ORIGINAL RESEARCH article

A comparative analysis of student performance in an online vs. face-to-face environmental science course from 2009 to 2016.

\nJasmine Paul

  • Department of Biology, Fort Valley State University, Fort Valley, GA, United States

A growing number of students are now opting for online classes. They find the traditional classroom modality restrictive, inflexible, and impractical. In this age of technological advancement, schools can now provide effective classroom teaching via the Web. This shift in pedagogical medium is forcing academic institutions to rethink how they want to deliver their course content. The overarching purpose of this research was to determine which teaching method proved more effective over the 8-year period. The scores of 548 students, 401 traditional students and 147 online students, in an environmental science class were used to determine which instructional modality generated better student performance. In addition to the overarching objective, we also examined score variabilities between genders and classifications to determine if teaching modality had a greater impact on specific groups. No significant difference in student performance between online and face-to-face (F2F) learners overall, with respect to gender, or with respect to class rank were found. These data demonstrate the ability to similarly translate environmental science concepts for non-STEM majors in both traditional and online platforms irrespective of gender or class rank. A potential exists for increasing the number of non-STEM majors engaged in citizen science using the flexibility of online learning to teach environmental science core concepts.

Introduction

The advent of online education has made it possible for students with busy lives and limited flexibility to obtain a quality education. As opposed to traditional classroom teaching, Web-based instruction has made it possible to offer classes worldwide through a single Internet connection. Although it boasts several advantages over traditional education, online instruction still has its drawbacks, including limited communal synergies. Still, online education seems to be the path many students are taking to secure a degree.

This study compared the effectiveness of online vs. traditional instruction in an environmental studies class. Using a single indicator, we attempted to see if student performance was effected by instructional medium. This study sought to compare online and F2F teaching on three levels—pure modality, gender, and class rank. Through these comparisons, we investigated whether one teaching modality was significantly more effective than the other. Although there were limitations to the study, this examination was conducted to provide us with additional measures to determine if students performed better in one environment over another ( Mozes-Carmel and Gold, 2009 ).

The methods, procedures, and operationalization tools used in this assessment can be expanded upon in future quantitative, qualitative, and mixed method designs to further analyze this topic. Moreover, the results of this study serve as a backbone for future meta-analytical studies.

Origins of Online Education

Computer-assisted instruction is changing the pedagogical landscape as an increasing number of students are seeking online education. Colleges and universities are now touting the efficiencies of Web-based education and are rapidly implementing online classes to meet student needs worldwide. One study reported “increases in the number of online courses given by universities have been quite dramatic over the last couple of years” ( Lundberg et al., 2008 ). Think tanks are also disseminating statistics on Web-based instruction. “In 2010, the Sloan Consortium found a 17% increase in online students from the years before, beating the 12% increase from the previous year” ( Keramidas, 2012 ).

Contrary to popular belief, online education is not a new phenomenon. The first correspondence and distance learning educational programs were initiated in the mid-1800s by the University of London. This model of educational learning was dependent on the postal service and therefore wasn't seen in American until the later Nineteenth century. It was in 1873 when what is considered the first official correspondence educational program was established in Boston, Massachusetts known as the “Society to Encourage Home Studies.” Since then, non-traditional study has grown into what it is today considered a more viable online instructional modality. Technological advancement indubitably helped improve the speed and accessibility of distance learning courses; now students worldwide could attend classes from the comfort of their own homes.

Qualities of Online and Traditional Face to Face (F2F) Classroom Education

Online and traditional education share many qualities. Students are still required to attend class, learn the material, submit assignments, and complete group projects. While teachers, still have to design curriculums, maximize instructional quality, answer class questions, motivate students to learn, and grade assignments. Despite these basic similarities, there are many differences between the two modalities. Traditionally, classroom instruction is known to be teacher-centered and requires passive learning by the student, while online instruction is often student-centered and requires active learning.

In teacher-centered, or passive learning, the instructor usually controls classroom dynamics. The teacher lectures and comments, while students listen, take notes, and ask questions. In student-centered, or active learning, the students usually determine classroom dynamics as they independently analyze the information, construct questions, and ask the instructor for clarification. In this scenario, the teacher, not the student, is listening, formulating, and responding ( Salcedo, 2010 ).

In education, change comes with questions. Despite all current reports championing online education, researchers are still questioning its efficacy. Research is still being conducted on the effectiveness of computer-assisted teaching. Cost-benefit analysis, student experience, and student performance are now being carefully considered when determining whether online education is a viable substitute for classroom teaching. This decision process will most probably carry into the future as technology improves and as students demand better learning experiences.

Thus far, “literature on the efficacy of online courses is expansive and divided” ( Driscoll et al., 2012 ). Some studies favor traditional classroom instruction, stating “online learners will quit more easily” and “online learning can lack feedback for both students and instructors” ( Atchley et al., 2013 ). Because of these shortcomings, student retention, satisfaction, and performance can be compromised. Like traditional teaching, distance learning also has its apologists who aver online education produces students who perform as well or better than their traditional classroom counterparts ( Westhuis et al., 2006 ).

The advantages and disadvantages of both instructional modalities need to be fully fleshed out and examined to truly determine which medium generates better student performance. Both modalities have been proven to be relatively effective, but, as mentioned earlier, the question to be asked is if one is truly better than the other.

Student Need for Online Education

With technological advancement, learners now want quality programs they can access from anywhere and at any time. Because of these demands, online education has become a viable, alluring option to business professionals, stay-at home-parents, and other similar populations. In addition to flexibility and access, multiple other face value benefits, including program choice and time efficiency, have increased the attractiveness of distance learning ( Wladis et al., 2015 ).

First, prospective students want to be able to receive a quality education without having to sacrifice work time, family time, and travel expense. Instead of having to be at a specific location at a specific time, online educational students have the freedom to communicate with instructors, address classmates, study materials, and complete assignments from any Internet-accessible point ( Richardson and Swan, 2003 ). This type of flexibility grants students much-needed mobility and, in turn, helps make the educational process more enticing. According to Lundberg et al. (2008) “the student may prefer to take an online course or a complete online-based degree program as online courses offer more flexible study hours; for example, a student who has a job could attend the virtual class watching instructional film and streaming videos of lectures after working hours.”

Moreover, more study time can lead to better class performance—more chapters read, better quality papers, and more group project time. Studies on the relationship between study time and performance are limited; however, it is often assumed the online student will use any surplus time to improve grades ( Bigelow, 2009 ). It is crucial to mention the link between flexibility and student performance as grades are the lone performance indicator of this research.

Second, online education also offers more program choices. With traditional classroom study, students are forced to take courses only at universities within feasible driving distance or move. Web-based instruction, on the other hand, grants students electronic access to multiple universities and course offerings ( Salcedo, 2010 ). Therefore, students who were once limited to a few colleges within their immediate area can now access several colleges worldwide from a single convenient location.

Third, with online teaching, students who usually don't participate in class may now voice their opinions and concerns. As they are not in a classroom setting, quieter students may feel more comfortable partaking in class dialogue without being recognized or judged. This, in turn, may increase average class scores ( Driscoll et al., 2012 ).

Benefits of Face-to-Face (F2F) Education via Traditional Classroom Instruction

The other modality, classroom teaching, is a well-established instructional medium in which teaching style and structure have been refined over several centuries. Face-to-face instruction has numerous benefits not found in its online counterpart ( Xu and Jaggars, 2016 ).

First and, perhaps most importantly, classroom instruction is extremely dynamic. Traditional classroom teaching provides real-time face-to-face instruction and sparks innovative questions. It also allows for immediate teacher response and more flexible content delivery. Online instruction dampens the learning process because students must limit their questions to blurbs, then grant the teacher and fellow classmates time to respond ( Salcedo, 2010 ). Over time, however, online teaching will probably improve, enhancing classroom dynamics and bringing students face-to face with their peers/instructors. However, for now, face-to-face instruction provides dynamic learning attributes not found in Web-based teaching ( Kemp and Grieve, 2014 ).

Second, traditional classroom learning is a well-established modality. Some students are opposed to change and view online instruction negatively. These students may be technophobes, more comfortable with sitting in a classroom taking notes than sitting at a computer absorbing data. Other students may value face-to-face interaction, pre and post-class discussions, communal learning, and organic student-teacher bonding ( Roval and Jordan, 2004 ). They may see the Internet as an impediment to learning. If not comfortable with the instructional medium, some students may shun classroom activities; their grades might slip and their educational interest might vanish. Students, however, may eventually adapt to online education. With more universities employing computer-based training, students may be forced to take only Web-based courses. Albeit true, this doesn't eliminate the fact some students prefer classroom intimacy.

Third, face-to-face instruction doesn't rely upon networked systems. In online learning, the student is dependent upon access to an unimpeded Internet connection. If technical problems occur, online students may not be able to communicate, submit assignments, or access study material. This problem, in turn, may frustrate the student, hinder performance, and discourage learning.

Fourth, campus education provides students with both accredited staff and research libraries. Students can rely upon administrators to aid in course selection and provide professorial recommendations. Library technicians can help learners edit their papers, locate valuable study material, and improve study habits. Research libraries may provide materials not accessible by computer. In all, the traditional classroom experience gives students important auxiliary tools to maximize classroom performance.

Fifth, traditional classroom degrees trump online educational degrees in terms of hiring preferences. Many academic and professional organizations do not consider online degrees on par with campus-based degrees ( Columbaro and Monaghan, 2009 ). Often, prospective hiring bodies think Web-based education is a watered-down, simpler means of attaining a degree, often citing poor curriculums, unsupervised exams, and lenient homework assignments as detriments to the learning process.

Finally, research shows online students are more likely to quit class if they do not like the instructor, the format, or the feedback. Because they work independently, relying almost wholly upon self-motivation and self-direction, online learners may be more inclined to withdraw from class if they do not get immediate results.

The classroom setting provides more motivation, encouragement, and direction. Even if a student wanted to quit during the first few weeks of class, he/she may be deterred by the instructor and fellow students. F2F instructors may be able to adjust the structure and teaching style of the class to improve student retention ( Kemp and Grieve, 2014 ). With online teaching, instructors are limited to electronic correspondence and may not pick-up on verbal and non-verbal cues.

Both F2F and online teaching have their pros and cons. More studies comparing the two modalities to achieve specific learning outcomes in participating learner populations are required before well-informed decisions can be made. This study examined the two modalities over eight (8) years on three different levels. Based on the aforementioned information, the following research questions resulted.

RQ1: Are there significant differences in academic performance between online and F2F students enrolled in an environmental science course?

RQ2: Are there gender differences between online and F2F student performance in an environmental science course?

RQ3: Are there significant differences between the performance of online and F2F students in an environmental science course with respect to class rank?

The results of this study are intended to edify teachers, administrators, and policymakers on which medium may work best.

Methodology

Participants.

