to learning certainly is the first step to studying as well. However, in order to be successful in our studies, we need to do more than just contain and repeat information. We need to be able to assess the value of the information, its correctness, and its contribution to any given debate. Ideally, we are able to put it into context with other aspects of our knowledge, too. This is what makes us students, this is what makes us critical thinkers.

Critical thinking is not just one skill, rather it is the result of a number of skills applied effectively. In order to be able to think critically, you’ll need to be able reason. You’ll need to be able to assess the source of the information you’re given and you’ll be able to reflect on its accuracy or validity, depending on your task.

By thinking critically, you are applying each of those skills in order to evaluate the information in front of you. This can be a theory, a new research result, or even a news item. Critical thinking allows you to apply an objective approach to your learning, rather than subjectively following either the proposed information you’re given, or your own opinion rather than clear and convincing arguments and facts.

Critical thinking is a process of continuing evaluation and reflection. It is most powerful, when leading to a change of view in ourselves or in others.

This is where critical thinking becomes relevant outside the world of studying. By being critical of what we read, hear and see, we are engaging with the society we live in actively. We are not perceiving anything as given, but are rather reflecting on the value and correctness of the way society works.

This helps us to be better employees, by reflecting on where processes and ways of working can be improved. It helps us to more engaged citizens, as we are reflecting on political campaigns and their truthfulness and value for us when we are asked to participate in an election. Critical thinking pushes ourselves and our environment to continuously adapt and improve.

When you think critically, you open up a whole new way of engaging with the world around you.

Find out more about 'Go the Distance'

Am I ready to be a distance learner?

Am I ready to be a distance learner?

Distance learning can open up opportunities for study. You might have not studied for a while, you might be returning to education, or you might not have had the chance to study at a higher level before. This free course, Am I ready to be a distance learner?, will help to boost your confidence. You'll explore useful skills so you can discover ...

Free course

Level: 1 Introductory

Taking your first steps into higher education

Taking your first steps into higher education

What is university study like? Is it for me? If you are asking yourself these questions, this free course is for you. Taking your first steps into higher education provides insights into how subjects are studied at university. This introduction to carefully selected materials helps you decide what you might want to study. You will be ...

Are you ready for postgraduate study?

Are you ready for postgraduate study?

This free course, Are you ready for postgraduate study, will help you to become familiar with the requirements and demands of postgraduate study and ensure you are ready to develop the skills and confidence to pursue your learning further.

Level: 3 Advanced

Become an OU student

Ratings & comments, share this free course, copyright information, publication details.

  • Originally published: Wednesday, 15 November 2017
  • Body text - Creative Commons BY-NC-SA 4.0 : The Open University
  • Image 'angels with a book statue' - Copyright free
  • Image 'Am I ready to be a distance learner?' - Copyright free
  • Image 'Are you ready for postgraduate study?' - Copyright free
  • Image 'Taking your first steps into higher education' - Copyright: Image courtesy of chanpipat at FreeDigitalPhotos.net

Rate and Review

Rate this article, review this article.

Log into OpenLearn to leave reviews and join in the conversation.

Article reviews

Alison Owen

For further information, take a look at our frequently asked questions which may give you the support you need.

Bookmark this page

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

Defining Critical Thinking


Everyone thinks; it is our nature to do so. But much of our thinking, left to itself, is biased, distorted, partial, uninformed or down-right prejudiced. Yet the quality of our life and that of what we produce, make, or build depends precisely on the quality of our thought. Shoddy thinking is costly, both in money and in quality of life. Excellence in thought, however, must be systematically cultivated.


Critical thinking is that mode of thinking - about any subject, content, or problem - in which the thinker improves the quality of his or her thinking by skillfully taking charge of the structures inherent in thinking and imposing intellectual standards upon them.



Foundation for Critical Thinking Press, 2008)

Teacher’s College, Columbia University, 1941)



Learning Interventions: Collaborative Learning, Critical Thinking and Assessing Participation Real-Time

