• Type 2 Diabetes
  • Heart Disease
  • Digestive Health
  • Multiple Sclerosis
  • Diet & Nutrition
  • Health Insurance
  • Public Health
  • Patient Rights
  • Caregivers & Loved Ones
  • End of Life Concerns
  • Health News
  • Thyroid Test Analyzer
  • Doctor Discussion Guides
  • Hemoglobin A1c Test Analyzer
  • Lipid Test Analyzer
  • Complete Blood Count (CBC) Analyzer
  • What to Buy
  • Editorial Process
  • Meet Our Medical Expert Board

What Are Nature vs. Nurture Examples?

How is nature defined, how is nurture defined, the nature vs. nurture debate, nature vs. nurture examples, what is empiricism (extreme nurture position), contemporary views of nature vs. nurture.

Nature vs. nurture is an age-old debate about whether genetics (nature) plays a bigger role in determining a person's characteristics than lived experience and environmental factors (nurture). The term "nature vs. nature" was coined by English naturalist Charles Darwin's younger half-cousin, anthropologist Francis Galton, around 1875.

In psychology, the extreme nature position (nativism) proposes that intelligence and personality traits are inherited and determined only by genetics.

On the opposite end of the spectrum, the extreme nurture position (empiricism) asserts that the mind is a blank slate at birth; external factors like education and upbringing determine who someone becomes in adulthood and how their mind works. Both of these extreme positions have shortcomings and are antiquated.

This article explores the difference between nature and nurture. It gives nature vs. nurture examples and explains why outdated views of nativism and empiricism don't jibe with contemporary views. 

Thanasis Zovoilis / Getty Images

In the context of nature vs. nurture, "nature" refers to genetics and heritable factors that are passed down to children from their biological parents.

Genes and hereditary factors determine many aspects of someone’s physical appearance and other individual characteristics, such as a genetically inherited predisposition for certain personality traits.

Scientists estimate that 20% to 60% percent of temperament is determined by genetics and that many (possibly thousands) of common gene variations combine to influence individual characteristics of temperament.

However, the impact of gene-environment (or nature-nurture) interactions on someone's traits is interwoven. Environmental factors also play a role in temperament by influencing gene activity. For example, in children raised in an adverse environment (such as child abuse or violence), genes that increase the risk of impulsive temperamental characteristics may be activated (turned on).

Trying to measure "nature vs. nurture" scientifically is challenging. It's impossible to know precisely where the influence of genes and environment begin or end.

How Are Inherited Traits Measured?

“Heritability”   describes the influence that genes have on human characteristics and traits. It's measured on a scale of 0.0 to 1.0. Very strong heritable traits like someone's eye color are ranked a 1.0.

Traits that have nothing to do with genetics, like speaking with a regional accent ranks a zero. Most human characteristics score between a 0.30 and 0.60 on the heritability scale, which reflects a blend of genetics (nature) and environmental (nurture) factors.

Thousands of years ago, ancient Greek philosophers like Plato believed that "innate knowledge" is present in our minds at birth. Every parent knows that babies are born with innate characteristics. Anecdotally, it may seem like a kid's "Big 5" personality traits (agreeableness, conscientiousness, extraversion, neuroticism, and openness) were predetermined before birth.

What is the "Big 5" personality traits

The Big 5 personality traits is a theory that describes the five basic dimensions of personality. It was developed in 1949 by D. W. Fiske and later expanded upon by other researchers and is used as a framework to study people's behavior.

From a "nature" perspective, the fact that every child has innate traits at birth supports Plato's philosophical ideas about innatism. However, personality isn't set in stone. Environmental "nurture" factors can change someone's predominant personality traits over time. For example, exposure to the chemical lead during childhood may alter personality.

In 2014, a meta-analysis of genetic and environmental influences on personality development across the human lifespan found that people change with age. Personality traits are relatively stable during early childhood but often change dramatically during adolescence and young adulthood.

It's impossible to know exactly how much "nurture" changes personality as people get older. In 2019, a study of how stable personality traits are from age 16 to 66 found that people's Big 5 traits are both stable and malleable (able to be molded). During the 50-year span from high school to retirement, some traits like agreeableness and conscientiousness tend to increase, while others appear to be set in stone.

Nurture refers to all of the external or environmental factors that affect human development such as how someone is raised, socioeconomic status, early childhood experiences, education, and daily habits.

Although the word "nurture" may conjure up images of babies and young children being cared for by loving parents, environmental factors and life experiences have an impact on our psychological and physical well-being across the human life span. In adulthood, "nurturing" oneself by making healthy lifestyle choices can offset certain genetic predispositions.

For example, a May 2022 study found that people with a high genetic risk of developing the brain disorder Alzheimer's disease can lower their odds of developing dementia (a group of symptoms that affect memory, thinking, and social abilities enough to affect daily life) by adopting these seven healthy habits in midlife:

  • Staying active
  • Healthy eating
  • Losing weight
  • Not smoking
  • Reducing blood sugar
  • Controlling cholesterol
  • Maintaining healthy blood pressure

The nature vs. nurture debate centers around whether individual differences in behavioral traits and personality are caused primarily by nature or nurture. Early philosophers believed the genetic traits passed from parents to their children influence individual differences and traits. Other well-known philosophers believed the mind begins as a blank slate and that everything we are is determined by our experiences.

While early theories favored one factor over the other, experts today recognize there is a complex interaction between genetics and the environment and that both nature and nurture play a critical role in shaping who we are.

Eye color and skin pigmentation are examples of "nature" because they are present at birth and determined by inherited genes. Developmental delays due to toxins (such as exposure to lead as a child or exposure to drugs in utero) are examples of "nurture" because the environment can negatively impact learning and intelligence.

In Child Development

The nature vs. nurture debate in child development is apparent when studying language development. Nature theorists believe genetics plays a significant role in language development and that children are born with an instinctive ability that allows them to both learn and produce language.

Nurture theorists would argue that language develops by listening and imitating adults and other children.

In addition, nurture theorists believe people learn by observing the behavior of others. For example, contemporary psychologist Albert Bandura's social learning theory suggests that aggression is learned through observation and imitation.

In Psychology

In psychology, the nature vs. nurture beliefs vary depending on the branch of psychology.

  • Biopsychology:  Researchers analyze how the brain, neurotransmitters, and other aspects of our biology influence our behaviors, thoughts, and feelings. emphasizing the role of nature.
  • Social psychology: Researchers study how external factors such as peer pressure and social media influence behaviors, emphasizing the importance of nurture.
  • Behaviorism: This theory of learning is based on the idea that our actions are shaped by our interactions with our environment.

In Personality Development

Whether nature or nurture plays a bigger role in personality development depends on different personality development theories.

  • Behavioral theories: Our personality is a result of the interactions we have with our environment, such as parenting styles, cultural influences, and life experiences.
  • Biological theories: Personality is mostly inherited which is demonstrated by a study in the 1990s that concluded identical twins reared apart tend to have more similar personalities than fraternal twins.
  • Psychodynamic theories: Personality development involves both genetic predispositions and environmental factors and their interaction is complex.

In Mental Illness

Both nature and nurture can contribute to mental illness development.

For example, at least five mental health disorders are associated with some type of genetic component ( autism ,  attention-deficit hyperactivity disorder (ADHD) ,  bipolar disorder , major depression, and  schizophrenia ).

Other explanations for mental illness are environmental, such as:

  • Being exposed to drugs or alcohol in utero 
  • Witnessing a traumatic event, leading to post-traumatic stress disorder (PTSD)
  • Adverse life events and chronic stress during childhood

In Mental Health Therapy

Mental health treatment can involve both nature and nurture. For example, a therapist may explore life experiences that may have contributed to mental illness development (nurture) as well as family history of mental illness (nature).

At the same time, research indicates that a person's genetic makeup may impact how their body responds to antidepressants. Taking this into consideration is important for finding the right treatment for each individual.

 What Is Nativism (Extreme Nature Position)?

Innatism emphasizes nature's role in shaping our minds and personality traits before birth. Nativism takes this one step further and proposes that all of people's mental and physical characteristics are inherited and predetermined at birth.

In its extreme form, concepts of nativism gave way to the early 20th century's racially-biased eugenics movement. Thankfully, "selective breeding," which is the idea that only certain people should reproduce in order to create chosen characteristics in offspring, and eugenics, arranged breeding, lost momentum during World War II. At that time, the Nazis' ethnic cleansing (killing people based on their ethnic or religious associations) atrocities were exposed.

Philosopher John Locke's tabula rasa theory from 1689 directly opposes the idea that we are born with innate knowledge. "Tabula rasa" means "blank slate" and implies that our minds do not have innate knowledge at birth.

Locke was an empiricist who believed that all the knowledge we gain in life comes from sensory experiences (using their senses to understand the world), education, and day-to-day encounters after being born.

Today, looking at nature vs. nature in black-and-white terms is considered a misguided dichotomy (two-part system). There are so many shades of gray where nature and nurture overlap. It's impossible to tease out how inherited traits and learned behaviors shape someone's unique characteristics or influence how their mind works.

The influences of nature and nurture in psychology are impossible to unravel. For example, imagine someone growing up in a household with an alcoholic parent who has frequent rage attacks. If that child goes on to develop a substance use disorder and has trouble with emotion regulation in adulthood, it's impossible to know precisely how much genetics (nature) or adverse childhood experiences (nurture) affected that individual's personality traits or issues with alcoholism.

Epigenetics Blurs the Line Between Nature and Nurture

"Epigenetics " means "on top of" genetics. It refers to external factors and experiences that turn genes "on" or "off." Epigenetic mechanisms alter DNA's physical structure in utero (in the womb) and across the human lifespan.

Epigenetics blurs the line between nature and nurture because it says that even after birth, our genetic material isn't set in stone; environmental factors can modify genes during one's lifetime. For example, cannabis exposure during critical windows of development can increase someone's risk of neuropsychiatric disease via epigenetic mechanisms.

Nature vs. nurture is a framework used to examine how genetics (nature) and environmental factors (nurture) influence human development and personality traits.

However, nature vs. nurture isn't a black-and-white issue; there are many shades of gray where the influence of nature and nurture overlap. It's impossible to disentangle how nature and nurture overlap; they are inextricably intertwined. In most cases, nature and nurture combine to make us who we are. 

Waller JC. Commentary: the birth of the twin study--a commentary on francis galton’s “the history of twins.”   International Journal of Epidemiology . 2012;41(4):913-917. doi:10.1093/ije/dys100

The New York Times. " Major Personality Study Finds That Traits Are Mostly Inherited ."

Medline Plus. Is temperament determined by genetics?

Feldman MW, Ramachandran S. Missing compared to what? Revisiting heritability, genes and culture .  Phil Trans R Soc B . 2018;373(1743):20170064. doi:10.1098/rstb.2017.0064

Winch C. Innatism, concept formation, concept mastery and formal education: innatism, concept formation and formal education .  Journal of Philosophy of Education . 2015;49(4):539-556. doi:10.1111/1467-9752.12121

Briley DA, Tucker-Drob EM. Genetic and environmental continuity in personality development: A meta-analysis .  Psychological Bulletin . 2014;140(5):1303-1331. doi:10.1037/a0037091

Damian RI, Spengler M, Sutu A, Roberts BW. Sixteen going on sixty-six: A longitudinal study of personality stability and change across 50 years .  Journal of Personality and Social Psychology . 2019;117(3):674-695. doi:10.1037/pspp0000210

Tin A, Bressler J, Simino J, et al. Genetic risk, midlife life’s simple 7, and incident dementia in the atherosclerosis risk in communities study .  Neurology . Published online May 25, 2022. doi:10.1212/WNL.0000000000200520 

Levitt M. Perceptions of nature, nurture and behaviour .  Life Sci Soc Policy . 2013;9(1):13. doi:10.1186/2195-7819-9-13

Ross EJ, Graham DL, Money KM, Stanwood GD. Developmental consequences of fetal exposure to drugs: what we know and what we still must learn . Neuropsychopharmacology. 2015 Jan;40(1):61-87. doi: 10.1038/npp.2014.14

World Health Organization. Lead poisoning .

Bandura, A., Ross, D., & Ross, S. A. Transmission of aggression through imitation of aggressive models .  The Journal of Abnormal and Social Psychology, 1961; 63 (3), 575–582 doi:10.1037/h0045925

Krapfl JE.  Behaviorism and society .  Behav Anal.  2016;39(1):123-9. doi:10.1007/s40614-016-0063-8

Bouchard TJ Jr, Lykken DT, McGue M, Segal NL, Tellegen A. Sources of human psychological differences: the Minnesota Study of Twins Reared Apart . Science. 1990 Oct 12;250(4978):223-8. doi: 10.1126/science.2218526

National Institutes of Health.  Common genetic factors found in 5 mental disorders .

Franke HA. Toxic Stress: Effects, Prevention and Treatment . Children (Basel). 2014 Nov 3;1(3):390-402. doi: 10.3390/children1030390

Pain O, Hodgson K, Trubetskoy V, et al.  Identifying the common genetic basis of antidepressant response .  Biol Psychiatry Global Open Sci . 2022;2(2):115-126. doi:10.1016/j.bpsgos.2021.07.008

National Human Genome Research Institute. Eugenics and Scientific Racism .

OLL. The Works of John Locke in Nine Volumes .

Toraño EG, García MG, Fernández-Morera JL, Niño-García P, Fernández AF. The impact of external factors on the epigenome:  in utero  and over lifetime .  BioMed Research International . 2016;2016:1-17. doi:10.1155/2016/2568635

Smith A, Kaufman F, Sandy MS, Cardenas A. Cannabis exposure during critical windows of development: epigenetic and molecular pathways implicated in neuropsychiatric disease .  Curr Envir Health Rpt . 2020;7(3):325-342. doi:10.1007/s40572-020-00275-4

By Christopher Bergland Bergland is a retired ultra-endurance athlete turned medical writer and science reporter. He is based in Massachusetts.

Nature Vs Nurture Essay for Students and Children

500+ words essay on nature vs nurture.

The topic of nature vs nurture is always a great topic of debate among people. There are great men who did work hard to achieve great heights . But still, they are some people who didn’t work that hard yet still managed to be successful.

Nature Vs Nurture Essay

In other words, it is a debate between hard work and talent. In the grooming of a person, the nurturing is essential. However, still, there are some individuals who were never born in a great environment . Yet by their sense of knowledge and intellectualism created a special place in the hearts of people.

Nature has given us many things in life and one of them is talents. Either we are born as the only individual in our family or it is in our genes. Furthermore, nature plays a vital role in deciding the future of a child. Many singers in this era are born with beautiful voices. They did not need any nurturing. Their talent took them to heights they couldn’t even imagine.

For instance, some of the great legends like Lata Mangeshkar, Asha Bhosle, Kishor Kumar had soulful voices. Also, they were the ones who sang from their childhood days. They started their careers and became successful at a very early age. Moreover, they did not get much teaching but still are the legends of all time.

Apart from singing, there are other talents that nature has given us. Various scientists like Albert Einstein , Isaac Newton , Galileo Galilei, started their work in their teenage years. They had amazing intellectualism, because of which they got recognition in their entire world. Furthermore, these scientists did not get any mentoring. They did everything on their own. Because they had extraordinary intelligence and ambition in life.

Get the huge list of more than 500 Essay Topics and Ideas

On the other hand, the nurturing of a person is important. Because hard work beats talent. With proper mentoring and practice, a person can achieve success in life. If a person has an environment in which everybody is in the same profession and are successful in it.

Then there is a great chance that the person will land up in the same profession and will achieve heights. Because in that environment he will get proper nurturing.

Furthermore, he will also be able to perform better over the years. “ Hard work always pays off ”. This idiom is always true and nobody can deny that. If a person has true dedication then it can beat talent. Various singers, dancers, musicians, businessmen, entrepreneurs did work really hard for years.

And because of that, they got recognition in the entire world. In these categories, musicians are who achieved heights only with their hard work and constant practice.

It is true that there are no shortcuts to success. Various known legends like Bob Dylon. Lou Reed, Elvis Persley, Michael Jackson worked hard throughout their lives. As a result, they were some of the great personalities in the entire world.

Q1. What is the meaning of nurture?

A1. Nurture means the way a person grooms himself. This is done in order to achieve success. Nurturing is essential in a person’s life because it can be a way a person can cross the barrier and do something great. Moreover nurture also means the mentoring and care a person is getting in an environment.

Q2. What is the difference between Nature and Nurture?

A2. The main difference between nature and nurture is, nature is the talent a person inherits from his parents or is God gifted. While nurturing is hard work and mentoring of a person in a particular field. So that he may excel in that field.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

Nature vs. Nurture Debate In Psychology

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

The nature vs. nurture debate in psychology concerns the relative importance of an individual’s innate qualities (nature) versus personal experiences (nurture) in determining or causing individual differences in physical and behavioral traits. While early theories favored one factor over the other, contemporary views recognize a complex interplay between genes and environment in shaping behavior and development.

Key Takeaways

  • Nature is what we think of as pre-wiring and is influenced by genetic inheritance and other biological factors.
  • Nurture is generally taken as the influence of external factors after conception, e.g., the product of exposure, life experiences, and learning on an individual.
  • Behavioral genetics has enabled psychology to quantify the relative contribution of nature and nurture concerning specific psychological traits.
  • Instead of defending extreme nativist or nurturist views, most psychological researchers are now interested in investigating how nature and nurture interact in a host of qualitatively different ways.
  • For example, epigenetics is an emerging area of research that shows how environmental influences affect the expression of genes.
The nature-nurture debate is concerned with the relative contribution that both influences make to human behavior, such as personality, cognitive traits, temperament and psychopathology.

Examples of Nature vs. Nurture

Nature vs. nurture in child development.

In child development, the nature vs. nurture debate is evident in the study of language acquisition . Researchers like Chomsky (1957) argue that humans are born with an innate capacity for language (nature), known as universal grammar, suggesting that genetics play a significant role in language development.

Conversely, the behaviorist perspective, exemplified by Skinner (1957), emphasizes the role of environmental reinforcement and learning (nurture) in language acquisition.

Twin studies have provided valuable insights into this debate, demonstrating that identical twins raised apart may share linguistic similarities despite different environments, suggesting a strong genetic influence (Bouchard, 1979)

However, environmental factors, such as exposure to language-rich environments, also play a crucial role in language development, highlighting the intricate interplay between nature and nurture in child development.

Nature vs. Nurture in Personality Development

The nature vs. nurture debate in personality psychology centers on the origins of personality traits. Twin studies have shown that identical twins reared apart tend to have more similar personalities than fraternal twins, indicating a genetic component to personality (Bouchard, 1994).

However, environmental factors, such as parenting styles, cultural influences, and life experiences, also shape personality.

For example, research by Caspi et al. (2003) demonstrated that a particular gene (MAOA) can interact with childhood maltreatment to increase the risk of aggressive behavior in adulthood.

This highlights that genetic predispositions and environmental factors contribute to personality development, and their interaction is complex and multifaceted.

Nature vs. Nurture in Mental Illness Development

The nature vs. nurture debate in mental health explores the etiology of depression. Genetic studies have identified specific genes associated with an increased vulnerability to depression, indicating a genetic component (Sullivan et al., 2000).

However, environmental factors, such as adverse life events and chronic stress during childhood, also play a significant role in the development of depressive disorders (Dube et al.., 2002; Keller et al., 2007)

The diathesis-stress model posits that individuals inherit a genetic predisposition (diathesis) to a disorder, which is then activated or exacerbated by environmental stressors (Monroe & Simons, 1991).

This model illustrates how nature and nurture interact to influence mental health outcomes.

Nature vs. Nurture of Intelligence

The nature vs. nurture debate in intelligence examines the relative contributions of genetic and environmental factors to cognitive abilities.

Intelligence is highly heritable, with about 50% of variance in IQ attributed to genetic factors, based on studies of twins, adoptees, and families (Plomin & Spinath, 2004).

Heritability of intelligence increases with age, from about 20% in infancy to as high as 80% in adulthood, suggesting amplifying effects of genes over time.

However, environmental influences, such as access to quality education and stimulating environments, also significantly impact intelligence.

Shared environmental influences like family background are more influential in childhood, whereas non-shared experiences are more important later in life.

Research by Flynn (1987) showed that average IQ scores have increased over generations, suggesting that environmental improvements, known as the Flynn effect , can lead to substantial gains in cognitive abilities.

Molecular genetics provides tools to identify specific genes and understand their pathways and interactions. However, progress has been slow for complex traits like intelligence. Identified genes have small effect sizes (Plomin & Spinath, 2004).

Overall, intelligence results from complex interplay between genes and environment over development. Molecular genetics offers promise to clarify these mechanisms. The nature vs nurture debate is outdated – both play key roles.

Nativism (Extreme Nature Position)

It has long been known that certain physical characteristics are biologically determined by genetic inheritance.

Color of eyes, straight or curly hair, pigmentation of the skin, and certain diseases (such as Huntingdon’s chorea) are all a function of the genes we inherit.

eye color genetics

These facts have led many to speculate as to whether psychological characteristics such as behavioral tendencies, personality attributes, and mental abilities are also “wired in” before we are even born.

Those who adopt an extreme hereditary position are known as nativists.  Their basic assumption is that the characteristics of the human species as a whole are a product of evolution and that individual differences are due to each person’s unique genetic code.

In general, the earlier a particular ability appears, the more likely it is to be under the influence of genetic factors. Estimates of genetic influence are called heritability.

Examples of extreme nature positions in psychology include Chomsky (1965), who proposed language is gained through the use of an innate language acquisition device. Another example of nature is Freud’s theory of aggression as being an innate drive (called Thanatos).

Characteristics and differences that are not observable at birth, but which emerge later in life, are regarded as the product of maturation. That is to say, we all have an inner “biological clock” which switches on (or off) types of behavior in a pre-programmed way.

The classic example of the way this affects our physical development are the bodily changes that occur in early adolescence at puberty.

However, nativists also argue that maturation governs the emergence of attachment in infancy , language acquisition , and even cognitive development .

Empiricism (Extreme Nurture Position)

At the other end of the spectrum are the environmentalists – also known as empiricists (not to be confused with the other empirical/scientific  approach ).

Their basic assumption is that at birth, the human mind is a tabula rasa (a blank slate) and that this is gradually “filled” as a result of experience (e.g., behaviorism ).

From this point of view, psychological characteristics and behavioral differences that emerge through infancy and childhood are the results of learning.  It is how you are brought up (nurture) that governs the psychologically significant aspects of child development and the concept of maturation applies only to the biological.

For example, Bandura’s (1977) social learning theory states that aggression is learned from the environment through observation and imitation. This is seen in his famous bobo doll experiment (Bandura, 1961).

bobo doll experiment

Also, Skinner (1957) believed that language is learned from other people via behavior-shaping techniques.

Evidence for Nature

  • Biological Approach
  • Biology of Gender
  • Medical Model

Freud (1905) stated that events in our childhood have a great influence on our adult lives, shaping our personality.

He thought that parenting is of primary importance to a child’s development , and the family as the most important feature of nurture was a common theme throughout twentieth-century psychology (which was dominated by environmentalists’ theories).

Behavioral Genetics

Researchers in the field of behavioral genetics study variation in behavior as it is affected by genes, which are the units of heredity passed down from parents to offspring.

“We now know that DNA differences are the major systematic source of psychological differences between us. Environmental effects are important but what we have learned in recent years is that they are mostly random – unsystematic and unstable – which means that we cannot do much about them.” Plomin (2018, xii)

Behavioral genetics has enabled psychology to quantify the relative contribution of nature and nurture with regard to specific psychological traits. One way to do this is to study relatives who share the same genes (nature) but a different environment (nurture). Adoption acts as a natural experiment which allows researchers to do this.

Empirical studies have consistently shown that adoptive children show greater resemblance to their biological parents, rather than their adoptive, or environmental parents (Plomin & DeFries, 1983; 1985).

Another way of studying heredity is by comparing the behavior of twins, who can either be identical (sharing the same genes) or non-identical (sharing 50% of genes). Like adoption studies, twin studies support the first rule of behavior genetics; that psychological traits are extremely heritable, about 50% on average.