The study sample consisted of 548 FVSU students who completed the Environmental Science class between 2009 and 2016. The final course grades of the participants served as the primary comparative factor in assessing performance differences between online and F2F instruction. Of the 548 total participants, 147 were online students while 401 were traditional students. This disparity was considered a limitation of the study. Of the 548 total students, 246 were male, while 302 were female. The study also used students from all four class ranks. There were 187 freshmen, 184 sophomores, 76 juniors, and 101 seniors. This was a convenience, non-probability sample so the composition of the study set was left to the discretion of the instructor. No special preferences or weights were given to students based upon gender or rank. Each student was considered a single, discrete entity or statistic.

All sections of the course were taught by a full-time biology professor at FVSU. The professor had over 10 years teaching experience in both classroom and F2F modalities. The professor was considered an outstanding tenured instructor with strong communication and management skills.

The F2F class met twice weekly in an on-campus classroom. Each class lasted 1 h and 15 min. The online class covered the same material as the F2F class, but was done wholly on-line using the Desire to Learn (D2L) e-learning system. Online students were expected to spend as much time studying as their F2F counterparts; however, no tracking measure was implemented to gauge e-learning study time. The professor combined textbook learning, lecture and class discussion, collaborative projects, and assessment tasks to engage students in the learning process.

This study did not differentiate between part-time and full-time students. Therefore, many part-time students may have been included in this study. This study also did not differentiate between students registered primarily at FVSU or at another institution. Therefore, many students included in this study may have used FVSU as an auxiliary institution to complete their environmental science class requirement.

Test Instruments

In this study, student performance was operationalized by final course grades. The final course grade was derived from test, homework, class participation, and research project scores. The four aforementioned assessments were valid and relevant; they were useful in gauging student ability and generating objective performance measurements. The final grades were converted from numerical scores to traditional GPA letters.

Data Collection Procedures

The sample 548 student grades were obtained from FVSU's Office of Institutional Research Planning and Effectiveness (OIRPE). The OIRPE released the grades to the instructor with the expectation the instructor would maintain confidentiality and not disclose said information to third parties. After the data was obtained, the instructor analyzed and processed the data though SPSS software to calculate specific values. These converted values were subsequently used to draw conclusions and validate the hypothesis.

Summary of the Results: The chi-square analysis showed no significant difference in student performance between online and face-to-face (F2F) learners [χ 2 (4, N = 548) = 6.531, p > 0.05]. The independent sample t -test showed no significant difference in student performance between online and F2F learners with respect to gender [ t (145) = 1.42, p = 0.122]. The 2-way ANOVA showed no significant difference in student performance between online and F2F learners with respect to class rank ( Girard et al., 2016 ).

Research question #1 was to determine if there was a statistically significant difference between the academic performance of online and F2F students.

Research Question 1

The first research question investigated if there was a difference in student performance between F2F and online learners.

To investigate the first research question, we used a traditional chi-square method to analyze the data. The chi-square analysis is particularly useful for this type of comparison because it allows us to determine if the relationship between teaching modality and performance in our sample set can be extended to the larger population. The chi-square method provides us with a numerical result which can be used to determine if there is a statistically significant difference between the two groups.

Table 1 shows us the mean and SD for modality and for gender. It is a general breakdown of numbers to visually elucidate any differences between scores and deviations. The mean GPA for both modalities is similar with F2F learners scoring a 69.35 and online learners scoring a 68.64. Both groups had fairly similar SDs. A stronger difference can be seen between the GPAs earned by men and women. Men had a 3.23 mean GPA while women had a 2.9 mean GPA. The SDs for both groups were almost identical. Even though the 0.33 numerical difference may look fairly insignificant, it must be noted that a 3.23 is approximately a B+ while a 2.9 is approximately a B. Given a categorical range of only A to F, a plus differential can be considered significant.

www.frontiersin.org

Table 1 . Means and standard deviations for 8 semester- “Environmental Science data set.”

The mean grade for men in the environmental online classes ( M = 3.23, N = 246, SD = 1.19) was higher than the mean grade for women in the classes ( M = 2.9, N = 302, SD = 1.20) (see Table 1 ).

First, a chi-square analysis was performed using SPSS to determine if there was a statistically significant difference in grade distribution between online and F2F students. Students enrolled in the F2F class had the highest percentage of A's (63.60%) as compared to online students (36.40%). Table 2 displays grade distribution by course delivery modality. The difference in student performance was statistically significant, χ 2 (4, N = 548) = 6.531, p > 0.05. Table 3 shows the gender difference on student performance between online and F2F students.

www.frontiersin.org

Table 2 . Contingency table for student's academic performance ( N = 548).

www.frontiersin.org

Table 3 . Gender * performance crosstabulation.

Table 2 shows us the performance measures of online and F2F students by grade category. As can be seen, F2F students generated the highest performance numbers for each grade category. However, this disparity was mostly due to a higher number of F2F students in the study. There were 401 F2F students as opposed to just 147 online students. When viewing grades with respect to modality, there are smaller percentage differences between respective learners ( Tanyel and Griffin, 2014 ). For example, F2F learners earned 28 As (63.60% of total A's earned) while online learners earned 16 As (36.40% of total A's earned). However, when viewing the A grade with respect to total learners in each modality, it can be seen that 28 of the 401 F2F students (6.9%) earned As as compared to 16 of 147 (10.9%) online learners. In this case, online learners scored relatively higher in this grade category. The latter measure (grade total as a percent of modality total) is a better reflection of respective performance levels.

Given a critical value of 7.7 and a d.f. of 4, we were able to generate a chi-squared measure of 6.531. The correlating p -value of 0.163 was greater than our p -value significance level of 0.05. We, therefore, had to accept the null hypothesis and reject the alternative hypothesis. There is no statistically significant difference between the two groups in terms of performance scores.

Research Question 2

The second research question was posed to evaluate if there was a difference between online and F2F varied with gender. Does online and F2F student performance vary with respect to gender? Table 3 shows the gender difference on student performance between online and face to face students. We used chi-square test to determine if there were differences in online and F2F student performance with respect to gender. The chi-square test with alpha equal to 0.05 as criterion for significance. The chi-square result shows that there is no statistically significant difference between men and women in terms of performance.

Research Question 3

The third research question tried to determine if there was a difference between online and F2F varied with respect to class rank. Does online and F2F student performance vary with respect to class rank?

Table 4 shows the mean scores and standard deviations of freshman, sophomore, and junior and senior students for both online and F2F student performance. To test the third hypothesis, we used a two-way ANOVA. The ANOVA is a useful appraisal tool for this particular hypothesis as it tests the differences between multiple means. Instead of testing specific differences, the ANOVA generates a much broader picture of average differences. As can be seen in Table 4 , the ANOVA test for this particular hypothesis states there is no significant difference between online and F2F learners with respect to class rank. Therefore, we must accept the null hypothesis and reject the alternative hypothesis.

www.frontiersin.org

Table 4 . Descriptive analysis of student performance by class rankings gender.

The results of the ANOVA show there is no significant difference in performance between online and F2F students with respect to class rank. Results of ANOVA is presented in Table 5 .

www.frontiersin.org

Table 5 . Analysis of variance (ANOVA) for online and F2F of class rankings.

As can be seen in Table 4 , the ANOVA test for this particular hypothesis states there is no significant difference between online and F2F learners with respect to class rank. Therefore, we must accept the null hypothesis and reject the alternative hypothesis.

Discussion and Social Implications

The results of the study show there is no significant difference in performance between online and traditional classroom students with respect to modality, gender, or class rank in a science concepts course for non-STEM majors. Although there were sample size issues and study limitations, this assessment shows both online learners and classroom learners perform at the same level. This conclusion indicates teaching modality may not matter as much as other factors. Given the relatively sparse data on pedagogical modality comparison given specific student population characteristics, this study could be considered innovative. In the current literature, we have not found a study of this nature comparing online and F2F non-STEM majors with respect to three separate factors—medium, gender, and class rank—and the ability to learn science concepts and achieve learning outcomes. Previous studies have compared traditional classroom learning vs. F2F learning for other factors (including specific courses, costs, qualitative analysis, etcetera, but rarely regarding outcomes relevant to population characteristics of learning for a specific science concepts course over many years) ( Liu, 2005 ).

In a study evaluating the transformation of a graduate level course for teachers, academic quality of the online course and learning outcomes were evaluated. The study evaluated the ability of course instructors to design the course for online delivery and develop various interactive multimedia models at a cost-savings to the respective university. The online learning platform proved effective in translating information where tested students successfully achieved learning outcomes comparable to students taking the F2F course ( Herman and Banister, 2007 ).

Another study evaluated the similarities and differences in F2F and online learning in a non-STEM course, “Foundations of American Education” and overall course satisfaction by students enrolled in either of the two modalities. F2F and online course satisfaction was qualitatively and quantitative analyzed. However, in analyzing online and F2F course feedback using quantitative feedback, online course satisfaction was less than F2F satisfaction. When qualitative data was used, course satisfaction was similar between modalities ( Werhner, 2010 ). The course satisfaction data and feedback was used to suggest a number of posits for effective online learning in the specific course. The researcher concluded that there was no difference in the learning success of students enrolled in the online vs. F2F course, stating that “in terms of learning, students who apply themselves diligently should be successful in either format” ( Dell et al., 2010 ). The author's conclusion presumes that the “issues surrounding class size are under control and that the instructor has a course load that makes the intensity of the online course workload feasible” where the authors conclude that the workload for online courses is more than for F2F courses ( Stern, 2004 ).

In “A Meta-Analysis of Three Types of Interaction Treatments in Distance Education,” Bernard et al. (2009) conducted a meta-analysis evaluating three types of instructional and/or media conditions designed into distance education (DE) courses known as interaction treatments (ITs)—student–student (SS), student–teacher (ST), or student–content (SC) interactions—to other DE instructional/interaction treatments. The researchers found that a strong association existed between the integration of these ITs into distance education courses and achievement compared with blended or F2F modalities of learning. The authors speculated that this was due to increased cognitive engagement based in these three interaction treatments ( Larson and Sung, 2009 ).

Other studies evaluating students' preferences (but not efficacy) for online vs. F2F learning found that students prefer online learning when it was offered, depending on course topic, and online course technology platform ( Ary and Brune, 2011 ). F2F learning was preferred when courses were offered late morning or early afternoon 2–3 days/week. A significant preference for online learning resulted across all undergraduate course topics (American history and government, humanities, natural sciences, social, and behavioral sciences, diversity, and international dimension) except English composition and oral communication. A preference for analytical and quantitative thought courses was also expressed by students, though not with statistically significant results ( Mann and Henneberry, 2014 ). In this research study, we looked at three hypothesis comparing online and F2F learning. In each case, the null hypothesis was accepted. Therefore, at no level of examination did we find a significant difference between online and F2F learners. This finding is important because it tells us traditional-style teaching with its heavy emphasis on interpersonal classroom dynamics may 1 day be replaced by online instruction. According to Daymont and Blau (2008) online learners, regardless of gender or class rank, learn as much from electronic interaction as they do from personal interaction. Kemp and Grieve (2014) also found that both online and F2F learning for psychology students led to similar academic performance. Given the cost efficiencies and flexibility of online education, Web-based instructional systems may rapidly rise.