  • First Online: 17 March 2021

Cite this chapter

how is learning critical thinking a social process

  • Kumaran Rajaram 2  

1415 Accesses

1 Citations

This chapter focuses on the authentic learning interventions for team-based and flipped classroom collaborative learning that assesses real-time class participation which develops competency and employability skills set. The discussions address the process in achieving the intended learning outcomes with the adoption of these learning interventions. It provides evidence-based results in terms of how these learning interventions facilitate effective learning in terms of higher-order critical thinking (refers to the process of thinking is made intensive through scaffolding approach that potentially enables learners to question and reflect deeply), deeper engagement amongst students (refers to the ability for students to be motivated and their involvement through listening and/or participation is much more spontaneous) and higher level of collaboration at inter- and intra-group levels (refers to much more interactivity, team-based involvement in engaging within the team members and/or across members of another group). Collaborative learning is generally defined as a situation in which two or more people learn or attempt to learn something together (Dillenbourg in Collaborative Learning: Cognitive and Computational Approaches 1:1–15, 1999), whereas in a cooperative learning context, individuals work together to optimize, maximize their own and each other’s learning to attain shared goals. Largely, there are three categories of cooperative learning namely informal cooperative learning groups, formal cooperative learning groups and cooperative base groups. In our context, informal cooperative learning was focused on. In accordance with research scholars (Johnson et al. in Change: The Magazine of Higher Learning 30(4):26–35, 1998a; Johnson et al. in Cooperation in the classroom , Interaction Book Company, Edina, MN, 1998b), informal cooperative learning entails students working together to achieve common learning goal in temporary, ad-hoc groups that last from a few minutes to one class period. In a meta-analysis performed by Johnson et al. (Johnson et al. in Change: The Magazine of Higher Learning 30(4):26–35, 1998a), studies since 1924 were reviewed and it was found that when students learn together, academic achievement is enhanced. Moreover, students were found to have higher self-esteem and better quality of relationships (Johnson et al. in Change: The Magazine of Higher Learning 30(4):26–35, 1998a). The functionalities offered within the learning interventions and support systems fundamentally promote collaboration. Student engagement is correlated with participation in public service, self-reported learning gains, increased student achievement (Carini et al. in Research in Higher Education 47:1–32, 2006) and job engagement (Busteed & Seymour in Gallup Business Journal 19, 2015). The goal of the learning interventions is to maximize student engagement in meaningful learning activities within classroom settings. When students engage in more meaningful learning activities, they are actively learning. DeLozier and Rhodes (DeLozier & Rhodes in Educational Psychology Review 29:141–151, 2017) believed that it is the active learning in class that is responsible for the enhancement in learning performances. The use of learning interventions also increases the number of students participating in meaningful learning activities through providing the quieter students in class an alternative avenue of input other than speaking up in front of the class. Cain and Klein ( Independent School 75(1):64–71, 2015) found in their study that quiet students indeed feel more comfortable sharing their ideas online. Moreover, shy and quiet students contribute more through synchronous online discussion than in regular classroom discussion (Warschauer in CALICO Journal , 7–26, 2015). Lastly, with the synchronous online discussion feature of the activity support system and the organized class activity sequences, it is expected that there will be a reduction in time used for transitions between activities, introductions to activities, and disruptions within activities. Both collaborative learning, through “discussion, clarification of ideas, and evaluation of others’ ideas” (Gokhale in Journal of Technology Education 7:22–30, 1995), and high student engagement (Carini et al. in Research in Higher Education 47:1–32, 2006) enhance the development of critical thinking. It was also argued that critical thinking can be learnt through every interaction (MacKnight in Educause Quarterly 23:38–41, 2000) provided the interaction is supported with specific critical thinking activities (Astleitner in Journal of Instructional Psychology 29:53, 2002; Kim in Interactive Learning Environments 22:467–484, 2014; Weltzer-Ward & Carmona in International Journal of Emerging Technologies in Learning 3:86–88, 2008). Therefore, our learning interventions and supports systems, which enhances students’ engagement and collaborative learning, would also lead to a desirable development of students’ critical thinking ability. The chapter will also describe the varying functionalities and the process of how the learning interventions enable the intended learning outcomes to be achieved. This chapter also furnishes the relevant video and training resources that are developed for the learning interventions. The findings from the surveys and interviews serve as evidence based to validate the discussions that emerge from the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Alavi, M. (1994). Computer-mediated collaborative learning: An empirical evaluation. MIS quarterly , 159–174.

Google Scholar  

Anthony, S., & Garner, B. (2016). Teaching soft skills to business students: An analysis of multiple pedagogical methods. Business and Professional Communication Quarterly, 79 (3), 360–370.

Article   Google Scholar  

Arbaugh, J. B., & Benbunan-Finch, R. (2006). An investigation of epistemological and social dimensions of teaching in online learning environments. Academy of Management Learning & Education, 5 (4), 435–447. https://doi.org/10.5465/AMLE.2006.23473204 .