The Twins in Early Development Study (TEDS) revealed correlations between twins on a range of behavioral traits, such as personality (empathy and hyperactivity) and components of reading such as phonetics (Haworth, Davis, Plomin, 2013; Oliver & Plomin, 2007; Trouton, Spinath, & Plomin, 2002).

Implications

Jenson (1969) found that the average I.Q. scores of black Americans were significantly lower than whites he went on to argue that genetic factors were mainly responsible – even going so far as to suggest that intelligence is 80% inherited.

The storm of controversy that developed around Jenson’s claims was not mainly due to logical and empirical weaknesses in his argument. It was more to do with the social and political implications that are often drawn from research that claims to demonstrate natural inequalities between social groups.

For many environmentalists, there is a barely disguised right-wing agenda behind the work of the behavioral geneticists.  In their view, part of the difference in the I.Q. scores of different ethnic groups are due to inbuilt biases in the methods of testing.

More fundamentally, they believe that differences in intellectual ability are a product of social inequalities in access to material resources and opportunities.  To put it simply children brought up in the ghetto tend to score lower on tests because they are denied the same life chances as more privileged members of society.

Now we can see why the nature-nurture debate has become such a hotly contested issue.  What begins as an attempt to understand the causes of behavioral differences often develops into a politically motivated dispute about distributive justice and power in society.

What’s more, this doesn’t only apply to the debate over I.Q.  It is equally relevant to the psychology of sex and gender , where the question of how much of the (alleged) differences in male and female behavior is due to biology and how much to culture is just as controversial.

Polygenic Inheritance

Rather than the presence or absence of single genes being the determining factor that accounts for psychological traits, behavioral genetics has demonstrated that multiple genes – often thousands, collectively contribute to specific behaviors.

Thus, psychological traits follow a polygenic mode of inheritance (as opposed to being determined by a single gene). Depression is a good example of a polygenic trait, which is thought to be influenced by around 1000 genes (Plomin, 2018).

This means a person with a lower number of these genes (under 500) would have a lower risk of experiencing depression than someone with a higher number.

While still limited in predictive power, polygenic risk scores provide a way to quantify innate genetic risk, allowing researchers to study how this interacts with environmental factors to influence outcomes.

The high polygenicity of psychiatric disorders (many genes each contributing small effects) revealed by genetic architecture studies shows that there isn’t a simple genetic determinism for most psychiatric conditions. 

This complexity is further increased when you consider how these genes might interact with each other (epistasis) and with environmental factors. The same genetic profile might lead to different outcomes in different environments.

The Nature of Nurture

Nurture assumes that correlations between environmental factors and psychological outcomes are caused environmentally. For example, how much parents read with their children and how well children learn to read appear to be related. Other examples include environmental stress and its effect on depression.

However, behavioral genetics argues that what look like environmental effects are to a large extent really a reflection of genetic differences (Plomin & Bergeman, 1991).

People select, modify and create environments correlated with their genetic disposition. This means that what sometimes appears to be an environmental influence (nurture) is a genetic influence (nature).

So, children that are genetically predisposed to be competent readers, will be happy to listen to their parents read them stories, and be more likely to encourage this interaction.

Interaction Effects

However, in recent years there has been a growing realization that the question of “how much” behavior is due to heredity and “how much” to the environment may itself be the wrong question.

Take intelligence as an example. Like almost all types of human behavior, it is a complex, many-sided phenomenon which reveals itself (or not!) in a great variety of ways.

The “how much” question assumes that psychological traits can all be expressed numerically and that the issue can be resolved in a quantitative manner.

Heritability statistics revealed by behavioral genetic studies have been criticized as meaningless, mainly because biologists have established that genes cannot influence development independently of environmental factors; genetic and nongenetic factors always cooperate to build traits. The reality is that nature and culture interact in a host of qualitatively different ways (Gottlieb, 2007; Johnston & Edwards, 2002).

Instead of defending extreme nativist or nurturist views, most psychological researchers are now interested in investigating how nature and nurture interact.

For example, in psychopathology , this means that both a genetic predisposition and an appropriate environmental trigger are required for a mental disorder to develop. For example, epigenetics state that environmental influences affect the expression of genes.

epigenetics

What is Epigenetics?

Epigenetics is the term used to describe inheritance by mechanisms other than through the DNA sequence of genes. For example, features of a person’s physical and social environment can effect which genes are switched-on, or “expressed”, rather than the DNA sequence of the genes themselves.

Epigenetics refers to changes in gene expression that don’t involve alterations to the DNA sequence itself. Instead, these changes affect how genes are read and translated into proteins.

Mechanisms of Epigenetic Modification

Epigenetic modifications provide a direct biological mechanism by which environmental experiences (nurture) can alter how our genes (nature) function. This challenges the idea of genes as a fixed, unchangeable blueprint.

Epigenetic changes can occur throughout life, but certain periods (like early development or adolescence) may be particularly sensitive to these modifications.

There are several ways epigenetic changes can occur:

  • DNA methylation : Adding methyl groups to DNA, typically suppressing gene expression.
  • Histone modification : Changes to the proteins that DNA wraps around, affecting how tightly or loosely genes are packaged.
  • Non-coding RNA : RNA molecules that can regulate gene expression.

Environmental Stressors

Environmental stressors have been shown to induce epigenetic changes, with substantial evidence from both animal and human studies (Klengel et al., 2016).

These stressors can include malnutrition, exposure to toxins, extreme stress, or trauma, leading to alterations in DNA methylation patterns, histone modifications, and changes in non-coding RNA expression (Bale, 2015).

Transgenerational Epigenetic Inheritance

Some epigenetic modifications may be passed down to future generations, suggesting that environmental influences on one generation could affect the genetic expression of subsequent generations.

One such example is what is known as the Dutch Hunger Winter, during last year of the Second World War. What they found was that children who were in the womb during the famine experienced a life-long increase in their chances of developing various health problems compared to children conceived after the famine.

Epigenetic effects can sometimes be passed from one generation to the next, although the effects only seem to last for a few generations. There is some evidence that the effects of the Dutch Hunger Winter affected grandchildren of women who were pregnant during the famine.

Therefore, it makes more sense to say that the difference between two people’s behavior is mostly due to hereditary factors or mostly due to environmental factors.

This realization is especially important given the recent advances in genetics, such as polygenic testing.  The Human Genome Project, for example, has stimulated enormous interest in tracing types of behavior to particular strands of DNA located on specific chromosomes.

If these advances are not to be abused, then there will need to be a more general understanding of the fact that biology interacts with both the cultural context and the personal choices that people make about how they want to live their lives.

There is no neat and simple way of unraveling these qualitatively different and reciprocal influences on human behavior.

The Concept of “Memories” Being Passed Down

While there’s evidence that environmental stressors can induce epigenetic changes that might affect future generations, the concept of specific “memories” being passed down is not supported by current scientific evidence.

This concept often stems from misinterpretation of studies showing behavioral or physiological changes in offspring related to parental experiences.

Some animal studies have demonstrated that offspring of stressed parents exhibit altered stress responses or behavioral changes.

For example, Dias and Ressler (2014) showed in mice that fear responses to specific odors can be passed down to subsequent generations. However, these are not “memories” in the conventional sense, but rather alterations in stress response systems or sensory sensitivities.

Human studies in this area are much more complex and limited. Research has examined children of trauma survivors (e.g., Holocaust survivors, 9/11 survivors) and found differences in stress hormone levels or risk for PTSD (Yehuda et al., 2016).

However, these studies face significant challenges in separating genetic, epigenetic, and social/cultural factors.

The challenges in interpreting human studies are substantial. Humans have complex social structures and cultural transmission of information, making it often impossible to separate the effects of biological inheritance from social learning and shared environments (Heard & Martienssen, 2014).

The longer lifespan and generation time in humans also make it challenging to study transgenerational effects. What’s often observed is not the transmission of specific memories, but rather altered predispositions or sensitivities.

For example, children of trauma survivors might have an altered stress response system, making them more sensitive to stress, but they don’t inherit specific memories of the trauma (Bowers & Yehuda, 2016).

While specific memories aren’t passed down, changes in gene expression related to stress response systems could potentially be inherited. These could affect how future generations respond to stress or process sensory information (Zannas et al., 2015).

Epigenetics: Licking Rat Pups

Michael Meaney and his colleagues at McGill University in Montreal, Canada conducted the landmark epigenetic study on mother rats licking and grooming their pups.

This research found that the amount of licking and grooming received by rat pups during their early life could alter their epigenetic marks and influence their stress responses in adulthood.

Pups that received high levels of maternal care (i.e., more licking and grooming) had a reduced stress response compared to those that received low levels of maternal care.

Meaney’s work with rat maternal behavior and its epigenetic effects has provided significant insights into the understanding of early-life experiences, gene expression, and adult behavior.

It underscores the importance of the early-life environment and its long-term impacts on an individual’s mental health and stress resilience.

Epigenetics: The Agouti Mouse Study

Waterland and Jirtle’s 2003 study on the Agouti mouse is another foundational work in the field of epigenetics that demonstrated how nutritional factors during early development can result in epigenetic changes that have long-lasting effects on phenotype.

In this study, they focused on a specific gene in mice called the Agouti viable yellow (A^vy) gene. Mice with this gene can express a range of coat colors, from yellow to mottled to brown.

This variation in coat color is related to the methylation status of the A^vy gene: higher methylation is associated with the brown coat, and lower methylation with the yellow coat.

Importantly, the coat color is also associated with health outcomes, with yellow mice being more prone to obesity, diabetes, and tumorigenesis compared to brown mice.

Waterland and Jirtle set out to investigate whether maternal diet, specifically supplementation with methyl donors like folic acid, choline, betaine, and vitamin B12, during pregnancy could influence the methylation status of the A^vy gene in offspring.

Key findings from the study include:

Dietary Influence : When pregnant mice were fed a diet supplemented with methyl donors, their offspring had an increased likelihood of having the brown coat color. This indicated that the supplemented diet led to an increased methylation of the A^vy gene.

Health Outcomes : Along with the coat color change, these mice also had reduced risks of obesity and other health issues associated with the yellow phenotype.

Transgenerational Effects : The study showed that nutritional interventions could have effects that extend beyond the individual, affecting the phenotype of the offspring.

The implications of this research are profound. It highlights how maternal nutrition during critical developmental periods can have lasting effects on offspring through epigenetic modifications, potentially affecting health outcomes much later in life.

The study also offers insights into how dietary and environmental factors might contribute to disease susceptibility in humans.

Challenges in Epigenetic Research:

  • Epigenetic changes can be tissue-specific, making it challenging to study in the living human brain
  • The causal direction (whether epigenetic changes cause disorders or result from them) is often unclear
  • The complexity of interactions between multiple epigenetic mechanisms and genetic variants

Bale, T. L. (2015). Epigenetic and transgenerational reprogramming of brain development. Nature Reviews Neuroscience, 16 (6), 332-344.

Bandura, A. Ross, D., & Ross, S. A. (1961). Transmission of aggression through the imitation of aggressive models. Journal of Abnormal and Social Psychology , 63, 575-582

Bandura, A. (1977). Social learning theory . Englewood Cliffs, NJ: Prentice Hall.

Bouchard, T. J. (1994). Genes, Environment, and Personality. Science, 264 (5166), 1700-1701.

Bowers, M. E., & Yehuda, R. (2016). Intergenerational transmission of stress in humans. Neuropsychopharmacology, 41 (1), 232-244.

Bowlby, J. (1969). Attachment. Attachment and loss: Vol. 1. Loss . New York: Basic Books.

Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., … & Poulton, R. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene.  Science ,  301 (5631), 386-389.

Chomsky, N. (1957). Syntactic structures. Mouton de Gruyter.

Chomsky, N. (1965). Aspects of the theory of syntax . MIT Press.

Dias, B. G., & Ressler, K. J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature neuroscience, 17( 1), 89-96.

Dube, S. R., Anda, R. F., Felitti, V. J., Edwards, V. J., & Croft, J. B. (2002). Adverse childhood experiences and personal alcohol abuse as an adult.  Addictive Behaviors ,  27 (5), 713-725.

Flynn, J. R. (1987). Massive IQ gains in 14 nations: What IQ tests really measure.  Psychological Bulletin ,  101 (2), 171.

Freud, S. (1905). Three essays on the theory of sexuality . Se, 7.

Galton, F. (1883). Inquiries into human faculty and its development . London: J.M. Dent & Co.

Gottlieb, G. (2007). Probabilistic epigenesis.   Developmental Science, 10 , 1–11.

Haworth, C. M., Davis, O. S., & Plomin, R. (2013). Twins Early Development Study (TEDS): a genetically sensitive investigation of cognitive and behavioral development from childhood to young adulthood . Twin Research and Human Genetics, 16(1) , 117-125.

Heard, E., & Martienssen, R. A. (2014). Transgenerational epigenetic inheritance: myths and mechanisms. Cell, 157 (1), 95-109.

Horsthemke, B. (2018). A critical view on transgenerational epigenetic inheritance in humans. Nature communications, 9 (1), 1-4.

Jensen, A. R. (1969). How much can we boost I.Q. and scholastic achievement? Harvard Educational Review, 33 , 1-123.

Johnston, T. D., & Edwards, L. (2002). Genes, interactions, and the development of behavior . Psychological Review , 109, 26–34.

Keller, M. C., Neale, M. C., & Kendler, K. S. (2007). Association of different adverse life events with distinct patterns of depressive symptoms.  American Journal of Psychiatry ,  164 (10), 1521-1529.

Klengel, T., Dias, B. G., & Ressler, K. J. (2016). Models of intergenerational and transgenerational transmission of risk for psychopathology in mice. Neuropsychopharmacology, 41 (1), 219-231.

Meaney, M. J. (2010). Epigenetics and the biological definition of gene× environment interactions. Child development, 81 (1), 41-79.

Monroe, S. M., & Simons, A. D. (1991). Diathesis-stress theories in the context of life stress research: implications for the depressive disorders.  Psychological Bulletin ,  110 (3), 406.

Oliver, B. R., & Plomin, R. (2007). Twins” Early Development Study (TEDS): A multivariate, longitudinal genetic investigation of language, cognition and behavior problems from childhood through adolescence . Twin Research and Human Genetics, 10(1) , 96-105.

Petrill, S. A., Plomin, R., Berg, S., Johansson, B., Pedersen, N. L., Ahern, F., & McClearn, G. E. (1998). The genetic and environmental relationship between general and specific cognitive abilities in twins age 80 and older.  Psychological Science ,  9 (3), 183-189.

Plomin, R., & Petrill, S. A. (1997). Genetics and intelligence: What’s new?.  Intelligence ,  24 (1), 53-77.

Plomin, R. (2018). Blueprint: How DNA makes us who we are . MIT Press.

Plomin, R., & Bergeman, C. S. (1991). The nature of nurture: Genetic influence on “environmental” measures. behavioral and Brain Sciences, 14(3) , 373-386.

Plomin, R., & DeFries, J. C. (1983). The Colorado adoption project. Child Development , 276-289.

Plomin, R., & DeFries, J. C. (1985). The origins of individual differences in infancy; the Colorado adoption project. Science, 230 , 1369-1371.

Plomin, R., & Spinath, F. M. (2004). Intelligence: genetics, genes, and genomics.  Journal of personality and social psychology ,  86 (1), 112.

Plomin, R., & Von Stumm, S. (2018). The new genetics of intelligence.  Nature Reviews Genetics ,  19 (3), 148-159.

Skinner, B. F. (1957). Verbal behavior . Acton, MA: Copley Publishing Group.

Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic epidemiology of major depression: review and meta-analysis.  American Journal of Psychiatry ,  157 (10), 1552-1562.

Szyf, M., Weaver, I. C., Champagne, F. A., Diorio, J., & Meaney, M. J. (2005). Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat .  Frontiers in neuroendocrinology ,  26 (3-4), 139-162.

Trouton, A., Spinath, F. M., & Plomin, R. (2002). Twins early development study (TEDS): a multivariate, longitudinal genetic investigation of language, cognition and behavior problems in childhood . Twin Research and Human Genetics, 5(5) , 444-448.

Yehuda, R., Daskalakis, N. P., Bierer, L. M., Bader, H. N., Klengel, T., Holsboer, F., & Binder, E. B. (2016). Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biological psychiatry, 80 (5), 372-380.

Waterland, R. A., & Jirtle, R. L. (2003). Transposable elements: targets for early nutritional effects on epigenetic gene regulation . Molecular and cellular biology, 23 (15), 5293-5300.

Zannas, A. S., Wiechmann, T., Gassen, N. C., & Binder, E. B. (2016). Gene–stress–epigenetic regulation of FKBP5: clinical and translational implications. Neuropsychopharmacology, 41 (1), 261-274.

Further Information

  • Genetic & Environmental Influences on Human Psychological Differences

Evidence for Nurture

  • Classical Conditioning
  • Little Albert Experiment
  • Operant Conditioning
  • Behaviorism
  • Social Learning Theory
  • Bronfenbrenner’s Ecological Systems Theory
  • Social Roles
  • Attachment Styles
  • The Hidden Links Between Mental Disorders
  • Visual Cliff Experiment
  • Behavioral Genetics, Genetics, and Epigenetics
  • Epigenetics
  • Is Epigenetics Inherited?
  • Physiological Psychology
  • Bowlby’s Maternal Deprivation Hypothesis
  • So is it nature not nurture after all?

Evidence for an Interaction

  • Genes, Interactions, and the Development of Behavior
  • Agouti Mouse Study
  • Biological Psychology

What does nature refer to in the nature vs. nurture debate?

In the nature vs. nurture debate, “nature” refers to the influence of genetics, innate qualities, and biological factors on human development, behavior, and traits. It emphasizes the role of hereditary factors in shaping who we are.

What does nurture refer to in the nature vs. nurture debate?

In the nature vs. nurture debate, “nurture” refers to the influence of the environment, upbringing, experiences, and social factors on human development, behavior, and traits. It emphasizes the role of external factors in shaping who we are.

Why is it important to determine the contribution of heredity (nature) and environment (nurture) in human development?

Determining the contribution of heredity and environment in human development is crucial for understanding the complex interplay between genetic factors and environmental influences. It helps identify the relative significance of each factor, informing interventions, policies, and strategies to optimize human potential and address developmental challenges.

Print Friendly, PDF & Email

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

The Nature vs. Nurture Debate

Genetic and Environmental Influences and How They Interact

Verywell / Joshua Seong

  • Definitions
  • Interaction
  • Contemporary Views

Nature refers to how genetics influence an individual's personality, whereas nurture refers to how their environment (including relationships and experiences) impacts their development. Whether nature or nurture plays a bigger role in personality and development is one of the oldest philosophical debates within the field of psychology .

Learn how each is defined, along with why the issue of nature vs. nurture continues to arise. We also share a few examples of when arguments on this topic typically occur, how the two factors interact with each other, and contemporary views that exist in the debate of nature vs. nurture as it stands today.

Nature and Nurture Defined

To better understand the nature vs. nurture argument, it helps to know what each of these terms means.

  • Nature refers largely to our genetics . It includes the genes we are born with and other hereditary factors that can impact how our personality is formed and influence the way that we develop from childhood through adulthood.
  • Nurture encompasses the environmental factors that impact who we are. This includes our early childhood experiences, the way we were raised , our social relationships, and the surrounding culture.

A few biologically determined characteristics include genetic diseases, eye color, hair color, and skin color. Other characteristics are tied to environmental influences, such as how a person behaves, which can be influenced by parenting styles and learned experiences.

For example, one child might learn through observation and reinforcement to say please and thank you. Another child might learn to behave aggressively by observing older children engage in violent behavior on the playground.

The Debate of Nature vs. Nurture

The nature vs. nurture debate centers on the contributions of genetics and environmental factors to human development. Some philosophers, such as Plato and Descartes, suggested that certain factors are inborn or occur naturally regardless of environmental influences.

Advocates of this point of view believe that all of our characteristics and behaviors are the result of evolution. They contend that genetic traits are handed down from parents to their children and influence the individual differences that make each person unique.

Other well-known thinkers, such as John Locke, believed in what is known as tabula rasa which suggests that the mind begins as a blank slate . According to this notion, everything that we are is determined by our experiences.

Behaviorism is a good example of a theory rooted in this belief as behaviorists feel that all actions and behaviors are the results of conditioning. Theorists such as John B. Watson believed that people could be trained to do and become anything, regardless of their genetic background.

People with extreme views are called nativists and empiricists. Nativists take the position that all or most behaviors and characteristics are the result of inheritance. Empiricists take the position that all or most behaviors and characteristics result from learning.

Examples of Nature vs. Nurture

One example of when the argument of nature vs. nurture arises is when a person achieves a high level of academic success . Did they do so because they are genetically predisposed to elevated levels of intelligence, or is their success a result of an enriched environment?

The argument of nature vs. nurture can also be made when it comes to why a person behaves in a certain way. If a man abuses his wife and kids, for instance, is it because he was born with violent tendencies, or is violence something he learned by observing others in his life when growing up?

Nature vs. Nurture in Psychology

Throughout the history of psychology , the debate of nature vs. nurture has continued to stir up controversy. Eugenics, for example, was a movement heavily influenced by the nativist approach.

Psychologist Francis Galton coined the terms 'nature versus nurture' and 'eugenics' and believed that intelligence resulted from genetics. Galton also felt that intelligent individuals should be encouraged to marry and have many children, while less intelligent individuals should be discouraged from reproducing.

The value placed on nature vs. nurture can even vary between the different branches of psychology , with some branches taking a more one-sided approach. In biopsychology , for example, researchers conduct studies exploring how neurotransmitters influence behavior, emphasizing the role of nature.

In social psychology , on the other hand, researchers might conduct studies looking at how external factors such as peer pressure and social media influence behaviors, stressing the importance of nurture. Behaviorism is another branch that focuses on the impact of the environment on behavior.

Nature vs. Nurture in Child Development

Some psychological theories of child development place more emphasis on nature and others focus more on nurture. An example of a nativist theory involving child development is Chomsky's concept of a language acquisition device (LAD). According to this theory, all children are born with an instinctive mental capacity that allows them to both learn and produce language.

An example of an empiricist child development theory is Albert Bandura's social learning theory . This theory says that people learn by observing the behavior of others. In his famous Bobo doll experiment , Bandura demonstrated that children could learn aggressive behaviors simply by observing another person acting aggressively.

Nature vs. Nurture in Personality Development

There is also some argument as to whether nature or nurture plays a bigger role in the development of one's personality. The answer to this question varies depending on which personality development theory you use.

According to behavioral theories, our personality is a result of the interactions we have with our environment, while biological theories suggest that personality is largely inherited. Then there are psychodynamic theories of personality that emphasize the impact of both.

Nature vs. Nurture in Mental Illness Development

One could argue that either nature or nurture contributes to mental health development. Some causes of mental illness fall on the nature side of the debate, including changes to or imbalances with chemicals in the brain. Genetics can also contribute to mental illness development, increasing one's risk of a certain disorder or disease.

Mental disorders with some type of genetic component include autism , attention-deficit hyperactivity disorder (ADHD), bipolar disorder , major depression , and schizophrenia .

Other explanations for mental illness are environmental. This includes being exposed to environmental toxins, such as drugs or alcohol, while still in utero. Certain life experiences can also influence mental illness development, such as witnessing a traumatic event, leading to the development of post-traumatic stress disorder (PTSD).

Nature vs. Nurture in Mental Health Therapy

Different types of mental health treatment can also rely more heavily on either nature or nurture in their treatment approach. One of the goals of many types of therapy is to uncover any life experiences that may have contributed to mental illness development (nurture).

However, genetics (nature) can play a role in treatment as well. For instance, research indicates that a person's genetic makeup can impact how their body responds to antidepressants. Taking this into consideration is important for getting that person the help they need.

Interaction Between Nature and Nurture

Which is stronger: nature or nurture? Many researchers consider the interaction between heredity and environment—nature with nurture as opposed to nature versus nurture—to be the most important influencing factor of all.

For example, perfect pitch is the ability to detect the pitch of a musical tone without any reference. Researchers have found that this ability tends to run in families and might be tied to a single gene. However, they've also discovered that possessing the gene is not enough as musical training during early childhood is needed for this inherited ability to manifest itself.