A number of studies support the economic benefits of online vs. F2F learning, despite differences in social constructs and educational support provided by governments. In a study by Li and Chen (2012) higher education institutions benefit the most from two of four outputs—research outputs and distance education—with teaching via distance education at both the undergraduate and graduate levels more profitable than F2F teaching at higher education institutions in China. Zhang and Worthington (2017) reported an increasing cost benefit for the use of distance education over F2F instruction as seen at 37 Australian public universities over 9 years from 2003 to 2012. Maloney et al. (2015) and Kemp and Grieve (2014) also found significant savings in higher education when using online learning platforms vs. F2F learning. In the West, the cost efficiency of online learning has been demonstrated by several research studies ( Craig, 2015 ). Studies by Agasisti and Johnes (2015) and Bartley and Golek (2004) both found the cost benefits of online learning significantly greater than that of F2F learning at U.S. institutions.

Knowing there is no significant difference in student performance between the two mediums, institutions of higher education may make the gradual shift away from traditional instruction; they may implement Web-based teaching to capture a larger worldwide audience. If administered correctly, this shift to Web-based teaching could lead to a larger buyer population, more cost efficiencies, and more university revenue.

The social implications of this study should be touted; however, several concerns regarding generalizability need to be taken into account. First, this study focused solely on students from an environmental studies class for non-STEM majors. The ability to effectively prepare students for scientific professions without hands-on experimentation has been contended. As a course that functions to communicate scientific concepts, but does not require a laboratory based component, these results may not translate into similar performance of students in an online STEM course for STEM majors or an online course that has an online laboratory based co-requisite when compared to students taking traditional STEM courses for STEM majors. There are few studies that suggest the landscape may be changing with the ability to effectively train students in STEM core concepts via online learning. Biel and Brame (2016) reported successfully translating the academic success of F2F undergraduate biology courses to online biology courses. However, researchers reported that of the large-scale courses analyzed, two F2F sections outperformed students in online sections, and three found no significant difference. A study by Beale et al. (2014) comparing F2F learning with hybrid learning in an embryology course found no difference in overall student performance. Additionally, the bottom quartile of students showed no differential effect of the delivery method on examination scores. Further, a study from Lorenzo-Alvarez et al. (2019) found that radiology education in an online learning platform resulted in similar academic outcomes as F2F learning. Larger scale research is needed to determine the effectiveness of STEM online learning and outcomes assessments, including workforce development results.

In our research study, it is possible the study participants may have been more knowledgeable about environmental science than about other subjects. Therefore, it should be noted this study focused solely on students taking this one particular class. Given the results, this course presents a unique potential for increasing the number of non-STEM majors engaged in citizen science using the flexibility of online learning to teach environmental science core concepts.

Second, the operationalization measure of “grade” or “score” to determine performance level may be lacking in scope and depth. The grades received in a class may not necessarily show actual ability, especially if the weights were adjusted to heavily favor group tasks and writing projects. Other performance indicators may be better suited to properly access student performance. A single exam containing both multiple choice and essay questions may be a better operationalization indicator of student performance. This type of indicator will provide both a quantitative and qualitative measure of subject matter comprehension.

Third, the nature of the student sample must be further dissected. It is possible the online students in this study may have had more time than their counterparts to learn the material and generate better grades ( Summers et al., 2005 ). The inverse holds true, as well. Because this was a convenience non-probability sampling, the chances of actually getting a fair cross section of the student population were limited. In future studies, greater emphasis must be placed on selecting proper study participants, those who truly reflect proportions, types, and skill levels.

This study was relevant because it addressed an important educational topic; it compared two student groups on multiple levels using a single operationalized performance measure. More studies, however, of this nature need to be conducted before truly positing that online and F2F teaching generate the same results. Future studies need to eliminate spurious causal relationships and increase generalizability. This will maximize the chances of generating a definitive, untainted results. This scientific inquiry and comparison into online and traditional teaching will undoubtedly garner more attention in the coming years.

Our study compared learning via F2F vs. online learning modalities in teaching an environmental science course additionally evaluating factors of gender and class rank. These data demonstrate the ability to similarly translate environmental science concepts for non-STEM majors in both traditional and online platforms irrespective of gender or class rank. The social implications of this finding are important for advancing access to and learning of scientific concepts by the general population, as many institutions of higher education allow an online course to be taken without enrolling in a degree program. Thus, the potential exists for increasing the number of non-STEM majors engaged in citizen science using the flexibility of online learning to teach environmental science core concepts.

Limitations of the Study

The limitations of the study centered around the nature of the sample group, student skills/abilities, and student familiarity with online instruction. First, because this was a convenience, non-probability sample, the independent variables were not adjusted for real-world accuracy. Second, student intelligence and skill level were not taken into consideration when separating out comparison groups. There exists the possibility that the F2F learners in this study may have been more capable than the online students and vice versa. This limitation also applies to gender and class rank differences ( Friday et al., 2006 ). Finally, there may have been ease of familiarity issues between the two sets of learners. Experienced traditional classroom students now taking Web-based courses may be daunted by the technical aspect of the modality. They may not have had the necessary preparation or experience to efficiently e-learn, thus leading to lowered scores ( Helms, 2014 ). In addition to comparing online and F2F instructional efficacy, future research should also analyze blended teaching methods for the effectiveness of courses for non-STEM majors to impart basic STEM concepts and see if the blended style is more effective than any one pure style.

Data Availability Statement

The datasets generated for this study are available on request to the corresponding author.

Ethics Statement

The studies involving human participants were reviewed and approved by Fort Valley State University Human Subjects Institutional Review Board. Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.

Author Contributions

JP provided substantial contributions to the conception of the work, acquisition and analysis of data for the work, and is the corresponding author on this paper who agrees to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. FJ provided substantial contributions to the design of the work, interpretation of the data for the work, and revised it critically for intellectual content.

This research was supported in part by funding from the National Science Foundation, Awards #1649717, 1842510, Ñ900572, and 1939739 to FJ.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

The authors would like to thank the reviewers for their detailed comments and feedback that assisted in the revising of our original manuscript.

Agasisti, T., and Johnes, G. (2015). Efficiency, costs, rankings and heterogeneity: the case of US higher education. Stud. High. Educ. 40, 60–82. doi: 10.1080/03075079.2013.818644

CrossRef Full Text | Google Scholar

Ary, E. J., and Brune, C. W. (2011). A comparison of student learning outcomes in traditional and online personal finance courses. MERLOT J. Online Learn. Teach. 7, 465–474.

Google Scholar

Atchley, W., Wingenbach, G., and Akers, C. (2013). Comparison of course completion and student performance through online and traditional courses. Int. Rev. Res. Open Dist. Learn. 14, 104–116. doi: 10.19173/irrodl.v14i4.1461

Bartley, S. J., and Golek, J. H. (2004). Evaluating the cost effectiveness of online and face-to-face instruction. Educ. Technol. Soc. 7, 167–175.

Beale, E. G., Tarwater, P. M., and Lee, V. H. (2014). A retrospective look at replacing face-to-face embryology instruction with online lectures in a human anatomy course. Am. Assoc. Anat. 7, 234–241. doi: 10.1002/ase.1396

PubMed Abstract | CrossRef Full Text | Google Scholar

Bernard, R. M., Abrami, P. C., Borokhovski, E., Wade, C. A., Tamim, R. M., Surkesh, M. A., et al. (2009). A meta-analysis of three types of interaction treatments in distance education. Rev. Educ. Res. 79, 1243–1289. doi: 10.3102/0034654309333844

Biel, R., and Brame, C. J. (2016). Traditional versus online biology courses: connecting course design and student learning in an online setting. J. Microbiol. Biol. Educ. 17, 417–422. doi: 10.1128/jmbe.v17i3.1157

Bigelow, C. A. (2009). Comparing student performance in an online versus a face to face introductory turfgrass science course-a case study. NACTA J. 53, 1–7.

Columbaro, N. L., and Monaghan, C. H. (2009). Employer perceptions of online degrees: a literature review. Online J. Dist. Learn. Administr. 12.

Craig, R. (2015). A Brief History (and Future) of Online Degrees. Forbes/Education . Available online at: https://www.forbes.com/sites/ryancraig/2015/06/23/a-brief-history-and-future-of-online-degrees/#e41a4448d9a8

Daymont, T., and Blau, G. (2008). Student performance in online and traditional sections of an undergraduate management course. J. Behav. Appl. Manag. 9, 275–294.

Dell, C. A., Low, C., and Wilker, J. F. (2010). Comparing student achievement in online and face-to-face class formats. J. Online Learn. Teach. Long Beach 6, 30–42.

Driscoll, A., Jicha, K., Hunt, A. N., Tichavsky, L., and Thompson, G. (2012). Can online courses deliver in-class results? A comparison of student performance and satisfaction in an online versus a face-to-face introductory sociology course. Am. Sociol. Assoc . 40, 312–313. doi: 10.1177/0092055X12446624

Friday, E., Shawnta, S., Green, A. L., and Hill, A. Y. (2006). A multi-semester comparison of student performance between multiple traditional and online sections of two management courses. J. Behav. Appl. Manag. 8, 66–81.

Girard, J. P., Yerby, J., and Floyd, K. (2016). Knowledge retention in capstone experiences: an analysis of online and face-to-face courses. Knowl. Manag. ELearn. 8, 528–539. doi: 10.34105/j.kmel.2016.08.033

Helms, J. L. (2014). Comparing student performance in online and face-to-face delivery modalities. J. Asynchr. Learn. Netw. 18, 1–14. doi: 10.24059/olj.v18i1.348

Herman, T., and Banister, S. (2007). Face-to-face versus online coursework: a comparison of costs and learning outcomes. Contemp. Issues Technol. Teach. Educ. 7, 318–326.

Kemp, N., and Grieve, R. (2014). Face-to-Face or face-to-screen? Undergraduates' opinions and test performance in classroom vs. online learning. Front. Psychol. 5:1278. doi: 10.3389/fpsyg.2014.01278

Keramidas, C. G. (2012). Are undergraduate students ready for online learning? A comparison of online and face-to-face sections of a course. Rural Special Educ. Q . 31, 25–39. doi: 10.1177/875687051203100405

Larson, D.K., and Sung, C. (2009). Comparing student performance: online versus blended versus face-to-face. J. Asynchr. Learn. Netw. 13, 31–42. doi: 10.24059/olj.v13i1.1675

Li, F., and Chen, X. (2012). Economies of scope in distance education: the case of Chinese Research Universities. Int. Rev. Res. Open Distrib. Learn. 13, 117–131.