Aronson, J., Fried, C. B., & Good, C. (2002). Reducing stereotype threat and boosting academic achievement of African-American students: The role of conceptions of intelligence. Journal of Experimental Social Psychology, 38, 113–125.

Astleitner, H. (2002). Teaching critical thinking online. Journal of Instructional Psychology, 29 (2), 53.

Bedwell, W. L., Fiore, S. M., & Salas, E. (2014). Developing the future workforce: An approach for integrating interpersonal skills into the MBA classroom. Academy of Management Learning & Education, 13 (2), 171–186. https://doi.org/10.5465/amle.2011.0138 .

Bergmark, U., & Westman, S. (2016). Co-creating curriculum in higher education—Promoting democratic values and a multidimensional view on learning. International Journal for Academic Development, 21 (1), 28–40. https://doi.org/10.1080/1360144X.2015.1120734 .

Bergmark, U., & Westman, S. (2018). Student participation within teacher education: Emphasising democratic values, engagement and learning for a future profession. Higher Education Research & Development, 37 (7), 1352–1365.

Bovill, C., & Bulley, C. J. (2011). A model of active student participation in curriculum design: Exploring desirability and possibility. In C. Rust (Ed.), Improving student learning. Global theories and local practices: Institutional, disciplinary and cultural variations (pp. 176–188). Oxford: The Oxford Centre for Staff and Educational Development.

Bridgstock, R. (2009). The graduate attributes were overlooked: Enhancing graduate employability through career management skills. Higher Education Research & Development, 28 (1), 31–44.

Britain, S. (2004). A review of learning design: Concept, specifications and tools . A report for the JISC E-learning Pedagogy Programme. Retrieved from https://www.jisc.ac.uk/media/documents/programmes/elearningpedagogy/learningdesigntoolsfinalreport.pdf .

Busteed, B., & Seymour, S. (2015). Many college graduates not equipped for workplace success. Gallup Business Journal , 19.

Cain, S., & Klein, E. (2015). Engaging the quiet kids. Independent School, 75 (1), 64–71. Retrieved from https://www.nais.org/magazine/independent-school/fall-2015/engaging-the-quiet-kids/ .

Carey, P. (2013). Student as co-producer in a marketized higher education system: A case study of students’ experience of participation in curriculum design. Innovations in Education and Teaching International, 50 (3), 250–260. https://doi.org/10.1080/14703297.2013.796714 .

Carini, R. M., Kuh, G. D., & Klein, S. P. (2006). Student engagement and student learning: Testing the linkages. Research in Higher Education, 47 (1), 1–32. https://doi.org/10.1007/s11162-005-8150-9 .

Caspi, A., Chajut, E., Saporta, K., & Beyth-Marom, R. (2006). The influence of personality on social participation in learning environments. Learning and Individual Differences, 16 (2), 129–144. https://doi.org/10.1016/j.lindif.2005.07.003 .

Clay, T., & Breslow, L. (2006, April 14). Why students don’t attend class. Retrieved from https://web.mit.edu/fnl/volume/184/breslow.html .

Coller, B. D., & Scott, M. J. (2009). Effectiveness of using a video game to teach a course in mechanical engineering. Computers & Education, 53 (3), 900–912.

Cook-Sather, A., Bovill, C., & Felten, P. (2014). Engaging students as partners in teaching and learning: A guide for faculty . San Francisco: Jossey-Bass.

Crossan, M., Mazutis, D., Seijts, G., & Gandz, J. (2013). Developing leadership character in business programs. Academy of Management Learning & Education, 12 (2), 285–305. https://doi.org/10.5465/amle.2011.0024a .

Dalziel, J. (2003). Implementing learning design: The Learning Activity Management System (LAMS), interact, integrate, impact . Proceedings of the 20th annual conference of the Australasian Society for Computers in Learning in Tertiary Education (ASCILITE).

Dalziel, J. (2014, December 9). LAMS Newsletter 115 . Retrieved from https://lamscommunity.org/dotlrn/clubs/educationalcommunity/forums/message-view?message_id=1891728 .

De Leng, B. A., Dolmans, D. H., Jöbsis, R., Muijtjens, A. M., & van der Vleuten, C. P. (2009). Exploration of an e-learning model to foster critical thinking on basic science concepts during work placements. Computers & Education, 53 (1), 1–13.

Delcker, J., Honal, A., & Ifenthaler, D. (2017). Mobile device usage in university and workplace learning settings . Paper presented at the ACET 2017. Jacksonville, FL.