Height is another example of a trait influenced by an interaction between nature and nurture. A child might inherit the genes for height. However, if they grow up in a deprived environment where proper nourishment isn't received, they might never attain the height they could have had if they'd grown up in a healthier environment.

A newer field of study that aims to learn more about the interaction between genes and environment is epigenetics . Epigenetics seeks to explain how environment can impact the way in which genes are expressed.

Some characteristics are biologically determined, such as eye color, hair color, and skin color. Other things, like life expectancy and height, have a strong biological component but are also influenced by environmental factors and lifestyle.

Contemporary Views of Nature vs. Nurture

Most experts recognize that neither nature nor nurture is stronger than the other. Instead, both factors play a critical role in who we are and who we become. Not only that but nature and nurture interact with each other in important ways all throughout our lifespan.

As a result, many in this field are interested in seeing how genes modulate environmental influences and vice versa. At the same time, this debate of nature vs. nurture still rages on in some areas, such as in the origins of homosexuality and influences on intelligence .

While a few people take the extreme nativist or radical empiricist approach, the reality is that there is not a simple way to disentangle the multitude of forces that exist in personality and human development. Instead, these influences include genetic factors, environmental factors, and how each intermingles with the other.

Schoneberger T. Three myths from the language acquisition literature . Anal Verbal Behav . 2010;26(1):107-31. doi:10.1007/bf03393086

National Institutes of Health. Common genetic factors found in 5 mental disorders .

Pain O, Hodgson K, Trubetskoy V, et al. Identifying the common genetic basis of antidepressant response . Biol Psychiatry Global Open Sci . 2022;2(2):115-126. doi:10.1016/j.bpsgos.2021.07.008

Moulton C. Perfect pitch reconsidered . Clin Med J . 2014;14(5):517-9 doi:10.7861/clinmedicine.14-5-517

Levitt M. Perceptions of nature, nurture and behaviour . Life Sci Soc Policy . 2013;9:13. doi:10.1186/2195-7819-9-13

Bandura A, Ross D, Ross, SA. Transmission of aggression through the imitation of aggressive models . J Abnorm Soc Psychol. 1961;63(3):575-582. doi:10.1037/h0045925

Chomsky N. Aspects of the Theory of Syntax .

Galton F. Inquiries into Human Faculty and Its Development .

Watson JB. Behaviorism .

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Trust my Paper

  • Testimonials
  • How it works
  • Paper Writers Team
  • Essay Writing Guide
  • Free plagiarism checker
  • Essay title generator
  • Conclusion Generator
  • Citation Generator
  • Can ChatGPT Write Essays?
  • Types of Essays
  • Essay Writing Formats
  • Essay Topics
  • Best Research Paper Topics
  • Essays by Subject
  • Nature vs Nurture Essay Debate

A guide to writing a nature VS. nurture debate essay

Table of contents, the nature vs. nurture debate, interaction of nature and nurture, topics of nature vs. nurture debate, writing nature vs. nurture debate essay, examples of nature vs. nurture debate.

What makes a man? Is it nature or nurture? Well, the different answers to the question have fueled a constant discussion for centuries. The problem, however, seems to be like a deep, dark abyss, an insatiable monster that hasn’t yet grown sufficient with the answers that scientists, philosophers, and scholars supply. Since it was perceived, the nature vs nurture debate has baffled the scholars and laypeople alike, leading to ideological conundrums rather than pinnacles of insight.

“Nature,” in the debate, refers to the impact on human character/ traits by genetic predispositions. “Nurture” refers to the effect of the experiences of a person and their environment on their character and behavior.

So, what primarily drives the growth in a person’s weaknesses, strengths, sexual preferences, behavioral tendencies, and personality?

The genetic coding determines most of the physical attributes such as height, eye color, skin complexion, hair color, and other traits in humans. It, however, remains unknowт to anyone whether abstract characteristics such as intelligence, sexual orientation, personality, likes, and dislikes have any links with the genetic coding too. This dispute has had significant social implications, especially concerning what is thought to determine a person’s ability to learn (intelligence).

The nurture theory postulates that , although genetic influence over abstract traits may exist, the experiences and environmental factors are the linchpins for behavioral development . In Locke’s philosophy, he theorizes that a child is a tabula rasa  (blank slate) and can be conditioned to induce a new behavior or alter an undesirable behavior that the child depicts. Although fraternal twins raised together have remarkable similarities in most respects, still the effects of the environment have led to several differences in how they behave.

Many scientists avoid the nature vs. nurture debate, emphasizing “nature x nurture.” This means that nature and nurture are inseparable . They exist together with no clear line of separation between the two. Some genes, for example, cannot be activated without certain environmental conditions. The development of vision is an excellent exemplar for this. 

One cannot develop regular sight without exposure to visual stimuli. Similarly, some genes may undermine some environmental inputs. For example, one may not be affected by smoking-related problems despite being life-long smokers. It may be partly due to their genes. Although some things are genetic related, the environment also affects the way one behaves. 

In the end, we remain with a confounding problem: Are we born with these character traits, or do we behave following our life experiences and the environment?

Currently, we know that both nature and nurture play crucial roles in human development, but we have not known yet figured out whether we are developed primarily because of nature or due to nurture. The nature vs. nurture debate ceaselessly continues, but still, it is a fact that we have traits that are predetermined by our genes. We, however, can choose the path we want to take as we travel through our lifetime.

One of the most controversial issues against the nature theory is that there may exist a “gay gene.” A gene that predetermines a person’s sexual propensity is implied to be in humans according to the theory. It could explain that it is why gays are born like that. If we are to stick to the nature theory, then criminal acts can be justified as a cause of the genetic coding of behavioral tendencies.

On the other hand, the “behavioral genes” can be somewhat proven to exist when we survey fraternal twins. When you bring up fraternal twins apart from each other, they show similarities in behavior and response as if they have been raised together.

Though the debate includes several points of view, there are some nature vs nurture debate topics that come up more often when the debate between nature and nurture rages on among scholars. Writing and choosing a topic for a nature and nurture essay can be tough but there always an option to use write my paper services to get your paper done.

Some of those topics include:

  • Sexual orientation and proclivity
  • Intelligence
  • Behavioral tendencies
  • Skills and talents
  • Physical and mental well being
  • Is intelligence in humans inherent or a developed trait?
  • What determines our sexual proclivities: is there a gay gene?
  • What drives the actions of a crime doer?
  • Is it possible that none of the talents are inherent?
  • How nurture affects our physical health?
  • How nature affects our mental health?

The nature vs. nurture debate is quite a long one. And with it being the issue that is most controversial and most disagreed on among psychologists, it has grown rather broad since its inception. Some of the nature vs nurture essay topics could be quite controversial and thought-provoking .

After selecting an engorging and engaging topic that you can handle, conduct extensive research on it. Come up with facts that support nature and those that support nurture in your nature vs nurture essay. Put together the points that seem to be similar in both. You can employ the use of a Venn diagram to present the data collected after extensive research accurately. 

Use the data collected to come up with the main focus of your essay. This will be your nature vs nurture essay thesis. This statement shows the main objective of your paper. It encapsulates whatever you want to convey to the reader. Choose the correct nature vs nurture essay outline while writing to ensure you tackle both sides adequately.

Begin with a catchy introduction. The first paragraph the interest of the reader on the whole essay. It should, therefore, be intriguing and make use of different or controversial points of view. Expound a bit on the topic to be discussed before getting to the ending. Use the last sentence or two to state your thesis statement.

Use the main body to write compelling paragraphs that show how nature and nurture, individually or collectively, affect the subject. The sections should all be of equal weights and contain a maximum of three evidence outlines to support your main points. Your nature vs nurture essay conclusion should restate the thesis statement and stand on the matter.

After completing the essay, read through to ensure your points flow coherently from one to the other. Edit it for any grammatical errors and come up with the final draft if you are satisfied with the edits and the message.

The internet is a vast repertoire that contains in-depth and extensive nature vs nurture essay examples. Seek information that is relevant to your topic to gain some insight and facts. 

External links

  • nature vs nurture debate - YouTube . (n.d.). Www.Youtube.Com. Retrieved February 19, 2020, from https://www.youtube.com/results?search_query=nature+vs+nurture+debate
  • What is a Venn Diagram . (n.d.). Lucidchart. Retrieved February 19, 2020, from https://www.lucidchart.com/pages/tutorial/venn-diagram

How ready is your essay?

Don`t have an account?

Password recovery instructions have been sent to your email

Back to Log in

Science of People - Logo

Nature vs. Nurture Debate: What Really Matters in Psychology

Is your life and personality shaped by your genes or environment? This is the big question of the nature vs. nurture debate, science has the answer.

Subscribe to our weekly newsletter

Are you simply a product of your environment, or do your genes have the final say? This is the ultimate question of the nature vs. nurture debate. Take a deep dive into the origins of the debate, and learn how epigenetics has upended the argument once and for all.

What is Nature vs. Nurture?

Nature vs. nurture can be defined as the difference between the genetics that people inherit (nature) vs. the environmental influences that accumulate over a lifetime (nurture). For years, many people have believed that nature rules supreme and reject the idea that environment or parenting has a large role in shaping people. 

The big question in the debate is this––how much of a person’s personality is a result of genes, and how much is related to environment and experiences? People have been arguing about this for years for political, personal, and social reasons. 

So, what’s the answer…are we shaped by nature or nurture? The answer is both, and it depends on which traits. Read on for the science of nature or nurture below.

Examples of Nature vs. Nurture

Let’s look at some examples to see how nature and nurture impact a person’s development. 

Examples of Nature Impacting Human Development:

  • Genetically predisposed to be tall.
  • Inherited red hair and blue eyes from the maternal side of the family.
  • ADHD, when it appears together with conduct disorder, is attributed to genes 1 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303131/ .
  • Genes contribute to genetic disorders such as Edwards syndrome, Patau syndrome, and Warkany syndrome.
  • Anxiety and depression occurring together 1 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303131/ are considered to be connected to a genetic predisposition.

Examples of Nurture Impacting Human Development:

  • The mother experienced high amounts of prenatal stress 2 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676865/#:~:text=Overall%2C%20maternal%20anxiety%20and%20depression,2017%3B%20Takegata%20et%20al.%2C , contributing to a fearful personality in the child, who is likely to express positive emotions. 
  • Lack of healthy attachment to the caregiver impacts relationships with others throughout life.
  • Growing up malnourished 3 https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01886/full can stunt height and contribute to obesity.
  • A supportive community environment 4 https://digitalscholarship.unlv.edu/cgi/viewcontent.cgi?article=1583&context=jhdrp contributed to feelings of confidence and the ability to succeed.
  • Growing up during political instability causes heightened aggression and revenge-seeking 5 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712526/#:~:text=There%20is%20now%20convincing%20documentation,disorders%2C%20fear%20and%20panic%2C%20poor later in life. 

How Has Nature vs. Nurture Changed Over Time? 

Nature vs. nurture has changed in many ways, perhaps the most significant change being the understanding of nurture. Early developmentalists saw nurture as the care given to the child by their parents (usually with an emphasis on the mother). Today scientists continue to discover that nurture includes many environmental influences––from prenatal to end-of-life. 

While the nature vs. nurture debate was once hotly disputed, most human developmentalists agree that both nature and nurture have a hand in shaping individuals. 

What you should know: The study of epigenetics 6 https://developingchild.harvard.edu/resources/what-is-epigenetics-and-how-does-it-relate-to-child-development/ has changed the nature vs. nurture debate landscape. Genes are not static but are impacted by nurture (environment), making it possible to change and override gene expression. 

We’ll get to even more examples below, but let’s look at a couple of scenarios of how nurture can impact genes.

Scenario 1: You are genetically predisposed to obesity, but your mom had excellent dietary health during pregnancy; this impacts your epigenome 7 https://ehp.niehs.nih.gov/doi/10.1289/ehp.8700?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed , reducing the risk for obesity and increasing your lifespan. 

Scenario 2: In early childhood, you have several negative experiences that deeply impact you. These experiences have the ability to override your natural gene expression 8 https://www.sciencedirect.com/science/article/abs/pii/S0306452212003028?via%3Dihub and “increase the risk not only for poor physical and mental health outcomes but also for impairments in future learning capacity and behavior.”

Everything from social interactions to diet to air quality can impact how genes interact and are expressed. 

“Contrary to popular belief, the genes inherited from one’s parents do not set a child’s future development in stone.” — Harvard Center on the Developing Child

The question, as we’ll see, isn’t nature or nurture, but rather nature and nurture. 

What Does Nature vs. Nurture Have to Do With Psychology, Sociology, and Genetics?

The nature vs. nurture debate has both been influenced by and has influenced psychology, sociology, and genetics. 

  • Psychology is largely concerned with the mind and behavior of the individual.
  • Sociology is concerned with the collective experiences and behavior of society.
  • Genetics studies how genes and traits are passed down through families. 

Ultimately, all three are concerned with studying how and why people behave the way they do. But this isn’t just about behavior; nature vs. nurture has been extensively studied in relation to the body. Scientists want to know how genes and the environment impact everything from low back pain 9 https://pubmed.ncbi.nlm.nih.gov/23335362/ to obesity 10 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224976/ . 

Let’s dive deeper so you can decide for yourself how much nature or nurture may have had a hand in shaping your own personality. 

How To Set Better Goals Using Science

Do you set the same goals over and over again? If you’re not achieving your goals – it’s not your fault! Let me show you the science-based goal-setting framework to help you achieve your biggest goals.

Who Came Up With Nature vs. Nurture?

Sir Francis Galton is credited with first coining the nature vs. nurture phrase. To better understand the beginning of the nature vs. nurture debate, we have to go back to the 1800s to look at why Galton came up with “nature vs. nurture” in the first place. Hold on because it’s not pretty.

Galton was a particularly unlikable anthropologist who gave us fingerprinting (great!) and invented eugenics (why was he knighted?). 

He sought to defend his beliefs with science and set out to prove that nature, not nurture, determined the intelligence and “excellence” of a person 11 https://galton.org/books/hereditary-genius/ . His cousin, Darwin, gave his stamp of approval on the “capital account” 12 https://galton.org/letters/darwin/correspondence.htm given by Galton in his book, Hereditary Genius 13 https://galton.org/books/hereditary-genius/text/v5/galton-1869-hereditary-genius-v5.htm#_Toc68688332 . 

In the book, Galton used the nature over nurture argument to propose and legitimize the ultimate elimination of criminals, “worthless” individuals, and “inferior” races (including Africans, Australians, Jews, working-class women in London, etc.) by controlling who could procreate and who couldn’t.  

While it’s unfortunate Galton had such a negative impact on science, it provides important context. Understanding where the debate originated helps us understand the ethical implications of how an unbalanced view of nature has been used to justify ongoing injustice both in policymaking and the treatment of individuals. 

Even though the argument for nature had a sordid start, let’s not throw it out completely! There is a lot we can learn about  ourselves, as both nature and nurture have a hand in shaping who we are. 

How Nature and Nurture Impact Human Development & Personality

Most developmentalists believe each person is unique and responds to a situation or experience based on many factors. As you try to understand the impact of nature and nurture on yourself or others, please remember while human development is a refined science, people are not computers. People can, and often do, defy the expectations of science, either becoming more or less resilient in the face of challenges. 

How Nature Impacts Personality

Now remember, nature involves the genetics that impact a person’s development and personality. Studies have found a person’s genes impact 30-60% of personality 14 https://www.nature.com/articles/s41380-018-0263-6 . If this sounds like a broad range, it is! But, we must consider all the variables that interact with a person’s genes. 

  • A number of studies 15 https://journals.sagepub.com/doi/10.1111/j.0963-7214.2004.00295.x have found a connection between genetics and emotional well-being. 
  • While personality seems to be heritable, to some extent, researchers are still trying to understand the actual “genetic basis of personality 16 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012279/ .”

What this really means: Researchers would like to attribute personality traits like neuroticism or extroversion to a specific gene in your body, but, at the end of the day, they can’t. Studies have linked genetics with certain behavior and traits, but studies are often difficult to replicate 16 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012279/ and may have gaps in the research. Nature clearly impacts a person, but science isn’t as hard and fast as some might think. 

Watch our video below to learn what type of personality you have:

How Nurture Impacts Personality

Remember the variables we mentioned that impact nature? Those variables are largely introduced by nurture. Here are some examples of how nurture can impact personality. 

  • Maternal stress during pregnancy 17 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052760/ has been found to increase the child’s stress. This, in turn, impacts the temperament of the child 18 https://srcd.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8624.1995.tb00851.x . 
  • A study in Germany 19 https://pubmed.ncbi.nlm.nih.gov/22275337/ found that military training decreased agreeableness in personalities, and this change persisted even after a person left the military and re-entered the workforce.  
  • Social expectations create the most profound personality changes 20 https://pubmed.ncbi.nlm.nih.gov/21859226/ in the young and the elderly. 
  • Food insecurity harmfully impacts mental health 21 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282962/ , causing everything from anxiety to maternal depression. Interestingly, food insecurity also increases the risk of obesity 3 https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01886/full . 

As you can see, nurture isn’t just how much a mother holds and comforts her baby! This is a limited view of nurture when in reality, there are so many external factors involved. The psychologist Urie Bronfenbrenner identified six key ecological systems that profoundly impact a person. All of these systems are an element of nurture. 

  • Microsystem: Immediate social relationships, including family and peers.  
  • Exosystem: Local institutions such as school, churches, temples, mosques, etc.
  • Macrosystem: The larger setting that a person inhabits, such as culture, economics, and politics, creates a sense of shared beliefs and expectations of behavior. 
  • Mesosystem: How other systems are interconnected.
  • Chronosystem: The historical context that a person lives in, including values, events, technologies, and birth cohort (e.g., Boomer, Gen X, Millennial, Gen Z).
  • Bioecological: The internal biology of a person. 

The ecological systems don’t just impact a person during childhood development. Psychology recognizes that people change through all phases of life! Personality is not set in stone 22 https://pubmed.ncbi.nlm.nih.gov/12757147/ . As a person ages and lives in various environments, this impacts how the person experiences the world around them. 

“In the real world, there is no nature vs. nurture argument, only an infinitely complex and moment-by-moment interaction between genetic and environmental effects” — Gabor Maté, Physician and Author

Can You Change Your Genes? 

At the end of the day, your genes (nature) are directly impacted by your environment (nurture). This means you have the power to change your genes! 

If that doesn’t make sense and you’re still wondering which is more important––nature or nurture, the delightful world of epigenetics has the answers. Let’s start with this beautifully explained infographic from Harvard 6 https://developingchild.harvard.edu/resources/what-is-epigenetics-and-how-does-it-relate-to-child-development/ .

An infographic from Harvard University talking about Epigenetics which relates back to the nature vs. nurture topic.

Image: Harvard Center on the Developing Child

Essentially, epigenetics put to rest the old question of whether nature or nurture is more important in shaping identity and personality. Because of how epigenetics work in your body, nature, and nurture have a symbiotic relationship––one impacting the other and creating an ebb and flow in personality. 

You can change your genes by changing your behavior and your environment. 

Pro Tip: Studies have found you can begin to modify your epigenetic patterns 23 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3752894/ when you…

  • Adjust your diet
  • Add in physical exercise
  • Reduce alcohol consumption
  • Remove tobacco
  • Limit exposure to environmental pollutants
  • Learn to manage stress
  • Avoid working night shifts 
  • Have supportive, safe relationships

How Nature and Nurture Impacted Your Own Development

As you think about how nature and nurture have impacted you, we encourage you to reflect on your experiences both in the past and the present. Think about the experiences of your parents. What was it like for your mom when she was pregnant with you, the environment you grew up in, and where you find yourself today? 

Your life is an intricate story woven with tiny threads of your experiences, the experiences of your environment and community, and the experiences of your ancestors. The past had a hand in shaping the person you are today, but you have the amazing ability to change the direction of who you will become. 

The Highlights:

  • Inherited genes may impact things like height, personality, and health.
  • Experiences and environment impact how genes are activated and released. This is epigenetics and impacts everything from what triggers you to how you respond in social situations. 
  • Safe relationships and supportive environments can positively impact the epigenome. 
  • As much as possible, choose to be in positive environments. Surrounding yourself with beauty, clean air, nature, and healthy relationships builds your capacity for change. 

As you identify the areas of your life that you’d like to improve or change, emotional intelligence is an excellent place to start. This is a skill that will help you connect with yourself and others. Check out our article on 10 Emotional Intelligence Traits to Master for Self-Growth .

Article sources

Popular guides, how to deal with difficult people at work.

Do you have a difficult boss? Colleague? Client? Learn how to transform your difficult relationship. I’ll show you my science-based approach to building a strong, productive relationship with even the most difficult people.

Related Articles

Science of People offers over 1000+ articles on people skills and nonverbal behavior.

Get our latest insights and advice delivered to your inbox.

It’s a privilege to be in your inbox. We promise only to send the good stuff.

🚨 New Course! 25% Off Body Language Mastery 🚨

Nature Vs Nurture Essay: A Guide And Introduction

how do you start an essay about nature versus nurture

The nature vs nurture is a debate which has been prevalent since the dawn of medical advancements. It is an argument between human psychology and biology. It presents both sides of the debate by giving argumentative points on nature are well as Nurture and who has a dominant influence on a persons’ behaviour.

In this article, you will learn about the meaning of both the terms in details and why it is such a significant topic in a person’s personal life as well as academic. In this article, you will also learn about how to write an impressive Nature vs nurture essay.

Explanation and background Before you get into writing a nature vs nurture it is necessary that you completely understand both sides around which the whole debate is built.

Nature Vs Nurture Essay

Nature:  These are the aspects of our being which we do not pick by ourselves. These are mostly the physical and psychological factors of one’s body which he or she inherits from their biological parents. These factors are built in our genes and are passed down in a person’s nature of being through their parents and ancestors.

Nurture:  Nurture consists of all the behavioural aspects which we acquire throughout our life. It is a major evolutionary measure and is supported by many important theories including Darwin’s theory of evolution. These factors may include the changes brought upon a person’s physical or behaviour through their childhood experiences, how and where they are raised, their nourishment, social and cultural environment etc.

Biology, psychology, behaviourism and philosophy these are the three main fields of academics which have a major influence on the history of this debate. All of them try to put their statements of arguments or in support of one of the two i.e. Nature vs Nurture. Some believe that the nature and pre-wiring of a person’s body plays a major role in determining their physical and behavioural attributes, whereas some say that the genes and inheritance of a person has a lesser influence and that their choices and past experiences: voluntary or involuntary have a major part in deciding a person’s physical and mental abilities.

Although it is not possible to determine where and how this debate started and came to be as a huge topic as we know it today. But some people believe that it has its roots set deep beginning in the ancient period as some great philosophers such as Descartes and Plato stated that few aspects of human beings do not influence their upbringing and environment over them. Whereas in the early 1900s, John Watson; who is regarded as the father of behaviourism by many, put forth the theory of behaviourism. This states that the behavioural characteristics of a human being are acquired through their conditioning. This theory prevailed in the beginning but with time discoveries and scientific evidence came to light and this theory was countered by many biologists and philosophers.

Effects:  To understand this better let us discuss some features and influences of both nature and nurture.

Health and Diseases:  Disease transfer is an important deciding point in this debate. There are many diseases which a child or offspring inherits from its parents. These disease or health issues are inbuilt in their genes and are present in at least one of the two parents. They are caused due to DNA abnormality. These genetic issues include Down syndrome, Sickle cell anaemia, Huntington’s disease, Patterned baldness, Thalassemia, Cystic Fibrosis and many more.

Mental Health:  Mental health is an issue which is influenced by both natures as well as nurture. But many studies have revealed that nurture has more part to play in the conditioning of a person’s mental well-being. For example, the various psychological issues which are caused by the surrounding environment and the upbringing of a person are Depression, Bi-polar disorder, Anxiety Disorders, PTSD, ADHD, Eating Disorders.

Parental Influence: Temperament:  The temperament of a child is significantly influenced by observing the people around them and their daily surrounding and environment. If a child is around arguments and shootings for a major part of their upbringing, this influences them in such a way that they have anger issues in their adolescence.