Liu, Y. (2005). Effects of online instruction vs. traditional instruction on student's learning. Int. J. Instruct. Technol. Dist. Learn. 2, 57–64.

Lorenzo-Alvarez, R., Rudolphi-Solero, T., Ruiz-Gomez, M. J., and Sendra-Portero, F. (2019). Medical student education for abdominal radiographs in a 3D virtual classroom versus traditional classroom: a randomized controlled trial. Am. J. Roentgenol. 213, 644–650. doi: 10.2214/AJR.19.21131

Lundberg, J., Castillo-Merino, D., and Dahmani, M. (2008). Do online students perform better than face-to-face students? Reflections and a short review of some Empirical Findings. Rev. Univ. Soc. Conocim . 5, 35–44. doi: 10.7238/rusc.v5i1.326

Maloney, S., Nicklen, P., Rivers, G., Foo, J., Ooi, Y. Y., Reeves, S., et al. (2015). Cost-effectiveness analysis of blended versus face-to-face delivery of evidence-based medicine to medical students. J. Med. Internet Res. 17:e182. doi: 10.2196/jmir.4346

Mann, J. T., and Henneberry, S. R. (2014). Online versus face-to-face: students' preferences for college course attributes. J. Agric. Appl. Econ . 46, 1–19. doi: 10.1017/S1074070800000602

Mozes-Carmel, A., and Gold, S. S. (2009). A comparison of online vs proctored final exams in online classes. Imanagers J. Educ. Technol. 6, 76–81. doi: 10.26634/jet.6.1.212

Richardson, J. C., and Swan, K. (2003). Examining social presence in online courses in relation to student's perceived learning and satisfaction. J. Asynchr. Learn. 7, 68–88.

Roval, A. P., and Jordan, H. M. (2004). Blended learning and sense of community: a comparative analysis with traditional and fully online graduate courses. Int. Rev. Res. Open Dist. Learn. 5. doi: 10.19173/irrodl.v5i2.192

Salcedo, C. S. (2010). Comparative analysis of learning outcomes in face-to-face foreign language classes vs. language lab and online. J. Coll. Teach. Learn. 7, 43–54. doi: 10.19030/tlc.v7i2.88

Stern, B. S. (2004). A comparison of online and face-to-face instruction in an undergraduate foundations of american education course. Contemp. Issues Technol. Teach. Educ. J. 4, 196–213.

Summers, J. J., Waigandt, A., and Whittaker, T. A. (2005). A comparison of student achievement and satisfaction in an online versus a traditional face-to-face statistics class. Innov. High. Educ. 29, 233–250. doi: 10.1007/s10755-005-1938-x

Tanyel, F., and Griffin, J. (2014). A Ten-Year Comparison of Outcomes and Persistence Rates in Online versus Face-to-Face Courses . Retrieved from: https://www.westga.edu/~bquest/2014/onlinecourses2014.pdf

Werhner, M. J. (2010). A comparison of the performance of online versus traditional on-campus earth science students on identical exams. J. Geosci. Educ. 58, 310–312. doi: 10.5408/1.3559697

Westhuis, D., Ouellette, P. M., and Pfahler, C. L. (2006). A comparative analysis of on-line and classroom-based instructional formats for teaching social work research. Adv. Soc. Work 7, 74–88. doi: 10.18060/184

Wladis, C., Conway, K. M., and Hachey, A. C. (2015). The online STEM classroom-who succeeds? An exploration of the impact of ethnicity, gender, and non-traditional student characteristics in the community college context. Commun. Coll. Rev. 43, 142–164. doi: 10.1177/0091552115571729

Xu, D., and Jaggars, S. S. (2016). Performance gaps between online and face-to-face courses: differences across types of students and academic subject areas. J. Higher Educ. 85, 633–659. doi: 10.1353/jhe.2014.0028

Zhang, L.-C., and Worthington, A. C. (2017). Scale and scope economies of distance education in Australian universities. Stud. High. Educ. 42, 1785–1799. doi: 10.1080/03075079.2015.1126817

Keywords: face-to-face (F2F), traditional classroom teaching, web-based instructions, information and communication technology (ICT), online learning, desire to learn (D2L), passive learning, active learning

Citation: Paul J and Jefferson F (2019) A Comparative Analysis of Student Performance in an Online vs. Face-to-Face Environmental Science Course From 2009 to 2016. Front. Comput. Sci. 1:7. doi: 10.3389/fcomp.2019.00007

Received: 15 May 2019; Accepted: 15 October 2019; Published: 12 November 2019.

Reviewed by:

Copyright © 2019 Paul and Jefferson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Jasmine Paul, paulj@fvsu.edu

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Elsevier - PMC COVID-19 Collection

Logo of pheelsevier

A systematic review of research on online teaching and learning from 2009 to 2018

Associated data.

Systematic reviews were conducted in the nineties and early 2000's on online learning research. However, there is no review examining the broader aspect of research themes in online learning in the last decade. This systematic review addresses this gap by examining 619 research articles on online learning published in twelve journals in the last decade. These studies were examined for publication trends and patterns, research themes, research methods, and research settings and compared with the research themes from the previous decades. While there has been a slight decrease in the number of studies on online learning in 2015 and 2016, it has then continued to increase in 2017 and 2018. The majority of the studies were quantitative in nature and were examined in higher education. Online learning research was categorized into twelve themes and a framework across learner, course and instructor, and organizational levels was developed. Online learner characteristics and online engagement were examined in a high number of studies and were consistent with three of the prior systematic reviews. However, there is still a need for more research on organization level topics such as leadership, policy, and management and access, culture, equity, inclusion, and ethics and also on online instructor characteristics.

  • • Twelve online learning research themes were identified in 2009–2018.
  • • A framework with learner, course and instructor, and organizational levels was used.
  • • Online learner characteristics and engagement were the mostly examined themes.
  • • The majority of the studies used quantitative research methods and in higher education.
  • • There is a need for more research on organization level topics.

1. Introduction

Online learning has been on the increase in the last two decades. In the United States, though higher education enrollment has declined, online learning enrollment in public institutions has continued to increase ( Allen & Seaman, 2017 ), and so has the research on online learning. There have been review studies conducted on specific areas on online learning such as innovations in online learning strategies ( Davis et al., 2018 ), empirical MOOC literature ( Liyanagunawardena et al., 2013 ; Veletsianos & Shepherdson, 2016 ; Zhu et al., 2018 ), quality in online education ( Esfijani, 2018 ), accessibility in online higher education ( Lee, 2017 ), synchronous online learning ( Martin et al., 2017 ), K-12 preparation for online teaching ( Moore-Adams et al., 2016 ), polychronicity in online learning ( Capdeferro et al., 2014 ), meaningful learning research in elearning and online learning environments ( Tsai, Shen, & Chiang, 2013 ), problem-based learning in elearning and online learning environments ( Tsai & Chiang, 2013 ), asynchronous online discussions ( Thomas, 2013 ), self-regulated learning in online learning environments ( Tsai, Shen, & Fan, 2013 ), game-based learning in online learning environments ( Tsai & Fan, 2013 ), and online course dropout ( Lee & Choi, 2011 ). While there have been review studies conducted on specific online learning topics, very few studies have been conducted on the broader aspect of online learning examining research themes.

2. Systematic Reviews of Distance Education and Online Learning Research

Distance education has evolved from offline to online settings with the access to internet and COVID-19 has made online learning the common delivery method across the world. Tallent-Runnels et al. (2006) reviewed research late 1990's to early 2000's, Berge and Mrozowski (2001) reviewed research 1990 to 1999, and Zawacki-Richter et al. (2009) reviewed research in 2000–2008 on distance education and online learning. Table 1 shows the research themes from previous systematic reviews on online learning research. There are some themes that re-occur in the various reviews, and there are also new themes that emerge. Though there have been reviews conducted in the nineties and early 2000's, there is no review examining the broader aspect of research themes in online learning in the last decade. Hence, the need for this systematic review which informs the research themes in online learning from 2009 to 2018. In the following sections, we review these systematic review studies in detail.

Comparison of online learning research themes from previous studies.

1990–1999 ( )1993–2004 ( )2000–2008 (Zawacki-Richter et al.,
2009)
Most Number of Studies
Lowest Number of Studies

2.1. Distance education research themes, 1990 to 1999 ( Berge & Mrozowski, 2001 )

Berge and Mrozowski (2001) reviewed 890 research articles and dissertation abstracts on distance education from 1990 to 1999. The four distance education journals chosen by the authors to represent distance education included, American Journal of Distance Education, Distance Education, Open Learning, and the Journal of Distance Education. This review overlapped in the dates of the Tallent-Runnels et al. (2006) study. Berge and Mrozowski (2001) categorized the articles according to Sherry's (1996) ten themes of research issues in distance education: redefining roles of instructor and students, technologies used, issues of design, strategies to stimulate learning, learner characteristics and support, issues related to operating and policies and administration, access and equity, and costs and benefits.

In the Berge and Mrozowski (2001) study, more than 100 studies focused on each of the three themes: (1) design issues, (2) learner characteristics, and (3) strategies to increase interactivity and active learning. By design issues, the authors focused on instructional systems design and focused on topics such as content requirement, technical constraints, interactivity, and feedback. The next theme, strategies to increase interactivity and active learning, were closely related to design issues and focused on students’ modes of learning. Learner characteristics focused on accommodating various learning styles through customized instructional theory. Less than 50 studies focused on the three least examined themes: (1) cost-benefit tradeoffs, (2) equity and accessibility, and (3) learner support. Cost-benefit trade-offs focused on the implementation costs of distance education based on school characteristics. Equity and accessibility focused on the equity of access to distance education systems. Learner support included topics such as teacher to teacher support as well as teacher to student support.

2.2. Online learning research themes, 1993 to 2004 ( Tallent-Runnels et al., 2006 )

Tallent-Runnels et al. (2006) reviewed research on online instruction from 1993 to 2004. They reviewed 76 articles focused on online learning by searching five databases, ERIC, PsycINFO, ContentFirst, Education Abstracts, and WilsonSelect. Tallent-Runnels et al. (2006) categorized research into four themes, (1) course environment, (2) learners' outcomes, (3) learners’ characteristics, and (4) institutional and administrative factors. The first theme that the authors describe as course environment ( n  = 41, 53.9%) is an overarching theme that includes classroom culture, structural assistance, success factors, online interaction, and evaluation.