DeLozier, S. J., & Rhodes, M. G. (2017). Flipped classrooms: A review of key ideas and recommendations for practice. Educational Psychology Review, 29 (1), 141–151. https://doi.org/10.1007/s10648-015-9356-9 .

Desiraju, R., & Gopinath, C. (2001). Encouraging participation in case discussions: A comparison of the mica and the Harvard case methods. Journal of Management Education, 25 (4), 394–408.

Dillenbourg, P. (1999). What do you mean by collaborative learning? Collaborative Learning: Cognitive and Computational Approaches, 1, 1–15.

Elise, J. D., Julie, H. H., & Marjorie, B. P. (2006). Nonvoluntary class participation in graduate discussion courses: Effects of grading and cold calling. Journal of Management Education, 30 (2), 354–377.

Erikson, M. G., & Erikson, M. (2018). Learning outcomes and critical thinking—Good intentions in conflict. Studies in Higher Education . https://doi.org/10.1080/03075079.2018.1486813 .

Falchikov, N., & Boud, D. (1989). Student self-assessment in higher education: A meta-analysis. Review of Educational Research, 59 , 395–430.

Fallows, S., & Steven, C. (2000). Building employability skills into the higher education curriculum: A university-wide initiative. Education + Training, 42 (22), 75–83.

Farmer, K., Meisel, S. I., Seltzer, J., & Kane, K. (2013). The mock trial: A dynamic exercise for thinking critically about management theories, topics, and practices. Journal of Management Education, 37 (3), 400–430.

Fellenz, M. R. (2006). Toward fairness in assessing student groupwork: A protocol for peer evaluation of individual contributions. Journal of Management Education, 30 (4), 570–591.

Finkel, E. J., Slotter, E. B., Luchies, L. B., Walton, G. M., & Gross, J. J. (2013). A brief intervention to promote conflict reappraisal preserves marital quality over time. Psychological Science , 1595–1601.

Finn, J. D., & Zimmer, K. S. (2012). Student engagement: What is it? Why does it matter? In Handbook of Research on Student Engagement , 97–131, Springer.

Freeman, M., Blayney, P., & Ginns, P. (2006). Anonymity and in class learning: The case for electronic response systems. Australasian Journal of Educational Technology, 22 (4). https://doi.org/10.14742/ajet.1286 .

Ghanizadeh, A. (2017). The Interplay between reflective thinking, critical thinking, self-monitoring, and academic achievement in higher education. Higher Education: The International Journal of Higher Education Research, 74 (1), 101–114.

Ghorpade, J., & Lackritz, J. R. (2001). Peer evaluation in the classroom: A check for sex and race/ethnicity effects. Journal of Education For Business, 75 (5), 274–281.

Gokhale, A. A. (1995). Collaborative learning enhances critical thinking. Journal of Technology Education, 7 (1), 22–30. https://doi.org/10.1007/978-1-4419-1428-6_910 .

Gopinath, C. (1999). Alternatives to instructor assessment of class participation. Journal of Education for Business, 75 (1), 10–14.

Hemmi, A., Bayne, S., & Land, R. (2009). The appropriation and repurposing of social technologies in higher education. Journal of Computer Assisted Learning, 25 (1), 19–30.

Hoegl, M., & Gemuenden, H. G. (2001). Teamwork quality and the success of innovative projects: A theoretical concept and empirical evidence. Organisation Science, 12 (4), 435–449.

Hulleman, C. S., & Harackiewicz, J. M. (2009). Promoting interest and performance in high school science classes. Science, 326 (5958), 1410–1412.

Hwang, A., & Francesco, A. (2010). The influence of individualism—Collectivism and power distance on use of feedback channels and consequences for learning. Academy of Management Learning & Education, 9 (2), 243–257.

Johnson, D. W., Johnson, R. T., & Holubec, E. J. (1998b). Cooperation in the classroom . Edina, MN: Interaction Book Company.

Johnson, D. W., Johnson, R. T., & Smith, K. A. (1998a). Cooperative learning returns to college what evidence is there that it works? Change: The Magazine of Higher Learning, 30 (4), 26–35. https://doi.org/10.1080/00091389809602629 .

Kim, I.-H. (2014). Development of reasoning skills through participation in collaborative synchronous online discussions. Interactive Learning Environments, 22 (4), 467–484. https://doi.org/10.1080/10494820.2012.680970 .

Kirkwood, A., & Price, L. (2014). Technology-enhanced learning and teaching in higher education: What Is “enhanced” and how do we know? A critical literature review. Learning, Media and Technology, 39 (1), 6–36. https://doi.org/10.1080/17439884.2013.770404 .