Behavioural Inheritance:  There are some behavioural characteristics which we inherit from our parents. To find more evidence on these studies has been performed on twin siblings. It was observed that it if one of the siblings develops or acquires a certain trait or condition, there is a 50% probability that the other twin will develop that trait as well.

Applications of Nature vs Nurture

Through the years as science and technology advanced, discoveries were being made continuously all over the world. This led to setting strong foundations on both sides of the debates. It has spread to such an extent that it now a debate of whose theory is more correct. Nature vs Nurture has become a technique of analysis using which we can determine and predict the behaviours a being. All the conflicting fields have come together to utilize their knowledge and strong point to study and evaluate various aspects and issues and why they work as such.

The nature vs nurture approach of analysis can be applied on a topic or a subject to study how their behaviours came to being and how are they influenced. It gives an insight into how the particular issue came to being and using them, how we can predict the future behaviours and act accordingly.

By making slight changes in our analysis approach we study a different aspect of the subject with new results, which give us an option to use this method of analysis in various fields of psychology as well as biology and philosophy. For example, most of the studies include both approaches in their study, whereas in many cases of psychological therapies, different discoveries may be observed by adopting a more nurture based analysis approach or nature-based approach.

Writing a nature vs nurture essay

Now that you have understood what the whole debacle is all about. Now you can start to write your nature vs nurture essay.

The thing that sets this essay topic apart is that, despite being a debate, a nature vs nurture essay can be categorised as both argumentative and persuasive essay. Depending upon the topic or subject of study and the findings of your analysis, the there format of the essay can be determined, either it will be in an argumentative essay style or a persuasive essay style. In both, the case, nature vs nurture essay proves to be a great way to say your point of view on a particular topic and show off your analytical skills.

Tips to keep in mind Here are a few tips you must keep in mind while writing a nature vs nurture essay:

Nature Vs Nurture Essay

  • Select your Topic Carefully:  The topic of your selection will determine what type of analysis you will be performing. Pick a topic which you are most comfortable with so that you have plenty of pre-existing knowledge on it. A good topic will ease your thought process, as ideas and questions will come to you rather than you finding questions through your research.
  • Find reliable sources:  This is very important as not all sources will give the correct information. Look for credible information and sources to support your claims more easily.
  • Include case studies:  Including case studies and their results increases the conviction level of your essay. The main aspect of nature vs nurture essay is persuasion, thus is very necessary to provide evidence which backs up your thesis or statements.
  • Support your Claims:  While  writing the essay  in an argumentative style, pick a side which you think has more claim and support it throughout the essay.
  • Look for examples:  Go through multiple examples of writings which are similar to your topic. This gives you an idea about how you should build the format of your essay.
  • Do thorough research:  No matter which topic you choose, if it’s a known topic or if an unknown subject is assigned to you. You must always do your thorough research so that you get all the information you will be requiring in your essay. By doing prior research you identify the points which need the most emphasis in the essay to support your claims and to follow a clear flow of thought.
  • Your analysis should be decisive and backed by references.
  • Keep your target audience in mind while writing the essay.

Structure of Nature vs Nurture Essay

The main structure of nature vs nurture essay is the same as any other essay. It consists of an introduction, the body of the essay and a conclusion.

  • Introduction-  Introduce the topic to the reader. Explain in brief about the whole nature vs nurture debate and how you are going to use it to analyse your subject. Provide an intriguing thesis statement at the end of the introduction.
  • Body-  This is where you go in-depth about the issue or the subject of your study. Use multiple paragraphs to explain your topics. Make sure you follow a single topic throughout the paragraph.
  • Conclusion-  Mention the thesis statement in the conclusion. Summarise all the ideas and points presented by you in the essay. Provide the results or findings of your analysis and suggest some outcomes. Give an ending statement which is a conclusion of the essay. This statement should intrigue the reader such that they have something to think about after completing the essay.

Nature Vs Nurture Essay

Related posts

argumentative essay examples

Refer To Argumentative Essay Examples To Write An Impeccable Argumentative Essay

essay planning

Write Essays By Using Essay Planning Tips And Techniques

how to cite an interview in Chicago style

Learn How To Cite An Interview In Chicago Style With Examples

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

how do you start an essay about nature versus nurture

Nature versus nurture: how modern science is rewriting it

how do you start an essay about nature versus nurture

Associate Professor of Genetics and Neuroscience, Trinity College Dublin

how do you start an essay about nature versus nurture

Professor Emeritus of Cognitive Development, UCL

Disclosure statement

Kevin Mitchell has received funding from Science Foundation Ireland, The Wellcome Trust, and the Irish Health Research Board.

Uta Frith does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

University College London provides funding as a founding partner of The Conversation UK.

Trinity College Dublin provides funding as a member of The Conversation UK.

View all partners

The question of whether it is genes or environment that largely shapes human behaviour has been debated for centuries. During the second half of the 20th century, there were two camps of scientists – each believing that nature or nurture, respectively, was exclusively at play.

This view is becoming increasingly rare, as research is demonstrating that genes and environment are actually interconnected and can amplify one another. During an event at Berlin Science Week on November 7, organised by the Royal Society , we discussed how the debate is changing as a result of recent findings.

Take literacy. Making language visible is one of the most extraordinary achievements of human beings. Reading and writing is fundamental to our ability to thrive in the modern world, yet some individuals find it difficult to learn. This difficulty can arise for many reasons, including dyslexia, a neuro-developmental disorder. But it turns out neither genes nor environment are fully responsible for differences in reading ability.

Genetics and the neuroscience of reading

Reading is a cultural invention and not a skill or function that was ever subject to natural selection. Written alphabets originated around the Mediterranean about 3,000 years ago, but literacy only became widespread from the 20th century. Our use of the alphabet, however, is grounded in nature. Literacy hijacks evolved brain circuitry to link visible language to audible language – by letter-sound mapping.

Brain scans show that this “reading network” is apparent in pretty much the same place in the brain in everybody. It forms when we learn to read and strengthens connections between our brain’s language and speech regions, as well as a region that has become known as the “visual word form area”.

how do you start an essay about nature versus nurture

The design for building the underlying circuitry is somehow encoded in our genomes. That is, the human genome encodes a set of developmental rules that, when played out, will give rise to the network.

However, there is always variation in the genome and this leads to variation in the way these circuits develop and function. This means there are individual differences in ability. Indeed, variation in reading ability is substantially heritable across the general population, and developmental dyslexia is also largely genetic in origin .

This is not to say that there are “genes for reading”. Instead, there are genetic variations that affect how the brain develops in ways that influence how it functions. For unknown reasons, some such variants negatively affect the circuits required for speaking and reading.

Environment matters too

But genes are not the whole story. Let’s not forget that experience and active instruction are needed for the changes in brain connectivity that enable reading to occur in the first place – though we don’t yet know to what extent.

Research has shown that most often problems with literacy are likely underpinned by a difficulty in phonology – the ability to segment and manipulate the sounds of speech. It turns out that people with dyslexia also tend to struggle with learning how to speak when infants. Experiments have shown that they are slower than other people to name objects. This also applies to written symbols and relating them to speech sounds.

And here nurture comes in again. Difficulties in learning to read and write are particularly visible in languages with complex grammar and spelling rules, such as English. But they are far less obvious in languages with more straightforward spelling systems, such as Italian. Tests of phonology and object naming, however, can detect dyslexia in Italian speakers too.

So the difference that is found in dyslexic brains is likely the same everywhere, but will nevertheless play out very differently in different writing systems.

Amplification and cycles

Nature and nurture are traditionally set in opposition to each other. But in truth, the effects of environment and experience often tend to amplify our innate predispositions . The reason is that those innate predispositions affect how we subjectively experience and respond to various events, and also how we choose our experiences and environments. For example, if you are naturally good at something you are more likely to want to practice it.

how do you start an essay about nature versus nurture

This dynamic is especially evident for reading. Children with greater reading ability are more likely to want to read . This will of course further increase their reading skills, making the experience more rewarding. For children with lower natural reading ability, the opposite tends to happen – they will choose to read less, and will fall farther behind their peers over time.

These cycles also offer a window of intervention. As we have seen in the case of Italian readers, nurture can mitigate the effects of an adverse genetic predisposition. Similarly, a good teacher who knows how to make practice rewarding can help poor readers by allowing short cuts and mnemonics for spelling. In this way, dyslexic readers can become good readers – and enjoy it. Reward and practice enhance each other, leading to more motivation and more practice in a positive feedback loop.

So instead of thinking of nature and nurture as adversaries in a zero sum game, we should think of them as feedback loops where a positive influence of one factor increases the positive influence of the other – producing not a sum but an enhancement. Of course, the same applies to negative feedback, and so we have both virtuous and vicious circles.

Because inheritance (genetic as well as cultural) matters, this effect is also visible on a larger scale spanning several generations. In the past, parents who sent their children to school created an advantageous environment for them and their grandchildren. But in turn, the parents benefited from the existence of a culture that invested in schools. Of course, such investments are not always spread evenly and may flow more towards those already in an advantageous position. Such a circle is sometimes referred to as the “Matthew effect” – good things come to those who already have them.

The interactive loops between nature and nurture extend beyond the lives of individuals, playing out across communities and over generations. Recognising these dynamics gives us some power to break these feedback loops, both in our own lives and more widely in society and culture.

how do you start an essay about nature versus nurture

Quantitative Analyst

how do you start an essay about nature versus nurture

Director of STEM

how do you start an essay about nature versus nurture

Community member - Training Delivery and Development Committee (Volunteer part-time)

how do you start an essay about nature versus nurture

Chief Executive Officer

how do you start an essay about nature versus nurture

Head of Evidence to Action

“Nature vs. Nurture” Debate in Education Essay

  • To find inspiration for your paper and overcome writer’s block
  • As a source of information (ensure proper referencing)
  • As a template for you assignment

The ‘Nature vs. Nurture’ debate holds in several areas of psychology and refers to the question of whether our genes (‘nature’) determine attributes such as intelligence or language aptitude or whether such attributes can be acquired and improved through experience (‘nurture’). The outcome is of great importance for educators since education – together with parental influence – is the main source of experiential learning (Bulmer 2003). In this essay, the concept will be explained based on my own experience and academic research.

Historically, the nature vs. nurture debate began with the publication of Galton’s (1869) study in which he promoted inherited ability in the faculties of thinking and learning. On the same side of the argument, the more recent work by Herrnstein and Murray (1994) was significant in arguing that intelligence is, at least to some extent, inherited.

The theory is based on the assumption that aptitude is dominant in learning and that it is mainly hereditary. Therefore, the aim of education is to separate the naturally able from the less able and to provide each group of students with programs adapted to their talents. In other words, schools should function as if the ‘Bell Curve’ is a natural phenomenon that must be obtained in all learning results and that effort makes little difference (Resnick 1995: 55-62).

IQ tests are there to spread students out on a scale rather than to define what each one should actually work at learning. Teachers assign grades believing that – if everyone were to get an A or B – standards must be too low (and not that uniformly high grades mean everyone worked hard and managed to learn what was taught).

In my high school years, I certainly witnessed how belief in inherited aptitude was self-fulfilling. Students who were held to low expectations did not try to break through that barrier but often accepted the idea that aptitude is what matters and that they have not inherited enough of it – and their performance stayed low.

On the ‘nurture’ side of the argument is the theory of learning behind most educational practices today, based on the work of Thorndike (Faulkner 1998). Thorndike developed practical learning tools (textbooks, tests, curricula, and teacher training) in the belief that knowledge consists of a collection of bonds i.e. links between pairs of mental entities or between an external stimulus and an internal mental response. Learning is just trying to change the strengths of the bonds i.e. increasing the strength of ‘correct’ bonds and decreasing the strength of ‘incorrect’ ones.

In practice, correct bonds are strengthened by rewards, and incorrect ones are weakened through punishment or withholding rewards and create a system where the ‘stamping in’ of correct bonds and the ‘stamping out’ of incorrect ones is enhanced. In my experience, whenever teachers used positive feedback to create ‘enjoyment’ in the learning environment it certainly motivated me to work harder.

Recent evidence from developmental biology claims to have resolved the ‘Nature vs. Nurture’ issue and what this might mean for education practice. According to the Education Commission of the States (1996), research on brain development provides insight for improving the education of young children. The Carnegie Corporation (1994) highlights the fact that the environment affects not only the number of brain cells and the number of connections between them but also the way they are ‘wired’ and evidence points to the negative impact of early stress (a ‘nurture’ factor) on brain function (Carnegie Corporation 1994: 2)

While the brain connections developed before birth are vital, their main purpose is biological and it is during the child’s first months and years of growth and development that nature and nurture combine until they become ‘ intertwined and inseparable’ (Simmons & Sheehan 1997: 6).

At birth, the brain has around 100 billion neurons, which then link together in over 50 trillion synapses (Begley 1997). Afterward – especially in the first three years of life – the brain goes through a number of important changes. Over this period, many more connections among neurons are created than the brain can ever use. Over time, the connections that are rarely or never used disappear (Nash 1997). However, which connections are eliminated is not predetermined and the way in which a child is raised affects how the brain chooses to wire itself for life (Simmons & Sheehan 1997).

I have always believed that children should be encouraged to take advantage of the various windows of opportunity presented to them for healthy development. The research above shows that a child’s brain development suffers if the child is denied the opportunity to live in a stimulating environment. In other words, the research stresses the positive effects of active parenting – something I believe in very strongly – in order to provide children with stimulating experiences (Nash 1997).

In conclusion, this essay has explained the ‘Nature vs. Nurture’ issue providing arguments and evidence for the primacy of both inheritance and environment in learning and thinking. Each side leads to a different approach to education. If we accept the primacy of inheritance, this gives rise to the streaming of students based on their ‘aptitudes’ as revealed by their scores in, for example, IQ tests. Each stream is then taught at a level suitable for their supposed inherited aptitude.

On the other hand, the primacy of the environment leads to education based on ‘associationist’ learning achieved through effort, motivation, and rewards. Recent evidence from developmental biology clearly points to the greater importance of ‘nurture’ in preparing children successfully for thinking and learning. The more stimulating, enjoyable, and interesting we can make their environment, the more they will learn.

Works Cited

Begley, S. “Your child’s brain.” Newsweek 127.8 (1996): 55-61.

Begley, S. “How to build a baby’s brain.” Newsweek 129 (1997): 28-32.

Black, P. “Dreams, Strategies and Systems: portraits of assessment past, present and future.” Assessment in Education: Principles, Policy & Practice 8.1 (2001): 65-85.

Bulmer, M. Francis Galton: Pioneer of Heredity and Biometry . John Hopkins University Press. 2003.

Carnegie Corporation. “Starting points: Meeting the needs of our youngest children.” Corporation of New York . 1994. Web.

Education Commission of the States . “Brain research and education: Bridging the gap between neuroscience & education.” 1996. Web.

Faulkner, D. Learning Relationships in the Classroom . London: Routledge. 1998.

Galton, Francis. Hereditary Genius, Its Laws and Consequences. London: Macmillan. 1869.

Herrnstein, R. J., and Murray, C. The Bell Curve: Intelligence and Class Structure in American Life . New York: Free Press. 1996.

Nash, J. M. “Fertile minds.” Time 149.5 (1997): 48-56.

Resnick, L. Education and Learning to Think Washington, D.C.: National Academy Press. 2009.

Simmons, T., & Sheehan, R. “Brain research manifests importance of first years” The News & Observer. 1997. Web.

  • "Before Teaching Ethics, Stop Kidding Yourself" by Marino Gordon
  • Behaviorism and Cognitivism as Learning Theories
  • A Summary of Operations at Oregon
  • Data Protection: Securing Information System
  • Scholastic Aptitude Test for College Admissions
  • Differentiated Instruction and Universal Design of Learning
  • Montessori Educational Philosophy, Its Pros and Cons
  • Technology and Democratic Education
  • Leadership Style, Changes and School Culture
  • "Bring on the Learning Revolution!" by Sir Ken Robinson
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2021, February 5). "Nature vs. Nurture" Debate in Education. https://ivypanda.com/essays/nature-vs-nurture-debate-in-education/

""Nature vs. Nurture" Debate in Education." IvyPanda , 5 Feb. 2021, ivypanda.com/essays/nature-vs-nurture-debate-in-education/.

IvyPanda . (2021) '"Nature vs. Nurture" Debate in Education'. 5 February.

IvyPanda . 2021. ""Nature vs. Nurture" Debate in Education." February 5, 2021. https://ivypanda.com/essays/nature-vs-nurture-debate-in-education/.

1. IvyPanda . ""Nature vs. Nurture" Debate in Education." February 5, 2021. https://ivypanda.com/essays/nature-vs-nurture-debate-in-education/.

Bibliography

IvyPanda . ""Nature vs. Nurture" Debate in Education." February 5, 2021. https://ivypanda.com/essays/nature-vs-nurture-debate-in-education/.

  • Tools and Resources
  • Customer Services
  • Affective Science
  • Biological Foundations of Psychology
  • Clinical Psychology: Disorders and Therapies
  • Cognitive Psychology/Neuroscience
  • Developmental Psychology
  • Educational/School Psychology
  • Forensic Psychology
  • Health Psychology
  • History and Systems of Psychology
  • Individual Differences
  • Methods and Approaches in Psychology
  • Neuropsychology
  • Organizational and Institutional Psychology
  • Personality
  • Psychology and Other Disciplines
  • Social Psychology
  • Sports Psychology
  • Share This Facebook LinkedIn Twitter

Article contents

Nature and nurture as an enduring tension in the history of psychology.

  • Hunter Honeycutt Hunter Honeycutt Bridgewater College, Department of Psychology
  • https://doi.org/10.1093/acrefore/9780190236557.013.518
  • Published online: 30 September 2019

Nature–nurture is a dichotomous way of thinking about the origins of human (and animal) behavior and development, where “nature” refers to native, inborn, causal factors that function independently of, or prior to, the experiences (“nurture”) of the organism. In psychology during the 19th century, nature-nurture debates were voiced in the language of instinct versus learning. In the first decades of the 20th century, it was widely assumed that that humans and animals entered the world with a fixed set of inborn instincts. But in the 1920s and again in the 1950s, the validity of instinct as a scientific construct was challenged on conceptual and empirical grounds. As a result, most psychologists abandoned using the term instinct but they did not abandon the validity of distinguishing between nature versus nurture. In place of instinct, many psychologists made a semantic shift to using terms like innate knowledge, biological maturation, and/or hereditary/genetic effects on development, all of which extend well into the 21st century. Still, for some psychologists, the earlier critiques of the instinct concept remain just as relevant to these more modern usages.

The tension in nature-nurture debates is commonly eased by claiming that explanations of behavior must involve reference to both nature-based and nurture-based causes. However, for some psychologists there is a growing pressure to see the nature–nurture dichotomy as oversimplifying the development of behavior patterns. The division is seen as both arbitrary and counterproductive. Rather than treat nature and nurture as separable causal factors operating on development, they treat nature-nurture as a distinction between product (nature) versus process (nurture). Thus there has been a longstanding tension about how to define, separate, and balance the effects of nature and nurture.

  • nature–nurture
  • development
  • nativism–empiricism
  • innate–learned
  • behavioral genetics
  • epigenetics

Nature and Nurture in Development

The oldest and most persistent ways to frame explanations about the behavioral and mental development of individuals is to distinguish between two separate sources of developmental causation: (a) intrinsic, preformed, or predetermined causes (“nature”) versus (b) extrinsic, experiential, or environmental causes (“nurture”). Inputs from these two sources are thought to add their own contribution to development (see Figure 1 ).

Figure 1. The traditional view of nature and nurture as separate causes of development. In the traditional view, nature and nurture are treated as independent causal influences that combine during development to generate outcomes. Note that, during development, the effects of nature and nurture (shown in horizontal crossing lines) remain independent so that their effects on outcomes are theoretically separable.

Because some traits seem to derive more from one source than the other, much of the tension associated with the nature–nurture division deals with disagreements about how to balance the roles of nature and nurture in the development of a trait.

Evidence of Nature in Development

Evidence to support the nature–nurture division usually derives from patterns of behavior that suggest a limited role of environmental causation, thus implying some effect of nature by default. Table 1 depicts some common descriptors and conditions used to infer that some preference, knowledge, or skill is nature based.

Table 1. Common Descriptors and Associated Conditions for Inferring the Effects of Nature on Development

Descriptors

Associated Conditions

Innate or unlearned

Displayed in the absence of relevant experience

Preparedness for learning

Rapidly or easily learned

Constraints on learning

Difficult or impossible to learn

Universal

Found in all like members of a species

Imperviousness

Difficult to modify following its appearance

Maturational

Emerges in an orderly sequence or at a specific time

Hereditary

Runs in families or with degrees of kinship

It is important to reiterate that nature-based causation (e.g., genetic determination) is inferred from these observations. Such inferences can generate tension because each of the observations listed here can be explained by nurture-based (environmental) factors. Confusion can also arise when evidence of one descriptor (e.g., being hereditary) is erroneously used to justify a different usage (e.g., that the trait is unlearned).

The Origins of Nature Versus Nurture

For much of recorded history, the distinction between nature and nurture was a temporal divide between what a person is innately endowed with at birth, prior to experience (nature), and what happens thereafter (nurture). It was not until the 19th century that the temporal division was transformed into a material division of causal influences (Keller, 2010 ). New views about heredity and Darwinian evolution justified distinguishing between native traits and genetic causes from acquired traits and environmental causes. More so than before, the terms nature and nurture were often juxtaposed in an opposition famously described by Sir Francis Galton ( 1869 ) as that between “nature versus nurture.”

Galton began writing about heredity in the mid-1860s. He believed we would discover laws governing the transmission of mental as well as physical qualities. Galton’s take on mental heredity, however, was forged by his desire to improve the human race in a science he would later call “eugenics.” In the mid- 19th century , British liberals assumed humans were equivalent at birth. Their social reform efforts were geared to enhancing educational opportunities and improving living conditions. Galton, a political conservative, opposed the notion of natural equality, arguing instead that people were inherently different at birth (Cowan, 2016 ), and that these inherited mental and behavioral inequalities were transmitted through lineages like physical qualities. Because Galton opposed the widely held Lamarckian idea that the qualities acquired in one’s lifetime could modify the inherited potential of subsequent generations, he believed long-lasting improvement of the human stock would only come by controlling breeding practices.

To explain the biological mechanisms of inheritance, Galton joined a growing trend in the 1870s to understand inheritance as involving the transmission of (hypothetical) determinative, germinal substances across generations. Foreshadowing a view that would later become scientific orthodoxy, Galton believed these germinal substances to be uninfluenced by the experiences of the organism. His theory of inheritance, however, was speculative. Realizing he was not equipped to fully explicate his theory of biological inheritance, Galton abandoned this line of inquiry by the end of that decade and refocused his efforts on identifying statistical laws of heredity of individual differences (Renwick, 2011 ).

Historians generally agree that Galton was the first to treat nature (as heredity) and nurture (everything else) as separate causal forces (Keller, 2010 ), but the schism gained biological legitimacy through the work of the German cytologist Auguste Weismann in the 1880s. Whereas Galton’s theory was motivated by his political agenda, Weismann was motivated by a scientific, theoretical agenda. Namely, Weismann opposed Lamarckian inheritance and promoted a view of evolution driven almost entirely by natural selection.

Drawing upon contemporary cytological and embryological research, Weismann made the case that the determinative substances found in the germ cells of plants and animals (called the “germ-plasm”) that are transmitted across generations were physically sequestered very early in embryogenesis and remained buffered from the other cells of the body (“somato-plasm”). This so-called, Weismann’s barrier meant that alterations in the soma that develop in the lifetime of the organism through the use or disuse of body parts would not affect the germinal substances transmitted during reproduction (see Winther, 2001 , for review). On this view, Lamarckian-style inheritance of acquired characteristics was not biologically possible.

Galton and Weismann’s influence on the life sciences cannot be overstated. Their work convinced many to draw unusually sharp distinctions between the inherited (nature) and the acquired (nurture). Although their theories were met with much resistance and generated significant tension in the life sciences from cytology to psychology, their efforts helped stage a new epistemic space through which to appreciate Mendel’s soon to be rediscovered breeding studies and usher in genetics (Muller-Wille & Rheinberger, 2012 ).