Tallent-Runnels et al. (2006) for their second theme found that studies focused on questions involving the process of teaching and learning and methods to explore cognitive and affective learner outcomes ( n  = 29, 38.2%). The authors stated that they found the research designs flawed and lacked rigor. However, the literature comparing traditional and online classrooms found both delivery systems to be adequate. Another research theme focused on learners’ characteristics ( n  = 12, 15.8%) and the synergy of learners, design of the online course, and system of delivery. Research findings revealed that online learners were mainly non-traditional, Caucasian, had different learning styles, and were highly motivated to learn. The final theme that they reported was institutional and administrative factors (n  = 13, 17.1%) on online learning. Their findings revealed that there was a lack of scholarly research in this area and most institutions did not have formal policies in place for course development as well as faculty and student support in training and evaluation. Their research confirmed that when universities offered online courses, it improved student enrollment numbers.

2.3. Distance education research themes 2000 to 2008 ( Zawacki-Richter et al., 2009 )

Zawacki-Richter et al. (2009) reviewed 695 articles on distance education from 2000 to 2008 using the Delphi method for consensus in identifying areas and classified the literature from five prominent journals. The five journals selected due to their wide scope in research in distance education included Open Learning, Distance Education, American Journal of Distance Education, the Journal of Distance Education, and the International Review of Research in Open and Distributed Learning. The reviewers examined the main focus of research and identified gaps in distance education research in this review.

Zawacki-Richter et al. (2009) classified the studies into macro, meso and micro levels focusing on 15 areas of research. The five areas of the macro-level addressed: (1) access, equity and ethics to deliver distance education for developing nations and the role of various technologies to narrow the digital divide, (2) teaching and learning drivers, markets, and professional development in the global context, (3) distance delivery systems and institutional partnerships and programs and impact of hybrid modes of delivery, (4) theoretical frameworks and models for instruction, knowledge building, and learner interactions in distance education practice, and (5) the types of preferred research methodologies. The meso-level focused on seven areas that involve: (1) management and organization for sustaining distance education programs, (2) examining financial aspects of developing and implementing online programs, (3) the challenges and benefits of new technologies for teaching and learning, (4) incentives to innovate, (5) professional development and support for faculty, (6) learner support services, and (7) issues involving quality standards and the impact on student enrollment and retention. The micro-level focused on three areas: (1) instructional design and pedagogical approaches, (2) culturally appropriate materials, interaction, communication, and collaboration among a community of learners, and (3) focus on characteristics of adult learners, socio-economic backgrounds, learning preferences, and dispositions.

The top three research themes in this review by Zawacki-Richter et al. (2009) were interaction and communities of learning ( n  = 122, 17.6%), instructional design ( n  = 121, 17.4%) and learner characteristics ( n  = 113, 16.3%). The lowest number of studies (less than 3%) were found in studies examining the following research themes, management and organization ( n  = 18), research methods in DE and knowledge transfer ( n  = 13), globalization of education and cross-cultural aspects ( n  = 13), innovation and change ( n  = 13), and costs and benefits ( n  = 12).

2.4. Online learning research themes

These three systematic reviews provide a broad understanding of distance education and online learning research themes from 1990 to 2008. However, there is an increase in the number of research studies on online learning in this decade and there is a need to identify recent research themes examined. Based on the previous systematic reviews ( Berge & Mrozowski, 2001 ; Hung, 2012 ; Tallent-Runnels et al., 2006 ; Zawacki-Richter et al., 2009 ), online learning research in this study is grouped into twelve different research themes which include Learner characteristics, Instructor characteristics, Course or program design and development, Course Facilitation, Engagement, Course Assessment, Course Technologies, Access, Culture, Equity, Inclusion, and Ethics, Leadership, Policy and Management, Instructor and Learner Support, and Learner Outcomes. Table 2 below describes each of the research themes and using these themes, a framework is derived in Fig. 1 .

Research themes in online learning.

Research ThemeDescription
1Learner CharacteristicsFocuses on understanding the learner characteristics and how online learning can be designed and delivered to meet their needs. Online learner characteristics can be broadly categorized into demographic characteristics, academic characteristics, cognitive characteristics, affective, self-regulation, and motivational characteristics.
2Learner OutcomesLearner outcomes are statements that specify what the learner will achieve at the end of the course or program. Examining learner outcomes such as success, retention, and dropouts are critical in online courses.
3EngagementEngaging the learner in the online course is vitally important as they are separated from the instructor and peers in the online setting. Engagement is examined through the lens of interaction, participation, community, collaboration, communication, involvement and presence.
4Course or Program Design and DevelopmentCourse design and development is critical in online learning as it engages and assists the students in achieving the learner outcomes. Several models and processes are used to develop the online course, employing different design elements to meet student needs.
5Course FacilitationThe delivery or facilitation of the course is as important as course design. Facilitation strategies used in delivery of the course such as in communication and modeling practices are examined in course facilitation.
6Course AssessmentCourse Assessments are adapted and delivered in an online setting. Formative assessments, peer assessments, differentiated assessments, learner choice in assessments, feedback system, online proctoring, plagiarism in online learning, and alternate assessments such as eportfolios are examined.
7Evaluation and Quality AssuranceEvaluation is making a judgment either on the process, the product or a program either during or at the end. There is a need for research on evaluation and quality in the online courses. This has been examined through course evaluations, surveys, analytics, social networks, and pedagogical assessments. Quality assessment rubrics such as Quality Matters have also been researched.
8Course TechnologiesA number of online course technologies such as learning management systems, online textbooks, online audio and video tools, collaborative tools, social networks to build online community have been the focus of research.
9Instructor CharacteristicsWith the increase in online courses, there has also been an increase in the number of instructors teaching online courses. Instructor characteristics can be examined through their experience, satisfaction, and roles in online teaching.
10Institutional SupportThe support for online learning is examined both as learner support and instructor support. Online students need support to be successful online learners and this could include social, academic, and cognitive forms of support. Online instructors need support in terms of pedagogy and technology to be successful online instructors.
11Access, Culture, Equity, Inclusion, and EthicsCross-cultural online learning is gaining importance along with access in global settings. In addition, providing inclusive opportunities for all learners and in ethical ways is being examined.
12Leadership, Policy and ManagementLeadership support is essential for success of online learning. Leaders perspectives, challenges and strategies used are examined. Policies and governance related research are also being studied.

Fig. 1

Online learning research themes framework.

The collection of research themes is presented as a framework in Fig. 1 . The themes are organized by domain or level to underscore the nested relationship that exists. As evidenced by the assortment of themes, research can focus on any domain of delivery or associated context. The “Learner” domain captures characteristics and outcomes related to learners and their interaction within the courses. The “Course and Instructor” domain captures elements about the broader design of the course and facilitation by the instructor, and the “Organizational” domain acknowledges the contextual influences on the course. It is important to note as well that due to the nesting, research themes can cross domains. For example, the broader cultural context may be studied as it pertains to course design and development, and institutional support can include both learner support and instructor support. Likewise, engagement research can involve instructors as well as learners.

In this introduction section, we have reviewed three systematic reviews on online learning research ( Berge & Mrozowski, 2001 ; Tallent-Runnels et al., 2006 ; Zawacki-Richter et al., 2009 ). Based on these reviews and other research, we have derived twelve themes to develop an online learning research framework which is nested in three levels: learner, course and instructor, and organization.

2.5. Purpose of this research

In two out of the three previous reviews, design, learner characteristics and interaction were examined in the highest number of studies. On the other hand, cost-benefit tradeoffs, equity and accessibility, institutional and administrative factors, and globalization and cross-cultural aspects were examined in the least number of studies. One explanation for this may be that it is a function of nesting, noting that studies falling in the Organizational and Course levels may encompass several courses or many more participants within courses. However, while some research themes re-occur, there are also variations in some themes across time, suggesting the importance of research themes rise and fall over time. Thus, a critical examination of the trends in themes is helpful for understanding where research is needed most. Also, since there is no recent study examining online learning research themes in the last decade, this study strives to address that gap by focusing on recent research themes found in the literature, and also reviewing research methods and settings. Notably, one goal is to also compare findings from this decade to the previous review studies. Overall, the purpose of this study is to examine publication trends in online learning research taking place during the last ten years and compare it with the previous themes identified in other review studies. Due to the continued growth of online learning research into new contexts and among new researchers, we also examine the research methods and settings found in the studies of this review.

The following research questions are addressed in this study.

  • 1. What percentage of the population of articles published in the journals reviewed from 2009 to 2018 were related to online learning and empirical?
  • 2. What is the frequency of online learning research themes in the empirical online learning articles of journals reviewed from 2009 to 2018?
  • 3. What is the frequency of research methods and settings that researchers employed in the empirical online learning articles of the journals reviewed from 2009 to 2018?

This five-step systematic review process described in the U.S. Department of Education, Institute of Education Sciences, What Works Clearinghouse Procedures and Standards Handbook, Version 4.0 ( 2017 ) was used in this systematic review: (a) developing the review protocol, (b) identifying relevant literature, (c) screening studies, (d) reviewing articles, and (e) reporting findings.

3.1. Data sources and search strategies

The Education Research Complete database was searched using the keywords below for published articles between the years 2009 and 2018 using both the Title and Keyword function for the following search terms.

“online learning" OR "online teaching" OR "online program" OR "online course" OR “online education”

3.2. Inclusion/exclusion criteria

The initial search of online learning research among journals in the database resulted in more than 3000 possible articles. Therefore, we limited our search to select journals that focus on publishing peer-reviewed online learning and educational research. Our aim was to capture the journals that published the most articles in online learning. However, we also wanted to incorporate the concept of rigor, so we used expert perception to identify 12 peer-reviewed journals that publish high-quality online learning research. Dissertations and conference proceedings were excluded. To be included in this systematic review, each study had to meet the screening criteria as described in Table 3 . A research study was excluded if it did not meet all of the criteria to be included.

Inclusion/Exclusion criteria.

CriteriaInclusionExclusion
Focus of the articleOnline learningArticles that did not focus on online learning
Journals PublishedTwelve identified journalsJournals outside of the 12 journals
Publication date2009 to 2018Prior to 2009 and after 2018
Publication typeScholarly articles of original research from peer reviewed journalsBook chapters, technical reports, dissertations, or proceedings
Research Method and ResultsThere was an identifiable method and results section describing how the study was conducted and included the findings. Quantitative and qualitative methods were included.Reviews of other articles, opinion, or discussion papers that do not include a discussion of the procedures of the study or analysis of data such as product reviews or conceptual articles.
LanguageJournal article was written in EnglishOther languages were not included

3.3. Process flow selection of articles

Fig. 2 shows the process flow involved in the selection of articles. The search in the database Education Research Complete yielded an initial sample of 3332 articles. Targeting the 12 journals removed 2579 articles. After reviewing the abstracts, we removed 134 articles based on the inclusion/exclusion criteria. The final sample, consisting of 619 articles, was entered into the computer software MAXQDA ( VERBI Software, 2019 ) for coding.

Fig. 2

Flowchart of online learning research selection.