Kordaki, M., & Agelidou, E. (2010). A learning design-based environment for online, collaborative digital storytelling: An example for environmental education. International Journal of Learning, 17 (5), 95–106.

Kuh, G. D. (2003). What we’re learning about student engagement from NSSE: Benchmarks for effective educational practices. Change: The Magazine of Higher Learning, 35 (2), 24–32. https://doi.org/10.1080/00091380309604090 .

Laal, M., & Ghodsi, S. M. (2012). Benefits of collaborative learning. Procedia—Social and Behavioral Sciences, 31, 486–490.

Laird, T. F. N., & Kuh, G. D. (2005). Student experiences with information technology and their relationship to other aspects of student engagement. Research in Higher Education, 46 (2), 211–233.

Latham, A., & Hill, N. S. (2014). Preference for anonymous classroom participation: Linking student characteristics and reactions to electronic response systems. Journal of Management Education, 38 (2), 192–215.

LAMS Foundation. (2004, January 05). Learning activity management system . Available online at https://www.lamsfoundation.org/about_home.htm .

LAMS Foundation. (2012, March 22). Who is using LAMS? Retrieved from https://wiki.lamsfoundation.org/pages/viewpage.action?pageId=2855 .

Levy, P., Aiyegbayo, O., & Little, S. (2009). Designing for inquiry-based learning with the learning activity management system. Journal of Computer Assisted Learning, 25 (3), 238–251. https://doi.org/10.1111/j.1365-2729.2008.00309.x .

Lizzio, A., & Wilson, K. (2009). Student participation in university governance: The role conceptions and sense of efficacy of student representatives on departmental committees. Studies in Higher Education, 34 (1), 69–84. https://doi.org/10.1080/03075070802602000 .

Logel, C., & Cohen, G. L. (2012). The role of the self in physical health testing the effect of a values-affirmation intervention on weight loss. Psychological Science, 23, 53–55.

Mabrito, M. (2006). A study of synchronous versus asynchronous collaboration in an online business writing class. The American Journal of Distance Education, 20 (2), 93–107.

MacKnight, C. B. (2000). Teaching critical thinking through online discussions. Educause Quarterly, 23 (4), 38–41.

Mainkar, A. V. (2007). A student-empowered system for measuring and weighing participation in class discussion. Journal of Management Education, 32 (1), 23–37.

Masika, R., & Jones, J. (2016). Building student belonging and engagement: Insights into higher education students’ experiences of participating and learning together. Teaching in Higher Education, 21 (2), 138–150. https://doi.org/10.1080/13562517.2015.1122585 .

McGlynn, A. P. (2005). Teaching millennials, our newest cultural cohort. Education Digest, 71 (4), 12.

McKeachie, W. (1994). Teaching tips: A guidebook for the beginning college teacher (9th ed.). Lexington, MA: Heath.

McLeod, J. (2011). Student voice and the politics of listening in higher education. Critical Studies in Education, 52 (2), 179–189. https://doi.org/10.1080/17508487.2011.572830 .

Melvin, K. B. (1998). Rating class participation. The Teaching of Psychology, 15, 137–139.

Melvin, K. B., & Lord, A. T. (1995). The prof/peer method of evaluating class participation: Interdisciplinary generality. College Student Journal, 29, 258–263.

Ohland, M., Loughry, M., Woehr, D., Bullard, L., Felder, R., Finelli, C., & Schmucker, D. (2012). The comprehensive assessment of team member effectiveness: Development of a behaviorally anchored rating scale for self-and peer evaluation. Academy of Management Learning & Education, 11 (4), 609–630.

Panitz, T. (1999). Benefits of cooperative learning in relation to student motivation. In M. Theall (Ed.), Motivation from within: Approaches for encouraging faculty and students to excel, New directions for teaching and learning . San Francisco, CA: Josey-Bass Publishing.

Paulhus, D. L., Duncan, J. H., & Yik, M. S. M. (2002). Patterns of shyness in East-Asian and European-heritage students. Journal of Research in Personality, 36 (5), 442–462. https://doi.org/10.1016/S0092-6566(02)00005-3 .

Philip, R., & Dalziel, J. (2004). Designing activities for student learning using the learning activity management system (LAMS) . Paper presented at the International Conference on Computers in Education.

Rajaram, K. (2013). Learning in foreign cultures: Self-reports learning effectiveness across different instructional techniques. World Journal of Education, 3 (4), 71.