Ever since, psychology has teetered between nature-biased and nurture-biased positions. With the rise of genetics, the wedge between nature–nurture was deepened in the early to mid- 20th century , creating fields of study that focused exclusively on the effects of either nature or nurture.

The “Middle Ground” Perspective on Nature–Nurture

Twenty-first-century psychology textbooks often state that the nature–nurture debates have been resolved, and the tension relaxed, because we have moved on from emphasizing nature or nurture to appreciating that development necessarily involves both nature and nurture. In this middle-ground position, one asks how nature and nurture interact. For example, how do biological (or genetic) predispositions for behaviors or innate knowledge bias early learning experiences? Or how might environmental factors influence the biologically determined (maturational) unfolding of bodily form and behaviors?

Rejection of the Nature–Nurture Divide

For some, the “middle-ground” resolution is as problematic as “either/or” views and does not resolve a deeper source of tension inherent in the dichotomy. On this view, the nature–nurture divide is neither a legitimate nor a constructive way of thinking about development. Instead, developmental analysis reveals that the terms commonly associated with nature (e.g., innate, genetic, hereditary, or instinctual) and nurture (environmental or learned) are so entwined and confounded (and often arbitrary) that their independent effects cannot be meaningfully discussed. The nature–nurture division oversimplifies developmental processes, takes too much for granted, and ultimately hinders scientific progress. Thus not only is there a lingering tension about how to balance the effects of nature and nurture in the middle-ground view, but there is also a growing tension to move beyond the dichotomous nature–nurture framework.

Nativism in Behavior: Instincts

Definitions of instinct can vary tremendously, but many contrast (a) instinct with reason (or intellect, thought, will), which is related to but separable from contrasting (b) instinct with learning (or experience or habit).

Instinct in the Age of Enlightenment

Early usages of the instinct concept, following Aristotle, treated instinct as a mental, estimative faculty ( vis aestimativa or aestimativa naturalis ) in humans and animals that allowed for the judgments of objects in the world (e.g., seeing a predator) to be deemed beneficial or harmful in a way that transcends immediate sensory experience but does not involve the use of reason (Diamond, 1971 ). In many of the early usages, the “natural instinct” of animals even included subrational forms of learning.

The modern usage of instincts as unlearned behaviors took shape in the 17th century . By that point it was widely believed that nature or God had implanted in animals and humans innate behaviors and predispositions (“instincts”) to promote the survival of the individual and the propagation of the species. Disagreements arose as to whether instincts derived from innate mental images or were mindlessly and mechanically (physiologically) generated from innately specified bodily organization (Richards, 1987 ).

Anti-Instinct Movement in the Age of Enlightenment

Challenges to the instinct concept can be found in the 16th century (see Diamond, 1971 ), but they were most fully developed by empiricist philosophers of the French Sensationalist tradition in the 18th century (Richards, 1987 ). Sensationalists asserted that animals behaved rationally and all of the so-called instincts displayed by animals could be seen as intelligently acquired habits.

For Sensationalists, instincts, as traditionally understood, did not exist. Species-specificity in behavior patterns could be explained by commonalities in physiological organization, needs, and environmental conditions. Even those instinctual behaviors seen at birth (e.g., that newly hatched chicks peck and eat grain) might eventually be explained by the animal’s prenatal experiences. Erasmus Darwin ( 1731–1802 ), for example, speculated that the movements and swallowing experiences in ovo could account for the pecking and eating of grain by young chicks. The anti-instinct sentiment was clearly expressed by the Sensationalist Jean Antoine Guer ( 1713–1764 ), who warned that instinct was an “infantile idea” that could only be held by those who are ignorant of philosophy, that traditional appeals to instincts in animals not only explained nothing but served to hinder scientific explanations, and that nothing could be more superficial than to explain behavior than appealing to so-called instincts (Richards, 1987 ).

The traditional instinct concept survived. For most people, the complex, adaptive, species-specific behaviors displayed by naïve animals (e.g., caterpillars building cocoons; infant suckling behaviors) appeared to be predetermined and unlearned. Arguably as important, however, was the resistance to the theological implications of Sensationalist philosophy.

One of the strongest reactions to Sensationalism was put forward in Germany by Herman Samuel Reimarus ( 1694–1768 ). As a natural theologian, Reimarus, sought evidence of a God in the natural world, and the species-specific, complex, and adaptive instincts of animals seemed to stand as the best evidence of God’s work. More so than any other, Reimarus extensively catalogued instincts in humans and animals. Rather than treat instincts as behaviors, he defined instincts as natural impulses (inner drives) to act that were expressed perfectly, without reflection or practice, and served adaptive goals (Richards, 1987 ). He even proposed instincts for learning, a proposal that would resurface in the mid- 20th century , as would his drive theory of instinct (Jaynes & Woodward, 1974 ).

Partly as a result of Reimarus’ efforts, the instinct concept survived going into the 19th century . But many issues surrounding the instinct concept were left unsettled. How do instincts differ from reflexive behaviors? What role does learning play in the expression of instincts, if any? Do humans have more or fewer instincts than animals? These questions would persist well into the first decades of the 20th century and ultimately fuel another anti-instinct movement.

Instinct in the 19th Century

In the 19th century , the tension about the nature and nurture of instincts in the lifetime of animals led to debates about the nature and nurture of instincts across generations . These debates dealt with whether instincts should be viewed as “inherited habits” from previous generations or whether they result from the natural selection. Debating the relative roles of neo-Lamarckian use-inheritance versus neo-Darwinian natural selection in the transmutation of species became a significant source of tension in the latter half of the 19th century . Although the neo-Lamarckian notion of instincts as being inherited habits was rejected in the 20th century , it has resurged in recent years (e.g., see Robinson & Barron, 2017 ).

Darwinian evolutionary theory required drawing distinctions between native and acquired behaviors, and, perhaps more so than before, behaviors were categorized along a continuum from the purely instinctive (unlearned), to the partially instinctive (requiring some learning), to the purely learned. Still, it was widely assumed that a purely instinctive response would be modified by experience after its first occurrence. As a result, instinct and habit were very much entangled in the lifetime of the organism. The notion of instincts as fixed and unmodifiable would not be widely advanced until after the rise of Weismann’s germ-plasm theory in the late 19thcentury .

Given their importance in evolutionary theory, there was greater interest in more objectively identifying pure instincts beyond anecdotal reports. Some of the most compelling evidence was reported by Douglas Spalding ( 1844–1877 ) in the early 1870s (see Gray, 1967 ). Spalding documented numerous instances of how naïve animals showed coordinated, seemingly adaptive responses (e.g., hiding) to objects (e.g., sight of predators) upon their first encounter, and he helped pioneer the use of the deprivation experiment to identify instinctive behaviors. This technique involved selectively depriving young animals of seemingly critical learning experiences or sensory stimulation. Should animals display some species-typical action following deprivation, then, presumably, the behavior could be labeled as unlearned or innate. In all, these studies seemed to show that animals displayed numerous adaptive responses at the very start, prior to any relevant experience. In a variety of ways, Spalding’s work anticipated 20th-century studies of innate behavior. Not only would the deprivation experiment be used as the primary means of detecting native tendencies by European zoologists and ethologists, but Spalding also showed evidence of what would later be called imprinting, critical period effects and evidence of behavioral maturation.

Reports of pure instinct did not go unchallenged. Lloyd Morgan ( 1896 ) questioned the accuracy of these reports in his own experimental work with young animals. In some cases, he failed to replicate the results and in other cases he found that instinctive behaviors were not as finely tuned to objects in the environment as had been claimed. Morgan’s research pointed to taking greater precision in identifying learned and instinctive components of behavior, but, like most at the turn of the 20th century , he did not question that animal behavior involved both learned and instinctive elements.

A focus on instinctive behaviors intensified in the 1890s as Weismann’s germ-plasm theory grew in popularity. More so than before, a sharp distinction was drawn between native and acquired characteristics, including behavior (Johnston, 1995 ). Although some psychologists continued to maintain neo-Lamarckian notions, most German (Burnham, 1972 ) and American (Cravens & Burnham, 1971 ) psychologists were quick to adopt Weismann’s theory. They envisioned a new natural science of psychology that would experimentally identify the germinally determined, invariable set of native psychological traits in species and their underlying physiological (neural) basis. However, whereas English-speaking psychologists tended to focus on how this view impacted our understanding of social institutions and its social implications, German psychologists were more interested in the longstanding philosophical implications of Weismann’s doctrine as it related to the differences (if any) between man and beast (Burnham, 1972 ).

Some anthropologists and sociologists, however, interpreted Weismann’s theory quite differently and used it elevate sociology as its own scientific discipline. In the 1890s, the French sociologist Emil Durkheim, for example, interpreted Weismann’s germinal determinants as a generic force on human behavior that influenced the development of general predispositions that are molded by the circumstances of life (Meloni, 2016 ). American anthropologists reached similar conclusions in the early 20th century (Cravens & Burnham, 1971 ). Because Weismann’s theory divorced biological inheritance from social inheritance, and because heredity was treated as a generic force, sociologists felt free to study social (eventually, “cultural”) phenomena without reference to biological or psychological concerns.

Anti-Instinct Movement in the 1920s

Despite their differences, in the first two decades of the 20th century both psychologists and sociologists generally assumed that humans and animals had some native tendencies or instincts. Concerns were even voiced that instinct had not received enough attention in psychology. Disagreements about instincts continued to focus on (the now centuries old debates of) how to conceptualize them. Were they complex reflexes, impulses, or motives to act, or should instinct be a mental faculty (like intuition), separate from reasoning and reflex (Herrnstein, 1972 )?

In America, the instinct concept came under fire following a brief paper in 1919 by Knight Dunlap titled “Are There Any Instincts?” His primary concern dealt with teleological definitions of instincts in which an instinct referred to all the activities involved in obtaining some end-state (e.g., instincts of crying, playing, feeding, reproduction, war, curiosity, or pugnacity). Defined in this way, human instincts were simply labels for human activities, but how these activities were defined was arbitrarily imposed by the researchers. Is feeding, for instance, an instinct, or is it composed of more basic instincts (like chewing and swallowing)? The arbitrariness of classifying human behavior had led to tremendous inconsistencies and confusion among psychologists.

Not all of the challenges to instinct dealt with its teleological usage. Some of the strongest criticisms were voiced by Zing-Yang Kuo throughout the 1920s. Kuo was a Chinese animal psychologist who studied under Charles Tolman at the University of California, Berkeley. Although Kuo’s attacks on instinct changed throughout the 1920s (see Honeycutt, 2011 ), he ultimately argued that all behaviors develop in experience-dependent ways and that appeals to instinct were statements of ignorance about how behaviors develop. Like Dunlap, he warned that instincts were labels with no explanatory value. To illustrate, after returning to China, he showed how the so-called rodent-killing instinct in cats often cited by instinct theorists is not found in kittens that are reared with rodents (Kuo, 1930 ). These kittens, instead, became attached to the rodents, and they resisted attempts to train rodent-killing. Echoing the point made by Guer, Kuo claimed that appeals to instinct served to stunt scientific inquiry into the developmental origins of behavior.

But Kuo did not just challenge the instinct concept. He also argued against labeling behaviors as “learned.” After all, whether an animal “learns” depends on the surrounding environmental conditions, the physiological and developmental status of the animal, and, especially, the developmental (or experiential) history of that animal. Understanding learning also required developmental analysis. Thus Kuo targeted the basic distinction between nature and nurture, and he was not alone in doing so (e.g., see Carmichael, 1925 ), but his call to reject it did not spread to mainstream American psychologists.

By the 1930s, the term instinct had fallen into disrepute in psychology, but experimental psychologists (including behaviorists) remained committed to a separation of native from acquired traits. If anything, the dividing line between native and acquired behaviors became more sharply drawn than before (Logan & Johnston, 2007 ). For some psychologists, instinct was simply rebranded in the less contentious (but still problematic) language of biological drives or motives (Herrnstein, 1972 ). Many other psychologists simply turned to describing native traits as due to “maturation” and/or “heredity” rather than “instinct.”

Fixed Action Patterns

The hereditarian instinct concept received a reboot in Europe in the 1930s with the rise of ethology led by Konrad Lorenz, Niko Tinbergen, and others. Just as animals inherit organs that perform specific functions, ethologists believed animals inherit behaviors that evolved to serve adaptive functions as well. Instincts were described as unlearned (inherited), blind, stereotyped, adaptive, fixed action patterns, impervious to change that are initiated (released) by specific stimuli in the environment.

Ethologists in 1930s and 1940s were united under the banner of innateness. They were increasingly critical of the trend by American psychologists (i.e., behaviorists) to focus on studying on how a limited number of domesticated species (e.g., white rat) responded to training in artificial settings (Burkhardt, 2005 ). Ethologists instead began with rich descriptions of animal behavior in more natural environments along with detailed analyses of the stimulus conditions that released the fixed action patterns. To test whether behavioral components were innate, ethologists relied primarily on the deprivation experiment popularized by Spalding in the 19th century . Using these methods (and others), ethologists identified numerous fascinating examples of instinctive behaviors, which captured mainstream attention.

In the early 1950s, shortly after ethology had gained professional status (Burkhardt, 2005 ), a series of challenges regarding instinct and innateness were put forth by a small cadre of North American behavioral scientists (e.g., T. C. Schneirla, Donald Hebb, Frank Beach). Arguably the most influential critique was voiced by comparative psychologist Daniel Lehrman ( 1953 ), who presented a detailed and damning critique of deprivation experiments on empirical and logical grounds. Lehrman explained that deprivation experiments isolate the animal from some but not all experiences. Thus deprivation experiments simply change what an animal experiences rather than eliminating experience altogether, and so they cannot possibly determine whether a behavior is innate (independent of experience). Instead, these experiments show what environmental conditions do not matter in the development of a behavior but do not speak to what conditions do matter .

Lehrman went on to argue that the whole endeavor to identify instinctive or innate behavior was misguided from the start. All behavior, according to Lehrman, develops from a history of interactions between an organism and its environment. If a behavior is found to develop in the absence of certain experiences, the researcher should not stop and label it as innate. Rather, research should continue to identify the conditions under which the behavior comes about. In line with Kuo, Lehrman repeated the warning that to label something as instinctive (or inherited or maturational) is a statement of ignorance about how that behavior develops and does more to stunt than promote research.

Lehrman’s critique created significant turmoil among ethologists. As a result, ethologists took greater care in using the term innate , and it led to new attempts to synthesize or re-envision learning and instinct .

Some of these attempts focused on an increased role for learning and experience in the ontogeny of species-typical behaviors. These efforts spawned significant cross-talk between ethologists and comparative psychologists to more thoroughly investigate behavioral development under natural conditions. Traditional appeals to instinct and learning (as classical and operant conditioning) were both found to be inadequate for explaining animal behavior. In their stead, these researchers focused more closely on how anatomical, physiological, experiential, and environmental conditions influenced the development of species-typical behaviors.

Tinbergen ( 1963 ) was among those ethologists who urged for greater developmental analysis of species-typical behaviors, and he included it as one of his four problems in the biological study of organisms, along with causation (mechanism), survival value (function), and evolution. Of these four problems, Tinbergen believed ethologists were especially well suited to study survival value, which he felt had been seriously neglected (Burkhardt, 2005 ).

The questions of survival value coupled with models of population genetics would gain significant momentum in the 1960s and 1970s in England and the United States with the rise of behavioral ecology and sociobiology (Griffiths, 2008 ). But because these new fields seemed to promote some kind of genetic determinism in behavioral development, they were met with much resistance and reignited a new round of nature–nurture debates in the 1970s (see Segerstrale, 2000 ).

However, not all ethologists abandoned the instinct concept. Lorenz, in particular, continued to defend the division between nature and nurture. Rather than speaking of native and acquired behaviors, Lorenz later spoke of two different sources of information for behavior (innate/genetic vs. acquired/environmental), which was more a subtle shift in language than it was an actual change in theory, as Lehrman later pointed out.

Some ethologists followed Lorenz’s lead and continued to maintain more of a traditional delineation between instinct and learning. Their alternative synthesis viewed learning as instinctive (Gould & Marler, 1987 ). They proposed that animals have evolved domain-specific “instincts to learn” that result from the its genetic predispositions and innate knowledge. To support the idea of instincts for learning, ethologists pointed to traditional ethological findings (on imprinting and birdsong learning), but they also drew from the growing body of work in experimental psychology that seemed to indicate certain types of biological effects on learning.

Biological Constraints and Preparedness

While ethology was spreading in Europe in the 1930s–1950s, behaviorism reigned in the United States. Just as ethologists were confronted with including a greater role of nurture in their studies, behaviorists were challenged to consider a greater role of nature.

Behaviorists assumed there to be some behavioral innateness (e.g., fixed action patterns, unconditioned reflexes, primary reinforcers and drives). But because behaviorists focused on learning, they tended to study animals in laboratory settings using biologically (or ecologically) irrelevant stimuli and responses to minimize any role of instinct (Johnston, 1981 ). It was widely assumed that these studies would identify general laws of learning that applied to all species regardless of the specific cues, reinforcers, and responses involved.

Challenges to the generality assumption began to accumulate in the 1960s. Some studies pointed to failures that occurred during conditioning procedures. Breland and Breland ( 1961 ), for example, reported that some complex behaviors formed through operant conditioning would eventually become “displaced” by conditioned fixed action patterns in a phenomenon they called “instinctive drift.” Studies of taste-aversion learning (e.g., Garcia & Koelling, 1966 ) also reported the failure of rats to associate certain events (e.g., flavors with shock or audiovisual stimuli with toxicosis).

Other studies were pointing to enhanced learning. In particular, it was found that rats could form strong conditioned taste aversions after only a single pairing between a novel flavor and illness. (This rapid “one trial learning” was a major focus in the research from Niko Tinbergen’s ethological laboratory.) Animals, it seemed, had evolved innate predispositions to form (or not form) certain associations.

In humans, studies of biological constraints on learning were mostly limited to fear conditioning. Evidence indicated that humans conditioned differently to (biologically or evolutionarily) fear-relevant stimuli like pictures of spiders or snakes than to fear-irrelevant stimuli like pictures of mushrooms or flowers (Ohman, Fredrikson, Hugdahl, & Rimmö, 1976 ).

These findings and others were treated as a major problem in learning theory and led to calls for a new framework to study learning from a more biologically oriented perspective that integrated the evolutionary history and innate predispositions of the species. These predispositions were described as biological “constraints” on, “preparedness,” or “adaptive specializations” for learning, all of which were consistent with the “instincts to learn” framework proposed by ethologists.

By the 1980s it was becoming clear that the biological preparedness/constraint view of learning suffered some limitations. For example, what constraints count as “biological” was questioned. It was well established that there were general constraints on learning associated with the intensity, novelty, and timing of stimuli. But, arbitrarily it seemed, these constraints were not classified as “biological” (Domjan & Galef, 1983 ). Other studies of “biological constraints” found that 5- and 10-day old rats readily learned to associated a flavor with shock (unlike in adults), but (like in adults) such conditioning was not found in 15-day-old rats (Hoffman & Spear, 1988 ). In other words, the constraint on learning was not present in young rats but developed later in life, suggesting a possible role of experience in bringing about the adult-like pattern.

Attempts to synthesize these alternatives led to numerous calls for more ecologically oriented approaches to learning not unlike the synthesis between ethology and comparative psychology in the 1960s. All ecological approaches to learning proposed that learning should be studied in the context of “natural” (recurrent and species-typical) problems that animals encounter (and have evolved to encounter) using ecologically meaningful stimuli and responses. Some argued (e.g., Johnston, 1981 ) that studies of learning should take place within the larger context of studying how animals develop and adapt to their surround. Others (Domjan & Galef, 1983 ) pointed to more of a comparative approach in studying animal learning in line with behavioral ecology that takes into account how learning can be influenced by the possible selective pressures faced by each species. Still, how to synthesize biological constraints (and evolutionary explanations) on learning with a general process approach remains a source of tension in experimental psychology.

Nativism in Mind: Innate Ideas

Nativism and empiricism in philosophy.

In the philosophy of mind, nature–nurture debates are voiced as debates between nativists and empiricists. Nativism is a philosophical position that holds that our minds have some innate (a priori to experience) knowledge, concepts, or structure at the very start of life. Empiricism, in contrast, holds that all knowledge derives from our experiences in the world.

However, rarely (if ever) were there pure nativist or empiricist positions, but the positions bespeak a persistent tension. Empiricists tended to eschew innateness and promote a view of the mental content that is built by general mechanisms (e.g., association) operating on sensory experiences, whereas nativists tend to promote a view of mind that contains domain-specific, innate processes and/or content (Simpson, Carruthers, Laurence, & Stich, 2005 ). Although the tension about mental innateness would loosen as empiricism gained prominence in philosophy and science, the strain never went away and would intensify again in the 20th century .

Nativism in 20th Century Psychology: The Case of Language Development

In the first half of the 20th century , psychologists generally assumed that knowledge was gained or constructed through experience with the world. This is not to say that psychologists did not assume some innate knowledge. The Swiss psychologist Jean Piaget, for example, believed infants enter the world with some innate knowledge structures, particularly as they relate to early sensory and motor functioning (see Piaget, 1971 ). But the bulk of his work dealt with the construction of conceptual knowledge as children adapt to their worlds. By and large, there were no research programs in psychology that sought to identify innate factors in human knowledge and cognition until the 1950s (Samet & Zaitchick, 2017 )

An interest in psychological nativism was instigated in large part by Noam Chomsky’s ( 1959 ) critique of B. F. Skinner’s book on language. To explain the complexity of language, he argued, we must view language as the knowledge and application of grammatical rules. He went on to claim that the acquisition of these rules could not be attributed to any general-purpose, learning process (e.g., reinforcement). Indeed, language acquisition occurs despite very little explicit instruction. Moreover, language is special in terms of its complexity, ease, and speed of acquisition by children and in its uniqueness to humans. Instead, he claimed that our minds innately contain some language-specific knowledge that kick-starts and promotes language acquisition. He later claimed this knowledge can be considered some sort of specialized mental faculty or module he called the “language acquisition device” (Chomsky, 1965 ) or what Pinker ( 1995 ) later called the “language instinct.”

To support the idea of linguistic nativism, Chomsky and others appealed to the poverty of the stimulus argument. In short, this argument holds that our experiences in life are insufficient to explain our knowledge and abilities. When applied to language acquisition, this argument holds children’s knowledge of language (grammar) goes far beyond the limited, and sometimes broken, linguistic events that children directly encounter. Additional evidence for nativism drew upon the apparent maturational quality of language development. Despite wide variations in languages and child-rearing practices across the world, the major milestones in language development appear to unfold in children in a universal sequence and timeline, and some evidence suggested a critical period for language acquisition.

Nativist claims about language sparked intense rebuttals by empiricist-minded psychologists and philosophers. Some of these retorts tackled the logical limitations of the poverty of stimulus argument. Others pointed to the importance of learning and social interaction in driving language development, and still others showed that language (grammatical knowledge) may not be uniquely human (see Tomasello, 1995 , for review). Nativists, in due course, provided their own rebuttals to these challenges, creating a persistent tension in psychology.

Extending Nativism Beyond Language Development

In the decades that followed, nativist arguments expanded beyond language to include cognitive domains that dealt with understanding the physical, psychological, and social worlds. Developmental psychologists were finding that infants appeared to be much more knowledgeable in cognitive tasks (e.g., on understanding object permanence) and skillful (e.g., in imitating others) than had previously been thought, and at much younger ages. Infants also showed a variety of perceptual biases (e.g., preference for face-like stimuli over equally complex non-face-like stimuli) from very early on. Following the standard poverty of the stimulus argument, these findings were taken as evidence that infants enter the world with some sort of primitive, innate, representational knowledge (or domain-specific neural mechanisms) that constrains and promotes subsequent cognitive development. The nature of this knowledge (e.g., as theories or as core knowledge), however, continues to be debated (Spelke & Kinzler, 2007 ).