3.4. Developing review protocol

A review protocol was designed as a codebook in MAXQDA ( VERBI Software, 2019 ) by the three researchers. The codebook was developed based on findings from the previous review studies and from the initial screening of the articles in this review. The codebook included 12 research themes listed earlier in Table 2 (Learner characteristics, Instructor characteristics, Course or program design and development, Course Facilitation, Engagement, Course Assessment, Course Technologies, Access, Culture, Equity, Inclusion, and Ethics, Leadership, Policy and Management, Instructor and Learner Support, and Learner Outcomes), four research settings (higher education, continuing education, K-12, corporate/military), and three research designs (quantitative, qualitative and mixed methods). Fig. 3 below is a screenshot of MAXQDA used for the coding process.

Fig. 3

Codebook from MAXQDA.

3.5. Data coding

Research articles were coded by two researchers in MAXQDA. Two researchers independently coded 10% of the articles and then discussed and updated the coding framework. The second author who was a doctoral student coded the remaining studies. The researchers met bi-weekly to address coding questions that emerged. After the first phase of coding, we found that more than 100 studies fell into each of the categories of Learner Characteristics or Engagement, so we decided to pursue a second phase of coding and reexamine the two themes. Learner Characteristics were classified into the subthemes of Academic, Affective, Motivational, Self-regulation, Cognitive, and Demographic Characteristics. Engagement was classified into the subthemes of Collaborating, Communication, Community, Involvement, Interaction, Participation, and Presence.

3.6. Data analysis

Frequency tables were generated for each of the variables so that outliers could be examined and narrative data could be collapsed into categories. Once cleaned and collapsed into a reasonable number of categories, descriptive statistics were used to describe each of the coded elements. We first present the frequencies of publications related to online learning in the 12 journals. The total number of articles for each journal (collectively, the population) was hand-counted from journal websites, excluding editorials and book reviews. The publication trend of online learning research was also depicted from 2009 to 2018. Then, the descriptive information of the 12 themes, including the subthemes of Learner Characteristics and Engagement were provided. Finally, research themes by research settings and methodology were elaborated.

4.1. Publication trends on online learning

Publication patterns of the 619 articles reviewed from the 12 journals are presented in Table 4 . International Review of Research in Open and Distributed Learning had the highest number of publications in this review. Overall, about 8% of the articles appearing in these twelve journals consisted of online learning publications; however, several journals had concentrations of online learning articles totaling more than 20%.

Empirical online learning research articles by journal, 2009–2018.

Journal NameFrequency of Empirical Online Learning ResearchPercent of SamplePercent of Journal's Total Articles
International Review of Research in Open and Distributed Learning15224.4022.55
Internet & Higher Education8413.4826.58
Computers & Education7512.0418.84
Online Learning7211.563.25
Distance Education6410.2725.10
Journal of Online Learning & Teaching396.2611.71
Journal of Educational Technology & Society365.783.63
Quarterly Review of Distance Education243.854.71
American Journal of Distance Education213.379.17
British Journal of Educational Technology193.051.93
Educational Technology Research & Development193.0510.80
Australasian Journal of Educational Technology142.252.31
Total619100.08.06

Note . Journal's Total Article count excludes reviews and editorials.

The publication trend of online learning research is depicted in Fig. 4 . When disaggregated by year, the total frequency of publications shows an increasing trend. Online learning articles increased throughout the decade and hit a relative maximum in 2014. The greatest number of online learning articles ( n  = 86) occurred most recently, in 2018.

Fig. 4

Online learning publication trends by year.

4.2. Online learning research themes that appeared in the selected articles

The publications were categorized into the twelve research themes identified in Fig. 1 . The frequency counts and percentages of the research themes are provided in Table 5 below. A majority of the research is categorized into the Learner domain. The fewest number of articles appears in the Organization domain.

Research themes in the online learning publications from 2009 to 2018.

Research ThemesFrequencyPercentage
Engagement17928.92
Learner Characteristics13421.65
Learner Outcome325.17
Evaluation and Quality Assurance386.14
Course Technologies355.65
Course Facilitation345.49
Course Assessment304.85
Course Design and Development274.36
Instructor Characteristics213.39
Institutional Support335.33
Access, Culture, Equity, Inclusion, and Ethics294.68
Leadership, Policy, and Management274.36

The specific themes of Engagement ( n  = 179, 28.92%) and Learner Characteristics ( n  = 134, 21.65%) were most often examined in publications. These two themes were further coded to identify sub-themes, which are described in the next two sections. Publications focusing on Instructor Characteristics ( n  = 21, 3.39%) were least common in the dataset.

4.2.1. Research on engagement

The largest number of studies was on engagement in online learning, which in the online learning literature is referred to and examined through different terms. Hence, we explore this category in more detail. In this review, we categorized the articles into seven different sub-themes as examined through different lenses including presence, interaction, community, participation, collaboration, involvement, and communication. We use the term “involvement” as one of the terms since researchers sometimes broadly used the term engagement to describe their work without further description. Table 6 below provides the description, frequency, and percentages of the various studies related to engagement.

Research sub-themes on engagement.

DescriptionFrequencyPercentage
PresenceLearning experience through social, cognitive, and teaching presence.508.08
InteractionProcess of interacting with peers, instructor, or content that results in learners understanding or behavior436.95
CommunitySense of belonging within a group254.04
ParticipationProcess of being actively involved213.39
CollaborationWorking with someone to create something172.75
InvolvementInvolvement in learning. This includes articles that focused broadly on engagement of learners.142.26
CommunicationProcess of exchanging information with the intent to share information91.45

In the sections below, we provide several examples of the different engagement sub-themes that were studied within the larger engagement theme.

Presence. This sub-theme was the most researched in engagement. With the development of the community of inquiry framework most of the studies in this subtheme examined social presence ( Akcaoglu & Lee, 2016 ; Phirangee & Malec, 2017 ; Wei et al., 2012 ), teaching presence ( Orcutt & Dringus, 2017 ; Preisman, 2014 ; Wisneski et al., 2015 ) and cognitive presence ( Archibald, 2010 ; Olesova et al., 2016 ).

Interaction . This was the second most studied theme under engagement. Researchers examined increasing interpersonal interactions ( Cung et al., 2018 ), learner-learner interactions ( Phirangee, 2016 ; Shackelford & Maxwell, 2012 ; Tawfik et al., 2018 ), peer-peer interaction ( Comer et al., 2014 ), learner-instructor interaction ( Kuo et al., 2014 ), learner-content interaction ( Zimmerman, 2012 ), interaction through peer mentoring ( Ruane & Koku, 2014 ), interaction and community building ( Thormann & Fidalgo, 2014 ), and interaction in discussions ( Ruane & Lee, 2016 ; Tibi, 2018 ).

Community. Researchers examined building community in online courses ( Berry, 2017 ), supporting a sense of community ( Jiang, 2017 ), building an online learning community of practice ( Cho, 2016 ), building an academic community ( Glazer & Wanstreet, 2011 ; Nye, 2015 ; Overbaugh & Nickel, 2011 ), and examining connectedness and rapport in an online community ( Bolliger & Inan, 2012 ; Murphy & Rodríguez-Manzanares, 2012 ; Slagter van Tryon & Bishop, 2012 ).

Participation. Researchers examined engagement through participation in a number of studies. Some of the topics include, participation patterns in online discussion ( Marbouti & Wise, 2016 ; Wise et al., 2012 ), participation in MOOCs ( Ahn et al., 2013 ; Saadatmand & Kumpulainen, 2014 ), features that influence students’ online participation ( Rye & Støkken, 2012 ) and active participation.

Collaboration. Researchers examined engagement through collaborative learning. Specific studies focused on cross-cultural collaboration ( Kumi-Yeboah, 2018 ; Yang et al., 2014 ), how virtual teams collaborate ( Verstegen et al., 2018 ), types of collaboration teams ( Wicks et al., 2015 ), tools for collaboration ( Boling et al., 2014 ), and support for collaboration ( Kopp et al., 2012 ).

Involvement. Researchers examined engaging learners through involvement in various learning activities ( Cundell & Sheepy, 2018 ), student engagement through various measures ( Dixson, 2015 ), how instructors included engagement to involve students in learning ( O'Shea et al., 2015 ), different strategies to engage the learner ( Amador & Mederer, 2013 ), and designed emotionally engaging online environments ( Koseoglu & Doering, 2011 ).

Communication. Researchers examined communication in online learning in studies using social network analysis ( Ergün & Usluel, 2016 ), using informal communication tools such as Facebook for class discussion ( Kent, 2013 ), and using various modes of communication ( Cunningham et al., 2010 ; Rowe, 2016 ). Studies have also focused on both asynchronous and synchronous aspects of communication ( Swaggerty & Broemmel, 2017 ; Yamagata-Lynch, 2014 ).

4.2.2. Research on learner characteristics

The second largest theme was learner characteristics. In this review, we explore this further to identify several aspects of learner characteristics. In this review, we categorized the learner characteristics into self-regulation characteristics, motivational characteristics, academic characteristics, affective characteristics, cognitive characteristics, and demographic characteristics. Table 7 provides the number of studies and percentages examining the various learner characteristics.

Research sub-themes on learner characteristics.

Learner CharacteristicsDescriptionFrequencyPercentage
Self-regulation CharacteristicsInvolves controlling learner's behavior, emotions, and thoughts to achieve specific learning and performance goals548.72
Motivational CharacteristicsLearners goal-directed activity instigated and sustained such as beliefs, and behavioral change233.72
Academic CharacteristicsEducation characteristics such as educational type and educational level193.07
Affective CharacteristicsLearner characteristics that describe learners' feelings or emotions such as satisfaction172.75
Cognitive CharacteristicsLearner characteristics related to cognitive elements such as attention, memory, and intellect (e.g., learning strategies, learning skills, etc.)142.26
Demographic CharacteristicsLearner characteristics that relate to information as age, gender, language, social economic status, and cultural background.71.13

Online learning has elements that are different from the traditional face-to-face classroom and so the characteristics of the online learners are also different. Yukselturk and Top (2013) categorized online learner profile into ten aspects: gender, age, work status, self-efficacy, online readiness, self-regulation, participation in discussion list, participation in chat sessions, satisfaction, and achievement. Their categorization shows that there are differences in online learner characteristics in these aspects when compared to learners in other settings. Some of the other aspects such as participation and achievement as discussed by Yukselturk and Top (2013) are discussed in different research themes in this study. The sections below provide examples of the learner characteristics sub-themes that were studied.

Self-regulation. Several researchers have examined self-regulation in online learning. They found that successful online learners are academically motivated ( Artino & Stephens, 2009 ), have academic self-efficacy ( Cho & Shen, 2013 ), have grit and intention to succeed ( Wang & Baker, 2018 ), have time management and elaboration strategies ( Broadbent, 2017 ), set goals and revisit course content ( Kizilcec et al., 2017 ), and persist ( Glazer & Murphy, 2015 ). Researchers found a positive relationship between learner's self-regulation and interaction ( Delen et al., 2014 ) and self-regulation and communication and collaboration ( Barnard et al., 2009 ).