Rajaram, K. (2020). Educating mainland chinese learners in business education, pedagogical and cultural perspectives – Singapore experiences . Springer.

Rogers, W. T., 1993. Principles for Fair Student Assessment Practices for Education in Canada. Canadian Journal of School Psychology , 110–127.

Roohr, K., et al. (2019). A multi-level modeling approach to investigating students’ critical thinking at higher education institutions. Journal of Assessment & Evaluation in Higher Education., 46 (6), 946–960.

Rossiou, E. R. U. G. (2012). Digital natives...are changed: An educational scenario with LAMS integration that promotes collaboration via blended learning in secondary education. Proceedings of the European Conference on e-Learning , 468–479.

Sally, B. (2005). Assessment for learning. Learning and Teaching in Higher Education, 1, 81–89. ISSN 1742–240X.

Seale, J. (2010). Doing student voice work in higher education: An exploration of the value of participatory methods. British Educational Research Journal, 36 (6), 995–1015. https://doi.org/10.1080/01411920903342038 .

Serva, M. A., & Fuller, M. A. (2004). Aligning what we do and what we measure in business schools: Incorporating active learning and effective media use in the assessment of instruction. Journal of Management Education, 28, 19–38.

Sherrard, W. R., Raafat, F., & Weaver, R. R. (2010). An empirical study of peer bias in evaluations: Students rating students. the Journal of Education for Business, 70 (1), 43–47.

Skinner, E. A., & Belmont, M. J. (1993). Motivation in the classroom: Reciprocal effects of teacher behavior and student engagement across the school year. Journal of Educational Psychology, 85 (4), 571.

Smith, G. F. (2014). Assessing business student thinking skills. Journal of Management Education, 38 (3), 384–411.

Thomas, M. J. (2002). Learning within incoherent structures: The space of online discussion forums. Journal of Computer Assisted Learning, 18 (3), 351–366.

Vansteenkiste, M., Simons, J., Lens, W., Sheldon, K. M., & Deci, E. L. (2004). Motivating learning, performance, and persistence: The synergistic effects of intrinsic goal contents and autonomy-supportive contexts. Journal of Personality and Social Psychology, 87 (2), 246.

Walton, G. M. (2014). The new science of wise psychological interventions. Current Directions in Psychological Science, 23 (1), 73–82.

Warschauer, M. (1995). Comparing face-to-face and electronic discussion in the second language classroom. CALICO Journal , 7–26.

Weltzer-Ward, L. M. L. W. N. E., & Carmona, G. L. M. U. E. (2008). Support of the critical thinking process in synchronous online collaborative discussion through model-eliciting activities. International Journal of Emerging Technologies in Learning, 3 (3), 86–88.

Yasushi, G. (2016). Development of critical thinking with metacognitive regulation. 13th International Conference on Cognition and Exploratory Learning in Digital Age , 353–356.

Yeager, D. S., & Walton, G. M. (2011). Social-psychological interventions in education: They’re not magic. Review of Educational Research, 81 (2), 267–301.

Zepke, N. (2015). Student engagement research: Thinking beyond the mainstream. Higher Education Research & Development, 34 (6), 1311–1323. https://doi.org/10.1080/07294360.2015.1024635 .

Zepke, N. (2018). Student engagement in neo-liberal times: What is missing? Higher Education Research & Development , 37 (2). https://doi.org/10.1080/07294360.2017.1370440 .

Download references

Acknowledgements

The above two research studies were funded by Nanyang Technological University (NTU) through the NTU Educational Excellence Grants. The author would also like to thank the anonymous reviewers and editors for providing valuable feedback and guidance.

Author information

Authors and affiliations.

Nanyang Technological University, Singapore, Singapore

Kumaran Rajaram

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Kumaran Rajaram .

Appendix A: Post-Survey (After the Intervention of the Learning Support System)

3.1.1 survey questions.

The experience of using “K^mAlive” in this class is ___________________.

Very Positive

Somewhat Positive

Very Negative

What are your thoughts and feelings about your contributions in class being captured?

____________________________________________________________

The use of “K^mAlive” in this class is a/an _________ way to encourage my participation in class.

Very Effective

Somewhat Effective

Ineffective

Very Ineffective

What are your thoughts in terms of the impact of class participation through the adoption of K^mAlive?

The use of “K^mAlive” in this class motivates me to listen more attentively to my classmates’ contributions in class.

Strongly Agree

Strongly Disagree

The use of “K^mAlive” in this class developed my critical thinking abilities.