Empiricist-minded developmental psychologists responded by demonstrating shortcomings in the research used to support nativist claims. For example, in studies of infants’ object knowledge, the behavior of infants (looking time) in nativist studies could be attributed to relatively simple perceptual processes rather than to the infants’ conceptual knowledge (Heyes, 2014 ). Likewise, reports of human neonatal imitation not only suffered from failures to replicate but could be explained by simpler mechanisms (e.g., arousal) than true imitation (Jones, 2017 ). Finally, studies of perceptual preferences found in young infants, like newborn preferences for face-like stimuli, may not be specific preferences for faces per se but instead may reflect simpler, nonspecific perceptual biases (e.g., preferences for top-heavy visual configurations and congruency; Simion & Di Giorgio, 2015 ).

Other arguments from empiricist-minded developmental psychologists focused on the larger rationale for inferring innateness. Even if it is conceded that young infants, like two-month-olds, or even two-day-olds, display signs of conceptual knowledge, there is no good evidence to presume the knowledge is innate. Their knowledgeable behaviors could still be seen as resulting from their experiences (many of which may be nonobvious to researchers) leading up to the age of testing (Spencer et al., 2009 ).

In the 21st century , there is still no consensus about the reality, extensiveness, or quality of mental innateness. If there is innate knowledge, can experience add new knowledge or only expand the initial knowledge? Can the doctrine of innate knowledge be falsified? There are no agreed-upon answers to these questions. The recurring arguments for and against mental nativism continue to confound developmental psychologists.

Maturation Theory

The emergence of bodily changes and basic behavioral skills sometimes occurs in an invariant, predictable, and orderly sequence in a species despite wide variations in rearing conditions. These observations are often attributed to the operation of an inferred, internally driven, maturational process. Indeed, 21st-century textbooks in psychology commonly associate “nature” with “maturation,” where maturation is defined as the predetermined unfolding of the individual from a biological or genetic blueprint. Environmental factors play a necessary, but fundamentally supportive, role in the unfolding of form.

Preformationism Versus Epigenesis in the Generation of Form

The embryological generation of bodily form was debated in antiquity but received renewed interest in the 17th century . Following Aristotle, some claimed that embryological development involved “epigenesis,” defined as the successive emergence of form from a formless state. Epigenesists, however, struggled to explain what orchestrated development without appealing to Aristotelean souls. Attempts were made to invoke to natural causes like physical and chemical forces, but, despite their best efforts, the epigenesists were forced to appeal to the power of presumed, quasi-mystical, vitalistic forces (entelechies) that directed development.

The primary alternative to epigenesis was “preformationism,” which held that development involved the growth of pre-existing form from a tiny miniature (homunculus) that formed immediately after conception or was preformed in the egg or sperm. Although it seems reasonable to guess that the invention and widespread use of the microscope would immediately lay to rest any claim of homuncular preformationism, this was not the case. To the contrary, some early microscopists claimed to see signs of miniature organisms in sperm or eggs, and failures to find these miniatures were explained away (e.g., the homunculus was transparent or deflated to the point of being unrecognizable). But as microscopes improved and more detailed observations of embryological development were reported in the late 18th and 19th centuries , homuncular preformationism was finally refuted.

From Preformationism to Predeterminism

Despite the rejection of homuncular preformationism, preformationist appeals can be found throughout the 19th century . One of the most popular preformationist theories of embryological development was put forth by Ernst Haeckel in the 1860s (Gottlieb, 1992 ). He promoted a recapitulation theory (not original to Haeckel) that maintained that the development of the individual embryo passes through all the ancestral forms of its species. Ontogeny was thought to be a rapid, condensed replay of phylogeny. Indeed, for Haeckel, phylogenesis was the mechanical cause of ontogenesis. The phylogenetic evolution of the species created the maturational unfolding of embryonic form. Exactly how this unfolding takes place was less important than its phylogenetic basis.

Most embryologists were not impressed with recapitulation theory. After all, the great embryologist Karl Ernst von Baer ( 1792–1876 ) had refuted strict recapitulation decades earlier. Instead, there was greater interest in how best to explain the mechanical causes of development ushering in a new “experimental embryology.” Many experimental embryologists followed the earlier epigenesists by discussing vitalistic forces operating on the unorganized zygote. But it soon became clear that the zygote was structured, and many people believed the zygote contained special (unknown) substances that specified development. Epigenesis-minded experimental embryologists soon warned that the old homuncular preformationism was being transformed into a new predetermined preformationism.

As a result, the debates between preformationism and epigenesis were reignited in experimental embryology, but the focus of these debates shifted to the various roles of nature and nurture during development. More specifically, research focused on the extent to which early cellular differentiation was predetermined by factors internal to cells like chromosomes or cytoplasm (preformationism, nature) or involved factors (e.g., location) outside of the cell (epigenesis, nurture). The former emphasized reductionism and developmental programming, whereas the latter emphasized some sort of holistic, regulatory system responsive to internal and external conditions. The tension between viewing development as predetermined or “epigenetic” persists into the 21st century .

Preformationism gained momentum in the 20th century following the rediscovery of Mendel’s studies of heredity and the rapid rise of genetics, but not because of embryological research on the causes of early differentiation. Instead, preformationism prevailed because it seemed embryological research on the mechanisms of development could be ignored in studies of hereditary patterns.

The initial split between heredity and development can be found in Galton’s speculations but is usually attributed to Weismann’s germ-plasm theory. Weismann’s barrier seemed to posit that the germinal determinants present at conception would be the same, unaltered determinants transmitted during reproduction. This position, later dubbed as “Weismannism,” was ironically not one promoted by Weismann. Like nearly all theorists in the 19th century , he viewed the origins of variation and heredity as developmental phenomena (Amundson, 2005 ), and he claimed that the germ-plasm could be directly modified in the lifetime of the organism by environmental (e.g., climactic and dietary) conditions (Winther, 2001 ). Still, Weismann’s theory treated development as a largely predetermined affair driven by inherited, germinal determinants buffered from most developmental events. As such, it helped set the stage for a more formal divorce between heredity and development with the rise of Mendelism in the early 20th century .

Mendel’s theory of heredity was exceptional in how it split development from heredity (Amundson, 2005 ). More so than in Weismann’s theory, Mendel’s theory assumed that the internal factors that determine form and are transmitted across generations remain unaltered in the lifetime of the organism. To predict offspring outcomes, one need only know the combination of internal factors present at conception and their dominance relations. Exactly how these internal factors determined form could be disregarded. The laws of hereditary transmission of the internal factors (e.g., segregation) did not depend on the development or experiences of the organism or the experiences the organism’s ancestors. Thus the experimental study of heredity (i.e., breeding) could proceed without reference to ancestral records or embryological concerns (Amundson, 2000 ). By the mid-1920s, the Mendelian factors (now commonly called “genes”) were found to be structurally arranged on chromosomes, and the empirical study of heredity (transmission genetics) was officially divorced from studies of development.

The splitting of heredity and development found in Mendel’s and Weismann’s work met with much resistance. Neo-Lamarckian scientists, especially in the United States (Cook, 1999 ) and France (Loison, 2011 ), sought unsuccessfully to experimentally demonstrate the inheritance of acquired characteristics into the 1930s.

In Germany during the 1920s and 1930s, resistance to Mendelism dealt with the chromosomal view of Mendelian heredity championed by American geneticists who were narrowly focused on studying transmission genetics at the expense of developmental genetics. German biologists, in contrast, were much more interested in the broader roles of genes in development (and evolution). In trying to understand how genes influence development, particularly of traits of interest to embryologists, they found the Mendelian theory to be lacking. In the decades between the world wars, German biologists proposed various expanded views of heredity that included some form of cytoplasmic inheritance (Harwood, 1985 ).

Embryologists resisted the preformationist view of development throughout the early to mid- 20th century , often maintaining no divide between heredity and development, but their objections were overshadowed by genetics and its eventual synthesis with evolutionary theory. Consequently, embryological development was treated by geneticists and evolutionary biologists as a predetermined, maturational process driven by internal, “genetic” factors buffered from environmental influence.

Maturation Theory in Psychology

Maturation theory was applied to behavioral development in the 19th century in the application of Haeckel’s recapitulation theory. Some psychologists believed that the mental growth of children recapitulated the history of the human race (from savage brute to civilized human). With this in mind, many people began to more carefully document child development. Recapitulationist notions were found in the ideas of many notable psychologists in the 19th and early 20th centuries (e.g., G. S. Hall), and, as such, the concept played an important role in the origins of developmental psychology (Koops, 2015 ). But for present purposes what is most important is that children’s mental and behavioral development was thought to unfold via a predetermined, maturational process.

With the growth of genetics, maturational explanations were increasingly invoked to explain nearly all native and hereditary traits. As the instinct concept lost value in the 1920s, maturation theory gained currency, although the shift was largely a matter of semantics. For many psychologists, the language simply shifted from “instinct versus learning” to “maturation versus practice/experience” (Witty & Lehman, 1933 ).

Initial lines of evidence for maturational explanations of behavior were often the same as those that justified instinct and native traits, but new embryological research presented in the mid-1920s converged to show support for strict maturational explanations of behavioral development. In these experiments (see Wyman, 2005 , for review), spanning multiple laboratories, amphibians (salamanders and frogs) were exposed to drugs that acted as anesthetics and/or paralytics throughout the early stages of development, thus reducing sensory experience and/or motor practice. Despite the reduced sensory experiences and being unable to move, these animals showed no delays in the onset of motor development once the drugs wore off.

This maturational account of motor development in amphibians fit well with contemporaneous studies of motor development in humans. The orderly, invariant, and predictable (age-related) sequential appearance of motor skills documented in infants reared under different circumstances (in different countries and across different decades) was seen as strong evidence for a maturational account. Additional evidence was reported by Arnold Gessell and Myrtle McGraw, who independently presented evidence in the 1920s to show that the pace and sequence of motor development in infancy were not altered by special training experiences. Although the theories of these maturation theorists were more sophisticated when applied to cognitive development, their work promoted a view in which development was primarily driven by neural maturation rather than experience (Thelen, 2000 ).

Critical and Sensitive Periods

As the maturation account of behavioral development gained ground, it became clear that environmental input played a more informative role than had previously been thought. Environmental factors were found to either disrupt or induce maturational changes at specific times during development. Embryological research suggested that there were well-delineated time periods of heightened sensitivity in which specific experimental manipulations (e.g., tissue transplantations) could induce irreversible developmental changes, but the same manipulation would have no effect outside of that critical period.

In the 1950s–1960s a flurry of critical period effects were reported in birds and mammals across a range of behaviors including imprinting, attachment, socialization, sensory development, bird song learning, and language development (Michel & Tyler, 2005 ). Even though these findings highlighted an important role of experience in behavioral development, evidence of critical periods was usually taken to imply some rigid form of biological determinism (Oyama, 1979 ).

As additional studies were conducted on critical period effects, it became clear that many of the reported effects were more gradual, variable, experience-dependent, and not necessarily as reversible as was previously assumed. In light of these reports, there was a push in the 1970s (e.g., Connolly, 1972 ) to substitute “sensitive period” for “critical period” to avoid the predeterminist connotations associated with the latter and to better appreciate that these periods simply describe (not explain) certain temporal aspects of behavioral development. As a result, a consensus emerged that behaviors should not be attributed to “time” or “age” but to the developmental history and status of the animal under investigation (Michel & Tyler, 2005 ).

Heredity and Genetics

In the decades leading up to and following the start of the 20th century , it was widely assumed that many psychological traits (not just instincts) were inherited or “due to heredity,” although the underlying mechanisms were unknown. Differences in intelligence, personality, and criminality within and between races and sexes were largely assumed to be hereditary and unalterable by environmental intervention (Gould, 1996 ). The evidence to support these views in humans was often derived from statistical analyses of how various traits tended to run in families. But all too frequently, explanations of data were clouded by pre-existing, hereditarian assumptions.

Human Behavioral Genetics

The statistical study of inherited human (physical, mental, and behavioral) differences was pioneered by Galton ( 1869 ). Although at times Galton wrote that nature and nurture were so intertwined as to be inseparable, he nevertheless devised statistical methods to separate their effects. In the 1860s and 1870s, Galton published reports purporting to show how similarities in intellect (genius, talent, character, and eminence) in European lineages appeared to be a function of degree of relatedness. Galton considered, but dismissed, environmental explanations of his data, leading him to confirm his belief that nature was stronger than nurture.

Galton also introduced the use of twin studies to tease apart the relative impact of nature versus nurture, but the twin method he used was markedly different from later twin studies used by behavioral geneticists. Galton tracked the life history of twins who were judged to be very similar or very dissimilar near birth (i.e., by nature) to test the power of various postnatal environments (nurture) that might make them more or less similar over time. Here again, Galton concluded that nature overpowers nurture.

Similar pedigree (e.g., the Kallikak study; see Zenderland, 2001 ) and twin studies appeared in the early 1900s, but the first adoption study and the modern twin method (which compares monozygotic to dizygotic twin pairs) did not appear until the 1920s (Rende, Plomin, & Vandenberg, 1990 ). These reports led to a flurry of additional work on the inheritance of mental and behavioral traits over the next decade.

Behavioral genetic research peaked in the 1930s but rapidly lost prominence due in large part to its association with the eugenics movement (spearheaded by Galton) but also because of the rise and eventual hegemony of behaviorism and the social sciences in the United States. Behavioral genetics resurged in the 1960s with the rising tide of nativism in psychology, and returned to its 1930s-level prominence in the 1970s (McGue & Gottesman, 2015 ).

The resurgence brought with a new statistical tool: the heritability statistic. The origins of heritability trace back to early attempts to synthesize Mendelian genetics with biometrics by Ronald Fisher and others. This synthesis ushered in a new field of quantitative genetics and it marked a new way of thinking about nature and nurture. The shift was to no longer think about nature and nurture as causes of traits in individuals but as causes of variation in traits between populations of individuals. Eventually, heritability came to refer to the amount of variance in a population sample that could be statistically attributed to genetic variation in that sample. Kinship (especially twin) studies provided seemingly straightforward ways of partitioning variation in population trait attributes into genetic versus environmental sources.

Into the early 21st century , hundreds of behavioral genetic studies of personality, intelligence, and psychopathology were reported. With rare exceptions, these studies converge to argue for a pervasive influence of genetics on human psychological variation.

These studies have also fueled much controversy. Citing in part behavioral genetic research, the educational psychologist Arthur Jensen ( 1969 ) claimed that the differences in intelligence and educational achievement in the United States between black and white students appeared to have a strong genetic basis. He went on to assume that because these racial differences appeared hereditary, they were likely impervious to environmental (educational) intervention. His article fanned the embers of past eugenics practices and ignited fiery responses (e.g., Hirsch, 1975 ). The ensuing debates not only spawned a rethinking of intelligence and how to measure it, but they ushered in a more critical look at the methods and assumptions of behavioral genetics.

Challenges to Behavioral Genetics

Many of the early critiques of behavioral genetics centered on interpreting the heritability statistic commonly calculated in kinship (family, twin, and adoption) studies. Perhaps more so than any other statistic, heritability has been persistently misinterpreted by academics and laypersons alike (Lerner, 2002 ). Contrary to popular belief, heritability tells us nothing about the relative impact of genetic and environmental factors on the development of traits in individuals. It deals with accounting for trait variation between people, not the causes of traits within people. As a result, a high heritability does not indicate anything about the fixity of traits or their imperviousness to environmental influence (contra Jensen), and a low heritability does not indicate an absence of genetic influence on trait development. Worse still, heritability does not even indicate anything about the role of genetics in generating the differences between people.

Other challenges to heritability focused not on its interpretation but on its underlying computational assumptions. Most notably, heritability analyses assume that genetic and environmental contributions to trait differences are independent and additive. The interaction between genetic and environmental factors were dismissed a priori in these analyses. Studies of development, however, show that no factor (genes, hormones, parenting, schooling) operates independently, making it impossible to quantify how much of a given trait in a person is due to any causal factor. Thus heritability analyses are bound to be misleading because they are based on biologically implausible and logically indefensible assumptions about development (Gottlieb, 2003 ).

Aside from heritability, kinship studies have been criticized for not being able to disentangle genetic and environmental effects on variation. It had long been known that that in family (pedigree) studies, environmental and genetic factors are confounded. Twin and adoption studies seemed to provide unique opportunities to statistically disentangle these effects, but these studies are also deeply problematic in assumptions and methodology. There are numerous plausible environmental reasons for why monozygotic twin pairs could resemble each other more than dizygotic twin pairs or why adoptive children might more closely resemble their biological than their adoptive parents (Joseph & Ratner, 2013 ).

A more recent challenge to behavioral genetics came from an unlikely source. Advances in genomic scanning in the 21st century made it possible in a single study to correlate thousands of genetic polymorphisms with variation in the psychological profiles (e.g., intelligence, memory, temperament, psychopathology) of thousands of people. These “genome-wide association” studies seemed to have the power and precision to finally identify genetic contributions to heritability at the level of single nucleotides. Yet, these studies consistently found only very small effects.

The failure to find large effects came to be known as the “missing heritability” problem (Maher, 2008 ). To account for the missing heritability, some behavioral geneticists and molecular biologists asserted that important genetic polymorphisms remain unknown, they may be too rare to detect, and/or that current studies are just not well equipped to handle gene–gene interactions. These studies were also insensitive to epigenetic profiles (see the section on Behavioral Epigenetics), which deal with differences in gene expression. Even when people share genes, they may differ in whether those genes get expressed in their lifetimes.

But genome-wide association studies faced an even more problematic issue: Many of these studies failed to replicate (Lickliter & Honeycutt, 2015 ). For those who viewed heritability analyses as biologically implausible, the small effect sizes and failures to replicate in genome-wide association studies were not that surprising. The search for independent genetic effects was bound to fail, because genes simply do not operate independently during development.

Behavioral Epigenetics

Epigenetics was a term coined in the 1940s by the developmental biologist Conrad Waddington to refer to a new field of study that would examine how genetic factors interact with local environmental conditions to bring about the embryological development of traits. By the end of the 20th century , epigenetics came to refer to the study of how nongenetic, molecular mechanisms physically regulate gene expression patterns in cells and across cell lineages. The most-studied mechanisms involve organic compounds (e.g., methyl-groups) that physically bind to DNA or the surrounding proteins that package DNA. The addition or removal of these compounds can activate or silence gene transcription. Different cell types have different, stable epigenetic markings, and these markings are recreated during cell division so that cells so marked give rise to similar types of cells. Epigenetic changes were known to occur during developmental periods of cellular differentiation (e.g., during embryogenesis), but not until 2004 was it discovered that these changes can occur at other periods in the life, including after birth (Roth, 2013 )

Of interest to psychologists were reports that different behavioral and physiological profiles (e.g., stress reactivity) of animals were associated with different epigenetic patterns in the nervous system (Moore, 2015 ). Furthermore, these different epigenetic patterns could be established or modified by environmental factors (e.g., caregiving practices, training regimes, or environmental enrichment), and, under certain conditions, they remain stable over long periods of time (from infancy to adulthood).

Because epigenetic research investigates the physical interface between genes and environment, it represents an exciting advance in understanding the interaction of nature and nurture. Despite some warnings that the excitement over behavioral epigenetic research may be premature (e.g., Miller, 2010 ), for many psychologists, epigenetics underscores how development involves both nature and nurture.

For others, what is equally exciting is the additional evidence epigenetics provides to show that the genome is an interactive and regulated system. Once viewed as the static director of development buffered from environment influence, the genome is better described as a developing resource of the cell (Moore, 2015 ). More broadly, epigenetics also points to how development is not a genetically (or biologically) predetermined affair. Instead, epigenetics provides additional evidence that development is a probabilistic process, contingent upon factors internal and external to the organism. In this sense, epigenetics is well positioned to help dissolve the nature–nurture dichotomy.

Beyond Nature–Nurture

In the final decades of the 20th century , a position was articulated to move beyond the dichotomous nature–nurture framework. The middle-ground position on nature–nurture did not seem up to the task of explaining the origins of form, and it brought about more confusion than clarity. The back-and-forth (or balanced) pendulum between nature- and nurture-based positions throughout history had only gone in circles. Moving forward would require moving beyond such dichotomous thinking (Johnston, 1987 ).

The anti-dichotomy position, referred to as the Developmentalist tradition, was expressed in a variety of systems-based, metatheoretical approaches to studying development, all of which extended the arguments against nature–nurture expressed earlier by Kuo and Lehrman. The central problem with all nativist claims according to Developmentalists is a reliance on preformationism (or predeterminism).

The problem with preformationism, they argue, besides issues of evidence, is that it is an anti-developmental mindset. It presumes the existence of the very thing(s) one wishes to explain and, consequently, discourages developmental analyses. To claim that some knowledge is innate effectively shuts down research on the developmental origins of that knowledge. After all, why look for the origins of conceptual knowledge if that knowledge is there all along? Or why search for any experiential contributions to innate behaviors if those behaviors by definition develop independently of experience? In the words of Developmentalists Thelen and Adolph ( 1992 ), nativism “leads to a static science, with no principles for understanding change or for confronting the ultimate challenge of development, the source of new forms in structure and function” (p. 378).

A commitment to maturational theory is likely one of the reasons why studies of motor development remained relatively dormant for decades following its heyday in the 1930–1940s (Thelen, 2000 ). Likewise, a commitment to maturational theory also helps explain the delay in neuroscience to examine how the brain physically changes in response to environmental conditions, a line of inquiry that only began in the 1960s.

In addition to the theoretical pitfalls of nativism, Developmentalists point to numerous studies that show how some seemingly native behaviors and innate constraints on learning are driven by the experiences of animals. For example, the comparative psychologist Gilbert Gottlieb ( 1971 ) showed that newly hatched ducklings display a naïve preference for a duck maternal call over a (similarly novel) chicken maternal call (Gottlieb, 1971 ), even when duck embryos were repeatedly exposed to the chicken call prior to hatching (Gottlieb, 1991 ). It would be easy to conclude that ducklings have an innate preference to approach their own species call and that they are biologically constrained (contraprepared) in learning a chicken call. However, Gottlieb found that the naïve preference for the duck call stemmed from exposure to the duck embryos’ own (or other) vocalizations in the days before hatching (Gottlieb, 1971 ). Exposure to these vocalizations not only made duck maternal calls more attractive, but it hindered the establishment of a preference for heterospecific calls. When duck embryos were reared in the absence of the embryonic vocalizations (by devocalizing embryos in ovo ) and exposed instead to chicken maternal calls, the newly hatched ducklings preferred chicken over duck calls (Gottlieb, 1991 ). These studies clearly showed how seemingly innate, biologically based preferences and constraints on learning derived from prenatal sensory experiences.

For Developmentalists, findings like these suggest that nativist explanations of any given behavior are statements of ignorance about how that behavior actually develops. As Kuo and Lehrman made clear, nativist terms are labels, not explanations. Although such appeals are couched in respectable, scientific language (e.g., “X is due to maturation, genes, or heredity”), they argue it would be more accurate simply to say that “We don’t know what causes X” or that “X is not due to A, B, or C.” Indeed, for Developmentalists, the more we unpack the complex dynamics about how traits develop, the less likely we are to use labels like nature or nurture (Blumberg, 2005 ).

On the other hand, Developmentalists recognize that labeling a behavior as “learned” also falls short as an explanatory construct. The empiricist position that knowledge or behavior is learned does not adequately take into account that what is learned and how easily something is learned depends on (a) the physiological and developmental status of the person, (b) the nature of the surrounding physical and social context in which learning takes place, and the (c) experiential history of the person. The empiricist tendency to say “X is learned or acquired through experience” can also short-circuit developmental analyses in the same way as nativist claims.

Still, Developmentalists appreciate that classifying behaviors can be useful. For example, the development of some behaviors may be more robust, reliably emerging across a range of environments and/or remaining relatively resistant to change, whereas others are more context-specific and malleable. Some preferences for stimuli require direct experience with those stimuli. Other preferences require less obvious (indirect) types of experiences. Likewise, it can still be useful to describe some behaviors in the ways shown in Table 1 . Developmentalists simply urge psychologists to resist the temptation to treat these behavioral classifications as implying different kinds of explanations (Johnston, 1987 ).