Motivation. Researchers focused on motivation of online learners including different motivation levels of online learners ( Li & Tsai, 2017 ), what motivated online learners ( Chaiprasurt & Esichaikul, 2013 ), differences in motivation of online learners ( Hartnett et al., 2011 ), and motivation when compared to face to face learners ( Paechter & Maier, 2010 ). Harnett et al. (2011) found that online learner motivation was complex, multifaceted, and sensitive to situational conditions.

Academic. Several researchers have focused on academic aspects for online learner characteristics. Readiness for online learning has been examined as an academic factor by several researchers ( Buzdar et al., 2016 ; Dray et al., 2011 ; Wladis & Samuels, 2016 ; Yu, 2018 ) specifically focusing on creating and validating measures to examine online learner readiness including examining students emotional intelligence as a measure of student readiness for online learning. Researchers have also examined other academic factors such as academic standing ( Bradford & Wyatt, 2010 ), course level factors ( Wladis et al., 2014 ) and academic skills in online courses ( Shea & Bidjerano, 2014 ).

Affective. Anderson and Bourke (2013) describe affective characteristics through which learners express feelings or emotions. Several research studies focused on the affective characteristics of online learners. Learner satisfaction for online learning has been examined by several researchers ( Cole et al., 2014 ; Dziuban et al., 2015 ; Kuo et al., 2013 ; Lee, 2014a ) along with examining student emotions towards online assessment ( Kim et al., 2014 ).

Cognitive. Researchers have also examined cognitive aspects of learner characteristics including meta-cognitive skills, cognitive variables, higher-order thinking, cognitive density, and critical thinking ( Chen & Wu, 2012 ; Lee, 2014b ). Lee (2014b) examined the relationship between cognitive presence density and higher-order thinking skills. Chen and Wu (2012) examined the relationship between cognitive and motivational variables in an online system for secondary physical education.

Demographic. Researchers have examined various demographic factors in online learning. Several researchers have examined gender differences in online learning ( Bayeck et al., 2018 ; Lowes et al., 2016 ; Yukselturk & Bulut, 2009 ), ethnicity, age ( Ke & Kwak, 2013 ), and minority status ( Yeboah & Smith, 2016 ) of online learners.

4.2.3. Less frequently studied research themes

While engagement and learner characteristics were studied the most, other themes were less often studied in the literature and are presented here, according to size, with general descriptions of the types of research examined for each.

Evaluation and Quality Assurance. There were 38 studies (6.14%) published in the theme of evaluation and quality assurance. Some of the studies in this theme focused on course quality standards, using quality matters to evaluate quality, using the CIPP model for evaluation, online learning system evaluation, and course and program evaluations.

Course Technologies. There were 35 studies (5.65%) published in the course technologies theme. Some of the studies examined specific technologies such as Edmodo, YouTube, Web 2.0 tools, wikis, Twitter, WebCT, Screencasts, and Web conferencing systems in the online learning context.

Course Facilitation. There were 34 studies (5.49%) published in the course facilitation theme. Some of the studies in this theme examined facilitation strategies and methods, experiences of online facilitators, and online teaching methods.

Institutional Support. There were 33 studies (5.33%) published in the institutional support theme which included support for both the instructor and learner. Some of the studies on instructor support focused on training new online instructors, mentoring programs for faculty, professional development resources for faculty, online adjunct faculty training, and institutional support for online instructors. Studies on learner support focused on learning resources for online students, cognitive and social support for online learners, and help systems for online learner support.

Learner Outcome. There were 32 studies (5.17%) published in the learner outcome theme. Some of the studies that were examined in this theme focused on online learner enrollment, completion, learner dropout, retention, and learner success.

Course Assessment. There were 30 studies (4.85%) published in the course assessment theme. Some of the studies in the course assessment theme examined online exams, peer assessment and peer feedback, proctoring in online exams, and alternative assessments such as eportfolio.

Access, Culture, Equity, Inclusion, and Ethics. There were 29 studies (4.68%) published in the access, culture, equity, inclusion, and ethics theme. Some of the studies in this theme examined online learning across cultures, multi-cultural effectiveness, multi-access, and cultural diversity in online learning.

Leadership, Policy, and Management. There were 27 studies (4.36%) published in the leadership, policy, and management theme. Some of the studies on leadership, policy, and management focused on online learning leaders, stakeholders, strategies for online learning leadership, resource requirements, university policies for online course policies, governance, course ownership, and faculty incentives for online teaching.

Course Design and Development. There were 27 studies (4.36%) published in the course design and development theme. Some of the studies examined in this theme focused on design elements, design issues, design process, design competencies, design considerations, and instructional design in online courses.

Instructor Characteristics. There were 21 studies (3.39%) published in the instructor characteristics theme. Some of the studies in this theme were on motivation and experiences of online instructors, ability to perform online teaching duties, roles of online instructors, and adjunct versus full-time online instructors.

4.3. Research settings and methodology used in the studies

The research methods used in the studies were classified into quantitative, qualitative, and mixed methods ( Harwell, 2012 , pp. 147–163). The research setting was categorized into higher education, continuing education, K-12, and corporate/military. As shown in Table A in the appendix, the vast majority of the publications used higher education as the research setting ( n  = 509, 67.6%). Table B in the appendix shows that approximately half of the studies adopted the quantitative method ( n  = 324, 43.03%), followed by the qualitative method ( n  = 200, 26.56%). Mixed methods account for the smallest portion ( n  = 95, 12.62%).

Table A shows that the patterns of the four research settings were approximately consistent across the 12 themes except for the theme of Leaner Outcome and Institutional Support. Continuing education had a higher relative frequency in Learner Outcome (0.28) and K-12 had a higher relative frequency in Institutional Support (0.33) compared to the frequencies they had in the total themes (0.09 and 0.08 respectively). Table B in the appendix shows that the distribution of the three methods were not consistent across the 12 themes. While quantitative studies and qualitative studies were roughly evenly distributed in Engagement, they had a large discrepancy in Learner Characteristics. There were 100 quantitative studies; however, only 18 qualitative studies published in the theme of Learner Characteristics.

In summary, around 8% of the articles published in the 12 journals focus on online learning. Online learning publications showed a tendency of increase on the whole in the past decade, albeit fluctuated, with the greatest number occurring in 2018. Among the 12 research themes related to online learning, the themes of Engagement and Learner Characteristics were studied the most and the theme of Instructor Characteristics was studied the least. Most studies were conducted in the higher education setting and approximately half of the studies used the quantitative method. Looking at the 12 themes by setting and method, we found that the patterns of the themes by setting or by method were not consistent across the 12 themes.

The quality of our findings was ensured by scientific and thorough searches and coding consistency. The selection of the 12 journals provides evidence of the representativeness and quality of primary studies. In the coding process, any difficulties and questions were resolved by consultations with the research team at bi-weekly meetings, which ensures the intra-rater and interrater reliability of coding. All these approaches guarantee the transparency and replicability of the process and the quality of our results.

5. Discussion

This review enabled us to identify the online learning research themes examined from 2009 to 2018. In the section below, we review the most studied research themes, engagement and learner characteristics along with implications, limitations, and directions for future research.

5.1. Most studied research themes

Three out of the four systematic reviews informing the design of the present study found that online learner characteristics and online engagement were examined in a high number of studies. In this review, about half of the studies reviewed (50.57%) focused on online learner characteristics or online engagement. This shows the continued importance of these two themes. In the Tallent-Runnels et al.’s (2006) study, the learner characteristics theme was identified as least studied for which they state that researchers are beginning to investigate learner characteristics in the early days of online learning.

One of the differences found in this review is that course design and development was examined in the least number of studies in this review compared to two prior systematic reviews ( Berge & Mrozowski, 2001 ; Zawacki-Richter et al., 2009 ). Zawacki-Richter et al. did not use a keyword search but reviewed all the articles in five different distance education journals. Berge and Mrozowski (2001) included a research theme called design issues to include all aspects of instructional systems design in distance education journals. In our study, in addition to course design and development, we also had focused themes on learner outcomes, course facilitation, course assessment and course evaluation. These are all instructional design focused topics and since we had multiple themes focusing on instructional design topics, the course design and development category might have resulted in fewer studies. There is still a need for more studies to focus on online course design and development.

5.2. Least frequently studied research themes

Three out of the four systematic reviews discussed in the opening of this study found management and organization factors to be least studied. In this review, Leadership, Policy, and Management was studied among 4.36% of the studies and Access, Culture, Equity, Inclusion, and Ethics was studied among 4.68% of the studies in the organizational level. The theme on Equity and accessibility was also found to be the least studied theme in the Berge and Mrozowski (2001) study. In addition, instructor characteristics was the least examined research theme among the twelve themes studied in this review. Only 3.39% of the studies were on instructor characteristics. While there were some studies examining instructor motivation and experiences, instructor ability to teach online, online instructor roles, and adjunct versus full-time online instructors, there is still a need to examine topics focused on instructors and online teaching. This theme was not included in the prior reviews as the focus was more on the learner and the course but not on the instructor. While it is helpful to see research evolving on instructor focused topics, there is still a need for more research on the online instructor.

5.3. Comparing research themes from current study to previous studies

The research themes from this review were compared with research themes from previous systematic reviews, which targeted prior decades. Table 8 shows the comparison.

Comparison of most and least studied online learning research themes from current to previous reviews.

Level1990–1999 ( )1993–2004 ( )2000–2008 ( )2009–2018 (Current Study)
Learner CharacteristicsLXXX
Engagement and InteractionLXXX
Design Issues/Instructional DesignCXX
Course Environment
Learner Outcomes
C
L
X
X
Learner SupportLX
Equity and AccessibilityOXX
Institutional& Administrative FactorsOXX
Management and OrganizationOXX
Cost-BenefitOX

L = Learner, C=Course O=Organization.

5.4. Need for more studies on organizational level themes of online learning

In this review there is a greater concentration of studies focused on Learner domain topics, and reduced attention to broader more encompassing research themes that fall into the Course and Organization domains. There is a need for organizational level topics such as Access, Culture, Equity, Inclusion and Ethics, and Leadership, Policy and Management to be researched on within the context of online learning. Examination of access, culture, equity, inclusion and ethics is very important to support diverse online learners, particularly with the rapid expansion of online learning across all educational levels. This was also least studied based on Berge and Mrozowski (2001) systematic review.

The topics on leadership, policy and management were least studied both in this review and also in the Tallent-Runnels et al. (2006) and Zawacki-Richter et al. (2009) study. Tallent-Runnels categorized institutional and administrative aspects into institutional policies, institutional support, and enrollment effects. While we included support as a separate category, in this study leadership, policy and management were combined. There is still a need for research on leadership of those who manage online learning, policies for online education, and managing online programs. In the Zawacki-Richter et al. (2009) study, only a few studies examined management and organization focused topics. They also found management and organization to be strongly correlated with costs and benefits. In our study, costs and benefits were collectively included as an aspect of management and organization and not as a theme by itself. These studies will provide research-based evidence for online education administrators.