If you have answered “Strongly Agree/Agree” to question 5, can you explain how the use of “K^mAlive” has enhanced your critical thinking skills?

I believe the use of “K^mAlive” in this course gives a fair assessment of my participation in class.

What are your thoughts and feelings regarding the grading of your participation in class using “K^mAlive”?

What do you like the best about the experience of using “K^mAlive” in class? Please explain why.

What would you like to change about the experience of the usage of “K^mAlive” in class? Please explain why.

Any other comments?

Appendix B: Interview Questions

What are your experiences of using this real-time learning support system—K^mAlive?

How does it explicitly enhance (a) higher levels of class participation; (b) make you think more critically; (c) better engagement with your peers in your group and others in the class

What are your overall perspectives of the features offered in this learning intervention—K^mAlive on how it supports your learning process and how do you learn?

Appendix C: Video Resources

Value Proposition of Learning Support System: K^mAlive (5 min)

https://www.youtube.com/watch?v=NZOpR4fWL0s

Value Proposition of Learning Support System: K^mAlive (20 min)

https://www.youtube.com/watch?v=fjDQcbq84V4

Operational Guide: K^mAlive

https://www.youtube.com/watch?v=O0Iv0q1IdiM

The video trailers with supporting illustrations could also be viewed in the furnished links:

K^mAlive Learning Blog Site: https://blogs.ntu.edu.sg/learning-innovations/kumalive/

Research Lab for Learning Innovation and Culture of Learning: https://learningintervention.wixsite.com/researchlab/klive

Appendix D: Screen Shot of K^mAlive Feature Embedded with NTULearn (Blackboard)

figure a

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Rajaram, K. (2021). Learning Interventions: Collaborative Learning, Critical Thinking and Assessing Participation Real-Time. In: Evidence-Based Teaching for the 21st Century Classroom and Beyond. Springer, Singapore. https://doi.org/10.1007/978-981-33-6804-0_3

Download citation

DOI : https://doi.org/10.1007/978-981-33-6804-0_3

Published : 17 March 2021

Publisher Name : Springer, Singapore

Print ISBN : 978-981-33-6803-3

Online ISBN : 978-981-33-6804-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. The benefits of critical thinking for students and how to develop it

    how is learning critical thinking a social process

  2. Critical Thinking in Social Work Education: A Delphi Study of Faculty

    how is learning critical thinking a social process

  3. Social Learning Theory

    how is learning critical thinking a social process

  4. why is Importance of Critical Thinking Skills in Education

    how is learning critical thinking a social process

  5. Conceptual model of the critical social thinking process.

    how is learning critical thinking a social process

  6. Conceptual model of the critical social thinking process.

    how is learning critical thinking a social process

VIDEO

  1. Critical Thinking

  2. Teaching the Three C's, Critical Thinking, Clear Communication and Collaboration

  3. 4 August 2024

  4. Module 2 Lecture and Critical Thinking

  5. Critical Thinking 1

  6. What is critical thinking

COMMENTS

  1. PDF Promoting Critical Thinking as a Social Practice: Shaping Students ...

    Interaction and Critical Thinking in a Cohesive Framework As Thakur and Al Mahrooqi (2015) argue that CT, like Lifelong Learning, is required in every domain of life. i.e. social, educational, and professional (p. 126). Incidentally, CT is not an inborn ability and is basically needed for evaluating one's own thinking process that results in a

  2. What Are Critical Thinking Skills and Why Are They Important?

    What Are Critical Thinking Skills and Why Are They ...

  3. Critical thinking and social interaction in active learning: A

    Brookfield (Citation 2012) maintains that the discussion taking place in collaborative learning is one way of identifying the critical thinking skills that the students use.He has introduced various forms of focused discussion groups (critical conversation, scenario analysis, circle of voices, circular response, and chalk-talk), in which students experience critical thinking, primarily as a ...

  4. Bridging critical thinking and transformative learning: The role of

    By contrast, using critical thinking skills in a way that results in transformative learning will likely include a state of doubt as a pivotal stage in the process. Although Paul's conception of transformative experience neglects the role of doubt, this is not the case for Jack Mezirow's transformative learning theory.