Rather than treat nature and nurture as separate developmental sources of causation (see Figure 1 ), Developmentalists argue that a more productive way of thinking about nature–nurture is to reframe the division as that between product and process (Lickliter & Honeycutt, 2015 ). The phenotype or structure (one’s genetic, epigenetic, anatomical, physiological, behavioral, and mental profile) of an individual at any given time can be considered one’s “nature.” “Nurture” then refers to the set of processes that generate, maintain, and transform one’s nature (Figure 2 ). These processes involve the dynamic interplay between phenotypes and environments.

Figure 2. The developmentalist alternative view of nature–nurture as product–process. Developmentalists view nature and nurture not as separate sources of causation in development (see Figure 1 ) but as a distinction between process (nurture) and product (nature).

It is hard to imagine any set of findings that will end debates about the roles of nature and nurture in human development. Why? First, more so than other assumptions about human development, the nature–nurture dichotomy is deeply entrenched in popular culture and the life sciences. Second, throughout history, the differing positions on nature and nurture were often driven by other ideological, philosophical, and sociopolitical commitments. Thus the essential source of tension in debates about nature–nurture is not as much about research agendas or evidence as about basic differences in metatheoretical positions (epistemological and ontological assumptions) about human behavior and development (Overton, 2006 ).

  • Amundson, R. (2000). Embryology and evolution 1920–1960: Worlds apart? History and Philosophy of the Life Sciences , 22 , 335–352.
  • Amundson, R. (2005). The changing role of the embryo in evolutionary thought: Roots of evo-devo . New York, NY: Cambridge University Press.
  • Blumberg, M. S. (2005). Basic instinct: The genesis of novel behavior . New York, NY: Thunder’s Mouth Press.
  • Breland, K. , & Breland, M. (1961). The misbehavior of organisms. American Psychologist , 16 , 681–684.
  • Burkhardt, R. (2005). Patterns of behavior: Konrad Lorenz, Niko Tinbergen and the founding of ethology . Chicago, IL: University of Chicago Press.
  • Burnham, J. C. (1972). Instinct theory and the German reaction to Weismannism. Journal of the History of Biology , 5 , 321–326.
  • Carmichael, L. (1925). Heredity and environment: Are they antithetical? The Journal of Abnormal and Social Psychology , 20 (3), 245–260.
  • Chomsky, N. (1959). A review of B. F. Skinner’s verbal behavior. Language , 35 , 26–57.
  • Chomsky, N. (1965). Aspects of the theory of syntax . Cambridge, MA: MIT Press.
  • Connolly, K. (1972). Learning and the concept of critical periods in infancy. Developmental Medicine & Child Neurology , 14 (6), 705–714.
  • Cook, G. M. (1999). Neo-Lamarckian experimentalism in America: Origins and consequences. Quarterly Review of Biology , 74 , 417–437.
  • Cowan, R. S. C. (2016). Commentary: Before Weismann and germplasm there was Galton and eugenics: The biological and political meaning of the inheritance of acquired characteristics in the late 19th century . International Journal of Epidemiology , 45 , 15–20.
  • Cravens, H. , & Burnham, J. C. (1971). Psychology and evolutionary naturalism in American thought, 1890–1940. American Quarterly , 23 , 635–657.
  • Diamond, S. (1971). Gestation of the instinct concept. History of the Behavioral Sciences , 7 (4), 323–336.
  • Domjan, M. , & Galef, B. G. (1983). Biological constraints on instrumental and classical conditioning: Retrospect and prospect. Animal Learning & Behavior , 11 (2), 151–161.
  • Dunlap, K. (1919). Are there any instincts? Journal of Abnormal Psychology , 14 , 307–311.
  • Galton, F. (1869). Hereditary genius . London, U.K.: Macmillan.
  • Garcia, J. , & Koelling, R. A. (1966). Relation of cue to consequence in avoidance learning. Psychonomics , 4 (1), 123–124.
  • Gottlieb, G. (1971). Development of species identification in birds . Chicago, IL: University of Chicago Press.
  • Gottlieb, G. (1991). Experiential canalization of behavioral development: Results. Developmental Psychology , 27 (1), 35–39.
  • Gottlieb, G. (1992). Individual development and evolution: The genesis of novel behavior . New York, NY: Oxford University Press.
  • Gottlieb, G. (2003). On making behavioral genetics truly developmental. Human Development , 46 , 337–355.
  • Gould, J. L. , & Marler, P. (1987). Learning by instinct. Scientific American , 256 (1), 74–85.
  • Gould, S. J. (1996). The mismeasure of man (2nd ed.). New York, NY: Norton.
  • Gray, P. H. (1967). Spalding and his influence on research in developmental behavior. Journal of the History of the Behavioral Sciences , 3 , 168–179.
  • Griffiths, P. E. (2008). Ethology, sociobiology, and evolutionary psychology. In S. Sarkar & A. Plutnsky (Eds.), A companion to the philosophy of biology (pp. 393–414). New York, NY: Blackwell.
  • Harwood, J. (1985). Geneticists and the evolutionary synthesis in interwar Germany. Annals of Science , 42 , 279–301.
  • Herrnstein, R. J. (1972). Nature as nurture: Behaviorism and the instinct doctrine. Behaviorism , 1 (1), 23–52.
  • Heyes, C. (2014). False belief in infancy: A fresh look. Developmental Science , 17 (5), 647–659.
  • Hirsch, J. (1975). Jensenism: The bankruptcy of “science” without scholarship. Educational Theory , 25 , 3–27.
  • Hoffman, H. , & Spear, N. E. (1988). Ontogenetic differences in conditioning of an aversion to a gustatory CS with a peripheral US. Behavioral and Neural Biology , 50 , 16–23.
  • Honeycutt, H. (2011). The “enduring mission” of Zing-Yang Kuo to eliminate the nature–nurture dichotomy in psychology. Developmental Psychobiology , 53 (4), 331–342.
  • Jaynes, J. , & Woodward, W. (1974). In the shadow of the enlightenment. II. Reimarus and his theory of drives. Journal of the History of the Behavioral Sciences , 10 , 144–159.
  • Jensen, A. (1969). How much can we boost IQ and scholastic achievement. Harvard Educational Review , 39 , 1–123.
  • Johnston, T. (1981). Contrasting approaches to a theory of learning. Behavioral and Brain Sciences , 4 , 125–173.
  • Johnston, T. (1987). The persistence of dichotomies in the study of behavior. Developmental Review , 7 , 149–172.
  • Johnston, T. (1995). The influence of Weismann’s germ-plasm theory on the distinction between learned and innate behavior. Journal of the History of the Behavioral Sciences , 31 , 115–128.
  • Jones, S. (2017). Can newborn infants imitate? Wiley Interdisciplinary Reviews: Cognitive Science , 8 , e1410.
  • Joseph, J. , & Ratner, C. (2013). The fruitless search for genes in psychiatry and psychology: Time to reexamine a paradigm. In S. Krimsky & J. Gruber (Eds.), Genetic explanations: Sense and nonsense (pp. 94–106). Cambridge, MA: Harvard University Press.
  • Keller, E. F. (2010). The mirage of space between nature and nurture . Durham, NC: Duke University Press.
  • Koops, W. (2015). No developmental psychology without recapitulation theory . European Journal of Developmental Psychology , 12 (6), 630–639.
  • Kuo, Z. Y. (1930). The genesis of the cat’s response to the rat. Journal of Comparative Psychology , 11 , 1–36.
  • Lehrman, D. S. (1953). A critique of Konrad Lorenz’s theory of instinctive behavior. Quarterly Review of Biology , 28 , 337–363.
  • Lerner, R. (2002). Concepts and theories of human development (3rd ed.). Mahwah, NJ: Erlbaum.
  • Lickliter, R. , & Honeycutt, H. (2015). Biology, development and human systems . In W. Overton & P. C. M. Molenaar (Eds.), Handbook of child psychology and developmental science . Vol. 1: Theory and method (7th ed., pp. 162–207). Hoboken, NJ: Wiley.
  • Logan, C. A. , & Johnston, T. D. (2007). Synthesis and separation in the history of “nature” and “nurture.” Developmental Psychobiology , 49 (8), 758–769.
  • Loison, L. (2011). French roots of French neo-Lamarckisms,1879–1985 . Journal of the History of Biology , 44 , 713–744.
  • Maher, B. (2008). Personal genomes: The case of the missing heritability . Nature , 456 , 18–21.
  • McGue, M. , & Gottesman, I. I. (2015). Behavior genetics . In R. L. Cautin & S. O. Lilienfeld (Eds.), The encyclopedia of clinical psychology (Vol. 1). Chichester, U.K.: Wiley Blackwell.
  • Meloni, M. (2016). The transcendence of the social: Durkheim, Weismann and the purification of sociology . Frontiers in Sociology , 1 , 1–13.
  • Michel, G. F. , & Tyler, A. N. (2005). Critical period: A history of transition of questions of when, to what, to how . Developmental Psychobiology , 46 (3), 156–162.
  • Miller, G. (2010).The seductive allure of behavioral epigenetics. Science , 329 (5987), 24–27.
  • Moore, D. S. (2015). The developing genome. An introduction to behavioral epigenetics . New York, NY: Oxford University Press
  • Morgan, C. L. (1896). Habit and instinct . New York, NY: Edward Arnold.
  • Muller-Wille, S. , & Rheinberger, H.-J. (2012). A cultural history of heredity . Chicago, IL: University of Chicago Press.
  • Ohman, A. , Fredrikson, M. , Hugdahl, K. , & Rimmö, P.A. (1976). The premise of equipotentiality in human classical conditioning: Conditioned electrodermal responses to potentially phobic stimuli. Journal of Experimental Psychology: General , 105 (4), 313–337.
  • Overton, W. F. (2006). Developmental psychology: Philosophy, concepts, methodology. In R. Lerner (Ed.), Handbook of child psychology: Vol. 1. Theoretical models of human development (pp. 18–88). New York, NY: Wiley.
  • Oyama, S. (1979). The concept of the sensitive period in developmental studies. Merrill-Palmer Quarterly , 25 (2), 83–103.
  • Piaget, J. (1971). Biology and knowledge: An essay on the relation between organic regulations and cognitive processes . Chicago, IL: University of Chicago Press.
  • Pinker, S. (1995). The language instinct: How the mind creates language . London, U.K.: Penguin.
  • Rende, R. D. , Plomin, R. , & Vandenberg, S. G. (1990). Who discovered the twin method? Behavioral Genetics , 20 (2), 277–285.
  • Renwick, C. (2011). From political economy to sociology: Francis Galton and the social-scientific origins of eugenics . British Journal for the History of Science , 44 , 343–369.
  • Richards, R. J. (1987). Darwin and the emergence of evolutionary theories of mind and behavior . Chicago, IL: University of Chicago Press.
  • Robinson, G. E. , & Barron, A. B. (2017). Epigenetics and the evolution of instincts. Science , 356 (6333), 26–27.
  • Roth, T. L. (2013). Epigenetic mechanisms in the development of behavior: Advances, challenges, and future promises of a new field . Development and Psychopathology , 25 , 1279–1291.
  • Samet, J. , & Zaitchick, D. (2017). Innateness and contemporary theories of cognition . In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy . Stanford, CA: Stanford University.
  • Segerstrale, U. (2000). Defenders of the truth: The battle for science in the sociobiology debate and beyond . New York, NY: Oxford University Press.
  • Simion, F. , & Di Giorgio, E. (2015). Face perception and processing in early infancy: Inborn predispositions and developmental changes . Frontiers in Psychology , 6 , 969.
  • Simpson, T. , Carruthers, P. , Laurence, S. , & Stich, S. (2005). Introduction: Nativism past and present . In P. Carruthers , S. Laurence , & S. Stich (Eds.), The innate mind: Structure and contents (pp. 3–19). New York, NY: Oxford University Press.
  • Spelke, E. , & Kinzler, K. D. (2007). Core knowledge . Developmental Science , 10 (1), 89–96.
  • Spencer, J. P. , Samuelson, L. K. , Blumberg, M. S. , McMurray, R. , Robinson, S. R. , & Tomblin, J. B. (2009). Seeing the world through a third eye: Developmental systems theory looks beyond the nativist-empiricist debate. Child Development Perspectives , 3 , 103–105.
  • Thelen, E. (2000). Motor development as foundation and future of developmental psychology. International Journal of Behavioral Development , 24 (4), 385–397.
  • Thelen, E. , & Adolph, K. E. (1992). Arnold L. Gesell: The paradox of nature and nurture. Developmental Psychology , 28 (3), 368–380.
  • Tinbergen, N. (1963). On the aims and methods of ethology. Zeitschrift für Tierpsychologie , 20 , 410–433.
  • Tomasello, M. T. (1995). Language is not an instinct. Cognitive Development , 10 , 131–156.
  • Winther, R. G. (2001). Weismann on germ-plasm variation. Journal of the History of Biology , 34 , 517–555.
  • Witty, P. A. , & Lehman, H. C. (1933). The instinct hypothesis versus the maturation hypothesis. Psychological Review , 40 (1), 33–59.
  • Wyman, R. J. (2005). Experimental analysis of nature–nurture. Journal of Experimental Zoology , 303 , 415–421.
  • Zenderland, L. (2001). Measuring minds. Henry Herbert Goddard and the origins of American intelligence testing . New York, NY: Cambridge University Press.

Printed from Oxford Research Encyclopedias, Psychology. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 09 September 2024

  • Cookie Policy
  • Privacy Policy
  • Legal Notice
  • Accessibility
  • [81.177.182.154]
  • 81.177.182.154

Character limit 500 /500

Photo by Emma Bauso from Pexels

Nature vs. Nurture

Reviewed by Psychology Today Staff

The expression “nature vs. nurture” describes the question of how much a person's characteristics are formed by either “nature” or “nurture.” “Nature” means innate biological factors (namely genetics ), while “nurture” can refer to upbringing or life experience more generally.

Traditionally, “nature vs. nurture” has been framed as a debate between those who argue for the dominance of one source of influence or the other, but contemporary experts acknowledge that both “nature” and “nurture” play a role in psychological development and interact in complex ways.

  • The Meaning of Nature vs. Nurture
  • The Nature-vs.-Nurture Debate
  • Identifying Genetic and Environmental Factors

Photo by Athena from Pexels

The wording of the phrase “nature vs. nurture” makes it seem as though human individuality— personality traits, intelligence , preferences, and other characteristics—must be based on either the genes people are born with or the environment in which they grew up. The reality, as scientists have shown, is more complicated, and both these and other factors can help account for the many ways in which individuals differ from each other.

The words “nature” and “nurture” themselves can be misleading. Today, “ genetics ” and “environment” are frequently used in their place—with one’s environment including a broader range of experiences than just the nurturing received from parents or caregivers. Further, nature and nurture (or genetics and environment) do not simply compete to influence a person, but often interact with each other; “nature and nurture” work together. Finally, individual differences do not entirely come down to a person’s genetic code or developmental environment—to some extent, they emerge due to messiness in the process of development as well.

A person’s biological nature can affect a person’s experience of the environment. For example, a person with a genetic disposition toward a particular trait, such as aggressiveness, may be more likely to have particular life experiences (including, perhaps, receiving negative reactions from parents or others). Or, a person who grows up with an inclination toward warmth and sociability may seek out and elicit more positive social responses from peers. These life experiences could, in turn, reinforce an individual’s initial tendencies. Nurture or life experience more generally may also modify the effects of nature—for example, by expanding or limiting the extent to which a naturally bright child receives encouragement, access to quality education , and opportunities for achievement.

Epigenetics—the science of modifications in how genes are expressed— illustrates the complex interplay between “nature” and “nurture.” An individual’s environment, including factors such as early-life adversity, may result in changes in the way that parts of a person’s genetic code are “read.” While these epigenetic changes do not override the important influence of genes in general, they do constitute additional ways in which that influence is filtered through “nurture” or the environment.

Photo by NEOSiAM 2020 from Pexels

Theorists and researchers have long battled over whether individual traits and abilities are inborn or are instead forged by experiences after birth. The debate has had broad implications: The real or perceived sources of a person’s strengths and vulnerabilities matter for fields such as education, philosophy , psychiatry , and clinical psychology. Today’s consensus—that individual differences result from a combination of inherited and non-genetic factors—strikes a more nuanced middle path between nature- or nurture-focused extremes.

The debate about nature and nurture has roots that stretch back at least thousands of years, to Ancient Greek theorizing about the causes of personality. During the modern era, theories emphasizing the role of either learning and experience or biological nature have risen and fallen in prominence—with genetics gaining increasing acknowledgment as an important (though not exclusive) influence on individual differences in the later 20th century and beyond.

“Nature versus nurture” was used by English scientist Francis Galton. In 1874, he published the book English Men of Science: Their Nature and Nurture , arguing that inherited factors were responsible for intelligence and other characteristics.

Genetic determinism emphasizes the importance of an individual’s nature in development. It is the view that genetics is largely or totally responsible for an individual’s psychological characteristics and behavior. The term “biological determinism” is often used synonymously.

The blank slate (or “tabula rasa”) view of the mind emphasizes the importance of nurture and the environment. Notably described by English philosopher John Locke in the 1600s, it proposed that individuals are born with a mind like an unmarked chalkboard and that its contents are based on experience and learning. In the 20th century, major branches of psychology proposed a primary role for nurture and experience , rather than nature, in development, including Freudian psychoanalysis and behaviorism.

Photo by Daria Shevtsova from Pexels

Modern scientific methods have allowed researchers to advance further in understanding the complex relationships between genetics, life experience, and psychological characteristics, including mental health conditions and personality traits. Overall, the findings of contemporary studies underscore that with some exceptions—such as rare diseases caused by mutations in a single gene—no one factor, genetic or environmental, solely determines how a characteristic develops.

Scientists use multiple approaches to estimate how important genetics are for any given trait, but one of the most influential is the twin study. While identical (or monozygotic) twins share the same genetic code, fraternal (or dizygotic) twins share about 50 percent of the same genes, like typical siblings. Scientists are able to estimate the degree to which the variation in a particular trait, like extraversion , is explained by genetics in part by analyzing how similar identical twins are on that trait, compared to fraternal twins. ( These studies do have limitations, and estimates based on one population may not closely reflect all other populations.) 

It’s hard to call either “nature” or “nurture,” genes or the environment, more important to human psychology. The impact of one set of factors or the other depends on the characteristic, with some being more strongly related to one’s genes —for instance, autism appears to be more heritable than depression . But in general, psychological traits are shaped by a balance of interacting genetic and non-genetic influences.

Both genes and environmental factors can contribute to a person developing mental illness. Research finds that a major part of the variation in the risk for psychiatric conditions such as autism spectrum disorder, anxiety disorders, depression, and schizophrenia can be attributed to genetic differences. But not all of that risk is genetic, and life experiences, such as early-life abuse or neglect, may also affect risk of mental illness (and some individuals, based on their genetics, are likely more susceptible to environmental effects than others).

Like other psychological characteristics, personality is partly heritable. Research suggests less than half of the difference between people on measures of personality traits can be attributed to genes (one recent overall estimate is 40 percent). Non-genetic factors appear to be responsible for an equal or greater portion of personality differences between individuals. Some theorize that the social roles people adopt and invest in as they mature are among the more important non-genetic factors in personality development.

how do you start an essay about nature versus nurture

Using "sex" when you mean "gender" can mislead people into thinking you're discussing a biological phenomenon. A high-profile recent article is an example of this problem.

how do you start an essay about nature versus nurture

Most believe that Pavlovian conditioning is a form of learning that is limited to simple reactions like salivation. But Pavlov's own view of conditioning was vastly more expansive.

how do you start an essay about nature versus nurture

Shakespeare was gifted with the ability to reveal, on stage, his characters' hidden thoughts, feelings and motivations. He was a psychologist of sorts.

how do you start an essay about nature versus nurture

Personal Perspective: Nature may not have the power to erase childhood trauma, but it can offer a dose of comfort and nurturing to counteract its effects.

how do you start an essay about nature versus nurture

Is misophonia neurological or behavioral? Genetic or learned? Understanding misophonia defies binary thinking. Learn how to apply both/and thinking to conceptualize misophonia.

how do you start an essay about nature versus nurture

Genes, microtubules, early development.

how do you start an essay about nature versus nurture

A Personal Perspective: Facing the interplay between genetic factors and linguistic development prompted a question: Should I trust my instincts or those of others?

Human genetics

The latest findings on genetics reveals how genes may affect the risk for substance use disorders, and how they can help predict which treatment will work.

how do you start an essay about nature versus nurture

How do we make sense of new experiences? Ultimately, it's about how we categorize them—which we often do by "lumping" or "splitting" them.

how do you start an essay about nature versus nurture

How are twin studies used to answer questions related to the nature-and-nurture debate?

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

September 2024 magazine cover

It’s increasingly common for someone to be diagnosed with a condition such as ADHD or autism as an adult. A diagnosis often brings relief, but it can also come with as many questions as answers.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

Care Learning

2.2. Explain the nature versus nurture debate

September 8, 2024

Table of Contents

The nature versus nurture debate focuses on how genetic factors (nature) and environmental influences (nurture) shape human development and behaviour. Nature includes genetic inheritance and biological predispositions, while nurture encompasses upbringing, education, and cultural influences. Twin and adoption studies provide valuable insights into how genetics and environment interact, highlighting that both play significant roles in shaping individuals. Current research leans towards an integrated approach, recognising that both genetic and environmental factors are essential for personalised care in health and social care settings.

This guide will help you answer 2.2. Explain the nature versus nurture debate.

The nature versus nurture debate is one of the most enduring and widely discussed topics in health and social care. This long-standing discussion revolves around the contributions of genetic inheritance (nature) and environmental factors (nurture) in determining human development.

What is ‘Nature’?

The term ‘nature’ refers to the genetic or hereditary influences on individual growth and behaviour. Genes carry information that determine physical and some personality traits. Nature encompasses:

  • Genetics : The DNA passed down from parents to offspring that affects characteristics such as eye colour, height, and susceptibility to certain diseases.
  • Biological Predispositions : These include innate abilities and the predisposition to certain kinds of behaviour.
  • Evolutionary Psychology : This field studies how evolutionary processes, such as natural selection, shape who we are today.

What is ‘Nurture’?

‘Nurture’ encapsulates the environmental influences that impact our development, encompassing aspects of upbringing, culture, and personal experiences. Nurture includes:

  • Family Environment : The family setting, parenting styles, and socio-economic status affect development.
  • Education and Experience : Schools, teachers, peer influences, and personal experiences all shape capabilities and viewpoints.
  • Cultural Influences : Societal norms, values, and expectations play a significant role.
  • Life Situations and Events : Experiences such as trauma, relationships, and opportunities can influence behaviour and thinking.

Historical Background of the Debate

The nature versus nurture debate has roots dating back to the days of early philosophers like John Locke and Jean-Jacques Rousseau. Locke introduced the idea of the mind as a ‘tabula rasa’ (blank slate), which experience writes upon. Rousseau, on the other hand, emphasised natural development without the constraints of society. Over time, the debate has evolved, involving theories from psychology, biology, sociology, and anthropology.

Key Theories

Understanding key theories helps to comprehend the scope of the debate:

  • Genetic Determinism : This theory suggests that traits and behaviours are pre-determined by genes.
  • Behaviourism : Pioneered by John Watson and B.F. Skinner, this theory posits that behaviour is a result of learned experiences rather than innate factors.
  • Epigenetics : A more recent addition to the discussion, epigenetics examines how genes are expressed depending on environmental influences.

The Role of Twin and Adoption Studies

Twin studies, particularly those involving identical twins raised apart, have been crucial in exploring the nature versus nurture debate. By comparing similarities and differences, researchers assess the influence of genetics versus environment. Adoption studies also provide insight by examining children raised in environments different from their biological families.

Contemporary Science and the Integrated Approach

Today, the consensus leans towards an integrated approach. Most scientists agree that both nature and nurture interact in complex ways to influence human development. Genetics provide potential, which can be nurtured and moulded based on environmental interactions.

Examples of Interaction:

  • Temperament and Parenting : A child’s innate temperament may influence parenting style, which in turn affects the child’s behaviour.
  • IQ and Education : Genetic factors contribute to intelligence, but educational opportunities significantly enhance intellectual development.

Implications in Health and Social Care

Acknowledging both nature and nurture is crucial in health and social care:

  • Personalised Care : Understanding genetic predispositions helps tailor individual healthcare plans.
  • Preventative Measures : Knowledge of familial tendencies towards diseases encourages early intervention.
  • Social Policies : Recognising environmental factors leads to improved educational, housing, and welfare policies.
  • Therapeutic Approaches : Psychotherapy and behavioural interventions are shaped by recognising environmental influences on mental health.

Case Studies

Real-life case studies illustrate the nature and nurture interaction:

  • Criminal Behaviour : Some research suggests genetic predispositions towards aggression, but factors such as upbringing, peer influences, and socio-economic conditions often determine actual behaviour.
  • Language Acquisition : While the capacity for language might be innate, the specific language spoken is learned through interaction and immersion in a linguistic community.

Criticisms and Limitations

The debate faces criticisms and challenges:

  • Simplification : Critics argue that framing the debate in binary terms may oversimplify complex human behaviours.
  • Measurement Challenges : Quantifying the exact contribution of nature versus nurture remains difficult.

Moving Forward

The debate continues to evolve, especially with advances in genetic research and neurobiology. New tools and methods are continuously changing our understanding of human development.

Future Directions:

  • Genomic Research : Continuing research may offer deeper insights into how genes and the environment interact.
  • Technological Advances : Improved brain imaging and data analysis techniques can enhance understanding.

The nature versus nurture debate remains a pivotal, complex topic in health and social care. Acknowledging the interplay between genetic and environmental factors is essential. Both elements are integral to understanding and supporting individual growth and development. As research progresses, our ability to apply these insights for better, more personalized care will only improve. This will ensure a well-rounded approach to health and social care that is both informed and compassionate.

How useful was this post?

Click on a star to rate it!

As you found this post useful...

Follow us on social media!

We are sorry that this post was not useful for you! We review all negative feedback and will aim to improve this article.

Let us improve this post!

Tell us how we can improve this post?

  • Share on Facebook
  • Share on Pinterest

Related Posts

3.3. Compare and contrast approaches to health and social care practice based on psychological theory

3.3. Compare and contrast approaches to health and social care practice based on psychological theory

3.2. Explain the impact of psychological theory on health and social care practice

3.2. Explain the impact of psychological theory on health and social care practice

3.1. Describe psychological theories

3.1. Describe psychological theories

2.1. Describe the concepts of nature and nurture in relation to human development and behaviour

2.1. Describe the concepts of nature and nurture in relation to human development and behaviour

You cannot copy content of this page

Warning: The NCBI web site requires JavaScript to function. more...

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Institute of Medicine (US) Forum on Neuroscience and Nervous System Disorders. From Molecules to Minds: Challenges for the 21st Century: Workshop Summary. Washington (DC): National Academies Press (US); 2008.

Cover of From Molecules to Minds

From Molecules to Minds: Challenges for the 21st Century: Workshop Summary.

  • Hardcopy Version at National Academies Press

Grand Challenge: Nature Versus Nurture: How Does the Interplay of Biology and Experience Shape Our Brains and Make Us Who We Are?

Nature vs. nurture is one of the oldest questions in science. The answer is not an either/or, but rather it is both nature and nurture, acting in various degrees.

As summarized below in greater detail, many workshop participants—including Hyman, Marder, and Michael Greenberg, chair of the Department of Neurobiology at Harvard Medical School—chose to highlight the nature versus nurture question as one of the Grand Challenges of the field, but in so doing, they put a twist on the question, asking: How does the interplay of biology and experience shape our brains and make us who we are?

The key word there is “interplay.” “Interplay” suggests, and modern research in neuroscience demands, that there is a back and forth pattern between nature and nurture, a dynamic system that involves a continuous feedback loop shaping the physical structure of our brains.

  • Brain Plasticity

Thirty years ago, the working assumption in neuroscience was this: People are born with a set number of neurons, hardwired in a certain way, and brain function is essentially all downhill from there. We spend our lifetimes losing connections and neurons—the brain slowly falling apart until we die.

Except it is not true. In 1998, Fred “Rusty” Gage, working out of the Laboratory of Genetics at the Salk Institute, showed that the human brain can and does produce new nerve cells into adulthood ( Eriksson et al., 1998 ). In mice, he showed that exercise could increase the rate of neurogenesis, showing that the system is not fixed, but responds itself to experience and the outside world. The discovery of neurogenesis and an improved understanding of neuroplasticity—the ability of the brain to shape, form, eliminate, and strengthen new connections throughout life—has completely recast the question of nature versus nurture.

“Neurons can change their connectivity,” explained Blakemore. “They can change the strength of their connections. They can change the morphology of their connections. They can do it not necessarily just in early stages of life, although that is especially exaggerated, but probably throughout life responding to new environments and experiences.”

New research shows, for instance, that the number and strength of connections we have in the brain is determined by how often those connections are stimulated. The brain, if you will, has a “use it or lose it” approach to neurological maintenance.

Genetic programming also plays a key role. In most cases, the initial formation of a synapse occurs independent of stimulation. But if that synapse is not used, the brain will “prune” or eliminate it. Conversely, the more often a connection is used, the stronger it becomes in a physical sense, with more dendritic spines connecting to one another and a stronger net connection over time.

On the developmental side, researchers now understand the critical role that sensory input plays in shaping the wiring of the brain from the earliest days. Blakemore discussed work in his lab on the development of neural wiring in mice. Researchers have known since the 1960s that the neurons connected to the ultrasensitive whiskers of mice align themselves in a format called “barrel fields.” Each of these barrel fields is connected to a single whisker, although how or why they influence function is unknown. Blakemore showed that if you removed a clump of whiskers at an early age, the segment of the brain linked to that area never develops the barrel structure.

Similar research has shown in mice that if you tape one eye shut from birth, the mouse never gains the ability to see from that eye—it needs the stimulation to develop. However, if you tape shut the eye of an adult mouse for a similar period of time, vision is not affected.

All this seems to point the finger toward experience, but of course, the system really works as a complete feedback loop.

“We used to think . . . that the capacity of the brain to change its connections was an entirely independent process from the genetic regulation of structure,” said Blakemore. “But, of course, that cannot be the case. If adaptive change is possible, that must be the consequence of having molecular mechanisms that mediate those changes. Plasticity is a characteristic that has been selected for, so there must be genes for plasticity.”

In the case of barrel fields, Blakemore’s lab and other investigators have identified a number of molecules and genes that appear to be involved in mediating between incoming information for the whiskers and the anatomical changes necessary to produce the barrel field.

Understanding how this interplay works has huge implications for understanding how our brain develops and changes over time, and raises a number of interesting questions. Marder, for instance, asked how the brain can be so plastic and yet still retain memories over time.

Plasticity, however, is just one half of the equation; the underlying genetics are critically important, and new techniques and technologies make this a particularly interesting time to address these questions. For instance, modern, high-throughput gene-profiling technologies allow researchers to figure out all of the underlying transcriptions in a neuron, and see how these are manifest in the body.

Understanding the interplay of biology and experience on learning and development will surely require understanding the biological processes that cause changes in individual neurons and synapses. But this is only part of the puzzle. We must also understand the control of learning processes at a system-wide level in the brain. How does the brain orchestrate the right set of neural synaptic updates based on training experiences we encounter over our lifetime? Given the tremendous number of synapses in the brain, it is unlikely that a purely bottom-up approach will suffice to answer this question.

A complementary approach to studying experience-based learning at a system level relies on machine learning algorithms that have been developed to allow robots to learn from experience, described Mitchell. One intriguing study has shown that temporal-difference learning algorithms, which enable robots successfully to learn control strategies such as how to fly helicopters autonomously, can be used to predict the neural activity of dopamine-based systems in the human brain that are involved in reward-based learning ( Schultz et al., 1997 ; Seymour et al., 2004 ; Doya, 2008 ). The integration of such system-level computational models alongside new research into synaptic plasticity offers an opportunity to examine the interplay of biology and experience on learning and development from multiple perspectives.

New tools will allow researchers to understand how variability between different genes and neurons and neuronal activity could influence behavior and capabilities across different people, the researchers said. Who we are is not only influenced by the yes/no expression of genes, but also the specific levels of expression among different genes, which in turn influences neuronal activity.

  • Gene-Environment Interactions

Nature and nurture are not simply additive interactions that result in a particular behavior, but rather a complex interplay of many factors. Nature includes not only the usual factors—parents, homes, what people learn—but also many other factors that individuals are exposed to routinely in their daily environments. As Marder emphasized, we cannot simply assume that gene X produces behavior Y. Instead as Bialek described, there are often many additional factors that directly and indirectly interact with gene X and ultimately influence variants in behavior. These variants define individuality.

As previously described, it has been known for almost 50 years that experience from the outside environment shapes our brain. This comes initially from the original work of Nobel Laureates David Hubel and Torsten Wiesel who studied how information is sensed and processed in the part of the brain responsible for vision. As Greenberg commented, the field is now at a point where we could in the next 10 years attain a significant mechanistic understanding of how the environment impinges directly on our genes to give rise to a malleable organ that allows us to adapt and change.

  • Huge Clinical Importance

Multiple participants at the workshop—including Nora Volkow, director of the National Institute on Drug Abuse; Joseph Takahashi, investigator of the Howard Hughes Medical Institute and Northwestern University; Lichtman; and Coyle—highlighted the role of genetics in shaping the brain as one of the fundamental challenges for neuroscience, both for its basic scientific interest and for its practical applications: Understanding how genes and experience come together to impact the brain could significantly alter how we think about treating neurological disease. Many of the most common neurological and mental health disorders—schizophrenia, bipolar disorder, autism, Parkinson’s disease, multiple sclerosis, Alzheimer’s disease—are complex genetic disorders that are influenced by environmental factors.

Alcino Silva, professor in the Departments of Neurobiology, Psychiatry and Psychology at the University of California, Los Angeles, showcased research from his lab showing he could treat and reverse developmental disorders in adult mice. This finding is worth repeating because it is so contrary to our general thinking on developmental disorders: Scientists working out of Silva’s lab have been able to reverse the impacts of the developmental disorder NF-1 (Neurofibromatosis type 1), which is caused by genetic malfunction, by treating the pathology of the disease in adult mice. These mice, which have obvious cognitive deficits, regain mental function when treated; Silva has advanced the study into human clinical trials.

The applications of this vein of study extend beyond developmental disorders. A growing body of evidence is revealing a massive feedback loop among genetics, neurological structure, experience, and disease. You are three times more likely to die from a heart attack if you are depressed than if you are not, for instance, and depression has a huge impact on diabetes as well, stated Coyle.

Taking a step backward, clinical data also show that people who experience multiple stressful episodes in their lives tend to suffer from clinical depression. But there is tremendous variation: Some people are resistant to stress and others are not.

“It turns out that the pattern is correlated with a polymorphic variation in one particular gene, the gene for the transporter for serotonin, a transmitter which is known to be involved in regulating mood,” explained Blakemore.

How do genes work in the brain to determine our resilience to stress, and how can those capabilities be monitored and modulated for better health?

  • The Way Forward

Asking these kinds of questions was not realistic 10 or even 5 years ago. The advent of high-throughput gene profiling and the growing sophistication of our ability to manipulate genes in animal models lets us, for the first time, explore the role that genes play in both creating and modulating our neural structures. At the same time, new imaging techniques and technologies like channel rhodopsin “light switches” let us better characterize neural systems and their response to the world around us, and to begin to plumb the tremendous feedback loop among genes, experience, and the physical activity in the brain.

Until quite recently, these have remained philosophical questions, commented Marder. However, the field of neuroscience is now in a position—through all the molecular, connectomics, and technological advances—to put these questions on firm mechanistic, biological bases, and to attack them scientifically.

  • Cite this Page Institute of Medicine (US) Forum on Neuroscience and Nervous System Disorders. From Molecules to Minds: Challenges for the 21st Century: Workshop Summary. Washington (DC): National Academies Press (US); 2008. Grand Challenge: Nature Versus Nurture: How Does the Interplay of Biology and Experience Shape Our Brains and Make Us Who We Are?
  • PDF version of this title (527K)

In this Page

Other titles in this collection.

  • The National Academies Collection: Reports funded by National Institutes of Health

Recent Activity

  • Grand Challenge: Nature Versus Nurture: How Does the Interplay of Biology and Ex... Grand Challenge: Nature Versus Nurture: How Does the Interplay of Biology and Experience Shape Our Brains and Make Us Who We Are? - From Molecules to Minds

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

Home — Essay Samples — Psychology — Behavioral psychology — Nature Versus Nurture

one px

Essays on Nature Versus Nurture

When it comes to writing an essay on the nature versus nurture debate, students have a plethora of topics to choose from. This age-old debate focuses on the relative importance of an individual's innate qualities (nature) and personal experiences (nurture) in determining their behavior and traits. The topic is not only fascinating but also relevant in various fields, including psychology, sociology, biology, and education.

The nature versus nurture debate has been a topic of interest for scholars and researchers for decades. Understanding the interaction between genetics and environment can provide valuable insights into various aspects of human development, such as intelligence, personality, mental health, and social behavior. Exploring this debate in an essay allows students to critically analyze and evaluate different perspectives, contributing to a deeper understanding of human nature.

When choosing a nature versus nurture essay topic, it's essential to consider your interests, the availability of credible sources, and the specific field of study you're focusing on. Whether you're interested in psychology, sociology, biology, or education, there are numerous compelling topics to explore. It's also important to select a topic that allows for critical analysis and encourages thoughtful discussion.

Recommended Nature Versus Nurture Essay Topics

When it comes to the nature versus nurture debate, there are countless essay topics to explore. Whether you're interested in psychology, sociology, biology, or any other related field, there's a topic for you. Below, we've compiled a list of nature versus nurture essay topics to help you get started on your next assignment.

Psychology and Behavior

  • The influence of genetics on personality traits
  • The role of environmental factors in shaping behavior
  • Exploring the heritability of intelligence
  • Genetic and environmental influences on mental health disorders
  • The impact of parenting styles on child development
  • Gender identity: nature versus nurture

Sociology and Culture

  • The cultural influences on individual behavior and beliefs
  • The role of family dynamics in shaping societal norms
  • Racial identity and the nature versus nurture debate
  • Exploring the influence of peer groups on adolescent behavior
  • The impact of socioeconomic status on personal development
  • Criminal behavior: genetic predisposition or environmental factors?

Biology and Genetics

  • The genetic basis of personality traits and behaviors
  • Epigenetics: how environmental factors impact gene expression
  • Genetic predisposition to certain health conditions
  • Evolutionary perspectives on human behavior
  • The influence of nature and nurture on physical health
  • Genetic diversity and its impact on individual differences

Education and Learning

  • The impact of genetics on learning abilities and academic achievement
  • Educational interventions for children with genetic predispositions
  • The role of the environment in shaping learning outcomes
  • Learning styles: nature versus nurture
  • The influence of socioeconomic factors on educational attainment
  • Cultural influences on educational experiences and outcomes

These are just a few examples of the many nature versus nurture essay topics available for exploration. From psychology and sociology to biology and education, the debate offers a wide range of thought-provoking subjects for students to delve into. By selecting a topic that aligns with their interests and expertise, students can delve deep into the complexities of the nature versus nurture debate, fostering critical thinking and scholarly analysis.

Nature Vs Nurture and Its Impact on a Person’s Life

Discussion of whether a criminal is born or made, made-to-order essay as fast as you need it.

Each essay is customized to cater to your unique preferences

+ experts online

My Views of The Nature Vs Nurture Debate

A research on whether criminal psychopaths are born or made, discussion of whether serial killers are born or made criminals, nurture and nature in "girls, at play", let us write you an essay from scratch.

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Serial Killers: Born Or Made Evil

The nature versus nurture debate in the blasphemy of talking politics during bach year, an article by susan mcclary, the impact of nature and nurture on the development of a serial killer, a case study on the debate of nature versus nurture in the case of the twins separated at birth, get a personalized essay in under 3 hours.

Expert-written essays crafted with your exact needs in mind

The Role of Nature and Nurture in Determining a Serial Killer

Specific psychological disorders: nature vs nurture, nature vs nurture in relation to drug addiction, research paper on what makes a serial killer, criminals are made, not born: the factors impacting the criminal behavior, research the nature vs nature and its effect on human behaviour, no one is born a criminal, they are made, nature vs nurture in truman capote’s in cold blood, the issue of intelligence: nature and nurture, the debate over shyness being attributed to nature rather than nurture, an in-depth look into the movie the blind side through education psychology lenses, serial killers: a product of nature or nurture, the making of a serial killer: nature vs. nurture, victor frankenstein: nature vs nurture, the contributions of the nature versus nurture theories in child obesity, the nature vs nurture debate, ericksons theory nature and nurture, influence of nature and nurture: consciousness of a serial killer, developmental processes, periods, and theories, heredity vs environment, relevant topics.

  • Procrastination
  • Human Behavior
  • Child Behavior
  • Reinforcement
  • Prosocial Behavior
  • Obedience to Authority

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

Bibliography

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

how do you start an essay about nature versus nurture

IMAGES

  1. Essay Sample: Nature Versus Nurture

    how do you start an essay about nature versus nurture

  2. 21 Nature vs Nurture Examples (2024)

    how do you start an essay about nature versus nurture

  3. Personal Reflection on Nature vs. Nurture Debate Argumentative Essay on

    how do you start an essay about nature versus nurture

  4. Nature Vs. Nurture Essay Example

    how do you start an essay about nature versus nurture

  5. Nature vs Nurture Position Paper Argumentative Free Essay Example 520

    how do you start an essay about nature versus nurture

  6. The Nature vs. Nurture Debate: Exploring the Dynamics of Human Behavior

    how do you start an essay about nature versus nurture

VIDEO

  1. Nature versus Nurture

  2. NATURE VERSUS NURTURE-POETRY RECITATION DAERAH KERIAN, PERAK

  3. Moshe Szyf

  4. Nature vs Nurture in Child Development

  5. 5 lines on Nature essay || Nature 5 lines in English

  6. Essay On Nature In English || Short Essay Writing ||

COMMENTS

  1. Nature Vs Nurture

    Nature vs. Nurture Essay. Exclusively available on IvyPanda®. Nature is the influence of genetics or hereditary factors in determining the individual's behavior. In other words, it is how natural factors shape the behavior or personality of an individual. In most cases, nature determines the physical characteristics which in effect influence ...

  2. The Nature vs Nurture Debate: [Essay Example], 603 words

    The nature vs nurture debate has long been an ongoing discussion in psychology as to which factors have a greater impact on human development, whether it is genetic factors or environmental factors. This essay discusses the three main perspectives on this debate, namely the nature argument, the nurture argument, and the interactionist perspective, while also highlighting criticisms and ...

  3. Nature versus Nurture: the Simple Contrast Essay

    The relationship between nature and nurture has constantly raised controversial debates about the roles of the two factors in heredity and external behavior of a person. As a result, there has been confusion about the functions of nature and nurture in shaping human personality. Some psychologists have shown strong support for nature as a ...

  4. 80 Nature vs Nurture Essay Topics & Examples

    At first glance, a nature vs nurture essay seems to be easy. However, a limited view of the subject matter may cost you marks, which is why it is crucial to offer a well-rounded account of the debate. Here are some of the aspects that you might want to include in your essay on nature vs nurture. The importance of the topic.

  5. Nature vs. Nurture: Meaning, Examples, and Debate

    What Are Nature vs. Nurture Examples?

  6. Nature Vs. Nurture: The Interplay Between Genetics and Environment

    Introduction. For centuries, the debate over the roles of genetics (nature) and environment (nurture) in shaping human behavior and traits has captivated scientists, philosophers, and educators alike.

  7. Nature Vs Nurture in Psychology: [Essay Example], 644 words

    The debate between nature and nurture has been a long-standing one in the field of psychology. It pertains to the relative importance of an individual's innate qualities (nature) versus their personal experiences and environment (nurture) in determining behavior and mental processes. This essay aims to delve into this debate, exploring the ...

  8. Nature Vs Nurture Essay for Students and Children

    A1. Nurture means the way a person grooms himself. This is done in order to achieve success. Nurturing is essential in a person's life because it can be a way a person can cross the barrier and do something great. Moreover nurture also means the mentoring and care a person is getting in an environment. Q2.

  9. Nature vs. Nurture in Psychology

    Nature vs. Nurture Debate in Psychology

  10. Nature vs. Nurture: Differences and Examples

    Nature and nurture in psychology represent two explanations for behaviors, human characteristics, mental health, and personality. While some characteristics, such as height, eye color, and skin ...

  11. Nature vs. Nurture: Genetic and Environmental Influences

    Nature vs. Nurture: Genetic and Environmental Influences

  12. A guide to writing a nature VS. nurture debate essay

    This statement shows the main objective of your paper. It encapsulates whatever you want to convey to the reader. Choose the correct nature vs nurture essay outline while writing to ensure you tackle both sides adequately. Begin with a catchy introduction. The first paragraph the interest of the reader on the whole essay.

  13. Nature vs. Nurture Debate: What Really Matters in Psychology

    Nature vs. Nurture Debate: What Really Matters in ...

  14. Nature Vs Nurture Essay: A Guide And Introduction

    The main structure of nature vs nurture essay is the same as any other essay. It consists of an introduction, the body of the essay and a conclusion. Introduction- Introduce the topic to the reader. Explain in brief about the whole nature vs nurture debate and how you are going to use it to analyse your subject.

  15. Nature versus nurture: how modern science is rewriting it

    Reading and writing is fundamental to our ability to thrive in the modern world, yet some individuals find it difficult to learn. This difficulty can arise for many reasons, including dyslexia, a ...

  16. Nature versus nurture

    Nature versus nurture. Nature versus nurture is a long-standing debate in biology and society about the relative influence on human beings of their genetic inheritance (nature) and the environmental conditions of their development (nurture). The alliterative expression "nature and nurture" in English has been in use since at least the ...

  17. Nature Vs Nurture Sociology: [Essay Example], 469 words

    Nature Vs Nurture Sociology. The debate between nature and nurture has been a longstanding topic of discussion in various fields, including sociology. This debate revolves around the question of whether human behavior is primarily determined by genetic factors (nature) or by environmental influences (nurture). While both nature and nurture play ...

  18. "Nature vs. Nurture" Debate in Education Essay

    The 'Nature vs. Nurture' debate holds in several areas of psychology and refers to the question of whether our genes ('nature') determine attributes such as intelligence or language aptitude or whether such attributes can be acquired and improved through experience ('nurture'). The outcome is of great importance for educators since ...

  19. Nature and Nurture as an Enduring Tension in the History of Psychology

    The "Middle Ground" Perspective on Nature-Nurture. Twenty-first-century psychology textbooks often state that the nature-nurture debates have been resolved, and the tension relaxed, because we have moved on from emphasizing nature or nurture to appreciating that development necessarily involves both nature and nurture. In this middle-ground position, one asks how nature and nurture ...

  20. Nature vs. Nurture

    Nature vs. Nurture

  21. 2.2. Explain The Nature Versus Nurture Debate

    Explain the nature versus nurture debate. The nature versus nurture debate is one of the most enduring and widely discussed topics in health and social care. This long-standing discussion revolves around the contributions of genetic inheritance (nature) and environmental factors (nurture) in determining human development. What is 'Nature'?

  22. Difference Between Nature and Nurture

    Nature. Nature refers to the genetic and biological factors that influence an individual's traits and behaviors. These factors are inherited from one's parents and are believed to play a significant role in shaping an individual's personality, intelligence, and physical characteristics. On the other hand, nurture encompasses the environmental ...

  23. Grand Challenge: Nature Versus Nurture: How Does the Interplay of

    Nature Versus Nurture: How Does the Interplay of Biology ...

  24. Essays on Nature Versus Nurture

    The Impact of Nature and Nurture on The Development of a Serial Killer. 4 pages / 1987 words. Using the social conflict theory to have a deeper understanding on how a serial killer is made. Through many conflicts in a person's life, a person has to choose whether to live a normal life or a life of a criminal.