  5. PDF Knowing, Thinking, and Learning

    critical thinking, with particular emphasis on the mitigating role of epistemic beliefs. Literature Review As the example in the previous paragraph illustrates, many of the areas of consensus related to critical thinking focus on the construct as a cognitive skill or set of skills. Others have noted that cognitive processes do not occur in vacuum,

  6. Critical thinking and social interaction in active learning: A

    identifying the critical thinking skills that the students use. He has introduced various forms of fo-cused discussion groups (critical conversation, scenario analysis, circle of voices, circular response, and chalk-talk), in which students experience critical thinking, primarily as a social learning process,

  7. Critical social thinking: A conceptual model and insights for training

    Thus, we propose the construct critical social thinking (CST), a holistic, integrated approach to understanding the processes that enable individuals to function in such settings, and the KSAs that are necessary for each process. Because the significance of the CST construct is closely tied to the growing need for it in practice, we also ...

  8. Fostering and assessing student critical thinking: From theory to

    Rubrics are a way to simplify, translate and construct a social representation of what creativity and critical thinking look like in the teaching and learning process. The purpose of using rubrics is to create a shared understanding of what creativity means in the classroom, and shared expectations among teachers, and among teachers and students.

  9. Critical Pedagogy: Critical Thinking as a Social Practice

    Critical pedagogy in its broadest sense is an educational philosophy that seeks to connect forms of education to wider political questions by arguing that processes or acts of learning and knowing are themselves inherently political. Download to read the full chapter text.

  10. Constructivist Learning Theory and Creating Effective Learning

    It discusses various conceptual approaches to constructivist pedagogy. The key idea of constructivism is that meaningful knowledge and critical thinking are actively constructed, in a cognitive, cultural, emotional, and social sense, and that individual learning is an active process, involving engagement and participation in the classroom.

  11. The effectiveness of collaborative problem solving in promoting

    The effectiveness of collaborative problem solving in ...

  12. Eight Instructional Strategies for Promoting Critical Thinking

    Eight Instructional Strategies for Promoting Critical Thinking

  13. Critical Thinking: Where to Begin

    A Brief Definition: Critical thinking is the art of analyzing and evaluating thinking with a view to improving it. A well-cultivated critical thinker: communicates effectively with others in figuring out solutions to complex problems. Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking.

  14. PDF Developing Learners' Critical Thinking Skills by Exploring Social

    A crucial skill involved in Critical Pedagogy is critical thinking. Critical thinking has been defined as "thinking about your own thinking" (Paul, 1990, as cited in Kunh, 1999) and implies learners' ability to critically pose themselves as evaluators of information, opinions, and processes, their own learning process included.

  15. Critical thinking

    Critical thinking allows you to apply an objective approach to your learning, rather than subjectively following either the proposed information you're given, or your own opinion rather than clear and convincing arguments and facts. Critical thinking is a process of continuing evaluation and reflection. It is most powerful, when leading to a ...

  16. PDF Critical Thinking and Professional Judgement for Social Work

    critical thinking further. We do not intend to cover the full range of critical thinking 'skills' (indeed, this would consider them to be something like a checklist, which is inappropriate for practice) but instead highlight a few basic principles to underpin the process of enhancing the critical aspects of your own learning and development.

  17. Critical Thinking: A Learning Process for Democracy

    ers define critical thinking as a democratic learning process examining power relations and social inequities. In classrooms that feature critical thinking, students are encouraged to participate actively, raising issues. of concern in their daily lives, such as work, school, housing, and.

  18. Social Work Students Sharing Practice Learning Experiences: Critical

    It is important to note that critical reflection is not a one-off event, rather it is a continual process of thinking back over what happened, deliberating on it and then learning lessons from that. Proficient practitioners continually learn, advance and expand their skills, allowing their practice to flourish.

  19. Defining Critical Thinking

    Defining Critical Thinking

  20. Critical Thinking in Social Work Practice

    CRITICAL THINKING IN SOCIAL WORK PRACTICE Catherine Alter and Marcia Ecan This article describes how logic models are used to teach critical thinking in social work courses. By breaking down the helping process into parts, logic modeling enables students to think about the clinical experience as a whole and to understand the causal

  21. PDF Improving Critical Thinking Ability through Social Studies Learning

    teachers in the Social Science learning process. This study was interested to conduct an analysis on students' critical thinking skills in term of their ways to carry out it in the Social Science learning. Moreover, the 2013 curriculum demands that students are required to have the ability to think and act effectively and creatively in the

  22. Learning Interventions: Collaborative Learning, Critical Thinking and

    This learning intervention was designed and developed based on the learning gaps, to improve the learning process and learning outcomes, in terms of (a) engaging students; (b) scaffolding the learning process; (c) facilitating an objective, fair and accurate assessment; and (d) enhancing cognitive and critical thinking competencies; and (e ...