6. Limitations

As with any systematic review, there are limitations to the scope of the review. The search is limited to twelve journals in the field that typically include research on online learning. These manuscripts were identified by searching the Education Research Complete database which focuses on education students, professionals, and policymakers. Other discipline-specific journals as well as dissertations and proceedings were not included due to the volume of articles. Also, the search was performed using five search terms “online learning" OR "online teaching" OR "online program" OR "online course" OR “online education” in title and keyword. If authors did not include these terms, their respective work may have been excluded from this review even if it focused on online learning. While these terms are commonly used in North America, it may not be commonly used in other parts of the world. Additional studies may exist outside this scope.

The search strategy also affected how we presented results and introduced limitations regarding generalization. We identified that only 8% of the articles published in these journals were related to online learning; however, given the use of search terms to identify articles within select journals it was not feasible to identify the total number of research-based articles in the population. Furthermore, our review focused on the topics and general methods of research and did not systematically consider the quality of the published research. Lastly, some journals may have preferences for publishing studies on a particular topic or that use a particular method (e.g., quantitative methods), which introduces possible selection and publication biases which may skew the interpretation of results due to over/under representation. Future studies are recommended to include more journals to minimize the selection bias and obtain a more representative sample.

Certain limitations can be attributed to the coding process. Overall, the coding process for this review worked well for most articles, as each tended to have an individual or dominant focus as described in the abstracts, though several did mention other categories which likely were simultaneously considered to a lesser degree. However, in some cases, a dominant theme was not as apparent and an effort to create mutually exclusive groups for clearer interpretation the coders were occasionally forced to choose between two categories. To facilitate this coding, the full-texts were used to identify a study focus through a consensus seeking discussion among all authors. Likewise, some studies focused on topics that we have associated with a particular domain, but the design of the study may have promoted an aggregated examination or integrated factors from multiple domains (e.g., engagement). Due to our reliance on author descriptions, the impact of construct validity is likely a concern that requires additional exploration. Our final grouping of codes may not have aligned with the original author's description in the abstract. Additionally, coding of broader constructs which disproportionately occur in the Learner domain, such as learner outcomes, learner characteristics, and engagement, likely introduced bias towards these codes when considering studies that involved multiple domains. Additional refinement to explore the intersection of domains within studies is needed.

7. Implications and future research

One of the strengths of this review is the research categories we have identified. We hope these categories will support future researchers and identify areas and levels of need for future research. Overall, there is some agreement on research themes on online learning research among previous reviews and this one, at the same time there are some contradicting findings. We hope the most-researched themes and least-researched themes provide authors a direction on the importance of research and areas of need to focus on.

The leading themes found in this review is online engagement research. However, presentation of this research was inconsistent, and often lacked specificity. This is not unique to online environments, but the nuances of defining engagement in an online environment are unique and therefore need further investigation and clarification. This review points to seven distinct classifications of online engagement. Further research on engagement should indicate which type of engagement is sought. This level of specificity is necessary to establish instruments for measuring engagement and ultimately testing frameworks for classifying engagement and promoting it in online environments. Also, it might be of importance to examine the relationship between these seven sub-themes of engagement.

Additionally, this review highlights growing attention to learner characteristics, which constitutes a shift in focus away from instructional characteristics and course design. Although this is consistent with the focus on engagement, the role of the instructor, and course design with respect to these outcomes remains important. Results of the learner characteristics and engagement research paired with course design will have important ramifications for the use of teaching and learning professionals who support instruction. Additionally, the review also points to a concentration of research in the area of higher education. With an immediate and growing emphasis on online learning in K-12 and corporate settings, there is a critical need for further investigation in these settings.

Lastly, because the present review did not focus on the overall effect of interventions, opportunities exist for dedicated meta-analyses. Particular attention to research on engagement and learner characteristics as well as how these vary by study design and outcomes would be logical additions to the research literature.

8. Conclusion

This systematic review builds upon three previous reviews which tackled the topic of online learning between 1990 and 2010 by extending the timeframe to consider the most recent set of published research. Covering the most recent decade, our review of 619 articles from 12 leading online learning journal points to a more concentrated focus on the learner domain including engagement and learner characteristics, with more limited attention to topics pertaining to the classroom or organizational level. The review highlights an opportunity for the field to clarify terminology concerning online learning research, particularly in the areas of learner outcomes where there is a tendency to classify research more generally (e.g., engagement). Using this sample of published literature, we provide a possible taxonomy for categorizing this research using subcategories. The field could benefit from a broader conversation about how these categories can shape a comprehensive framework for online learning research. Such efforts will enable the field to effectively prioritize research aims over time and synthesize effects.

Credit author statement

Florence Martin: Conceptualization; Writing - original draft, Writing - review & editing Preparation, Supervision, Project administration. Ting Sun: Methodology, Formal analysis, Writing - original draft, Writing - review & editing. Carl Westine: Methodology, Formal analysis, Writing - original draft, Writing - review & editing, Supervision

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

1 Includes articles that are cited in this manuscript and also included in the systematic review. The entire list of 619 articles used in the systematic review can be obtained by emailing the authors.*

Appendix B Supplementary data to this article can be found online at https://doi.org/10.1016/j.compedu.2020.104009 .

Appendix A. 

Research Themes by the Settings in the Online Learning Publications

Research ThemeHigher Ed (  = 506)Continuing Education (  = 58)K-12 (  = 53)Corporate/Military (  = 3)
Engagement15315120
Presence46230
Interaction35440
Community19240
Participation16500
Collaboration16100
Involvement13010
Communication8100
Learner Characteristics1061891
Self-regulation Characteristics43920
Motivation Characteristics18320
Academic Characteristics17020
Affective Characteristics12311
Cognitive Characteristics11120
Demographic Characteristics5200
Evaluation and Quality Assurance33320
Course Technologies33200
Course Facilitation30310
Institutional Support24081
Learner Outcome24710
Course Assessment23250
Access, Culture, Equity, Inclusion and Ethics26120
Leadership, Policy and Management17550
Course Design and Development21141
Instructor Characteristics16140

Research Themes by the Methodology in the Online Learning Publications

Research ThemeMixed Method (  = 95)Quantitative (  = 324)Qualitative (  = 200)
Engagement327869
Presence112514
Interaction92014
Community2914
Participation687
Collaboration2510
Involvement266
Communication054
Learner Characteristics1610018
Self-regulation Characteristics5436
Motivation Characteristics4154
Academic Characteristics1153
Affective Characteristics2123
Cognitive Characteristics482
Demographic Characteristics160
Evaluation and Quality Assurance52211
Course Technologies42011
Course Facilitation71413
Institutional Support12912
Learner Outcome3236
Course Assessment5205
Access, Culture, Equity, Inclusion & Ethics31313
Leadership, Policy and Management5913
Course Design and Development2817
Instructor Characteristics1812

Appendix B. Supplementary data

The following are the Supplementary data to this article:

References 1

  • Ahn J., Butler B.S., Alam A., Webster S.A. Learner participation and engagement in open online courses: Insights from the Peer 2 Peer University. MERLOT Journal of Online Learning and Teaching. 2013; 9 (2):160–171. * [ Google Scholar ]
  • Akcaoglu M., Lee E. Increasing social presence in online learning through small group discussions. International Review of Research in Open and Distance Learning. 2016; 17 (3) * [ Google Scholar ]
  • Allen I.E., Seaman J. Babson survey research group; 2017. Digital compass learning: Distance education enrollment Report 2017. [ Google Scholar ]
  • Amador J.A., Mederer H. Migrating successful student engagement strategies online: Opportunities and challenges using jigsaw groups and problem-based learning. Journal of Online Learning and Teaching. 2013; 9 (1):89. * [ Google Scholar ]
  • Anderson L.W., Bourke S.F. Routledge; 2013. Assessing affective characteristics in the schools. [ Google Scholar ]
  • Archibald D. Fostering the development of cognitive presence: Initial findings using the community of inquiry survey instrument. The Internet and Higher Education. 2010; 13 (1–2):73–74. * [ Google Scholar ]
  • Artino A.R., Jr., Stephens J.M. Academic motivation and self-regulation: A comparative analysis of undergraduate and graduate students learning online. The Internet and Higher Education. 2009; 12 (3–4):146–151. [ Google Scholar ]
  • Barnard L., Lan W.Y., To Y.M., Paton V.O., Lai S.L. Measuring self-regulation in online and blended learning environments. Internet and Higher Education. 2009; 12 (1):1–6. * [ Google Scholar ]
  • Bayeck R.Y., Hristova A., Jablokow K.W., Bonafini F. Exploring the relevance of single‐gender group formation: What we learn from a massive open online course (MOOC) British Journal of Educational Technology. 2018; 49 (1):88–100. * [ Google Scholar ]
  • Berge Z., Mrozowski S. Review of research in distance education, 1990 to 1999. American Journal of Distance Education. 2001; 15 (3):5–19. doi: 10.1080/08923640109527090. [ CrossRef ] [ Google Scholar ]
  • Berry S. Building community in online doctoral classrooms: Instructor practices that support community. Online Learning. 2017; 21 (2):n2. * [ Google Scholar ]
  • Boling E.C., Holan E., Horbatt B., Hough M., Jean-Louis J., Khurana C., Spiezio C. Using online tools for communication and collaboration: Understanding educators' experiences in an online course. The Internet and Higher Education. 2014; 23 :48–55. * [ Google Scholar ]
  • Bolliger D.U., Inan F.A. Development and validation of the online student connectedness survey (OSCS) International Review of Research in Open and Distance Learning. 2012; 13 (3):41–65. * [ Google Scholar ]
  • Bradford G., Wyatt S. Online learning and student satisfaction: Academic standing, ethnicity and their influence on facilitated learning, engagement, and information fluency. The Internet and Higher Education. 2010; 13 (3):108–114. * [ Google Scholar ]
  • Broadbent J. Comparing online and blended learner's self-regulated learning strategies and academic performance. The Internet and Higher Education. 2017; 33 :24–32. [ Google Scholar ]
  • Buzdar M., Ali A., Tariq R. Emotional intelligence as a determinant of readiness for online learning. International Review of Research in Open and Distance Learning. 2016; 17 (1) * [ Google Scholar ]
  • Capdeferro N., Romero M., Barberà E. Polychronicity: Review of the literature and a new configuration for the study of this hidden dimension of online learning. Distance Education. 2014; 35 (3):294–310. [ Google Scholar ]
  • Chaiprasurt C., Esichaikul V. Enhancing motivation in online courses with mobile communication tool support: A comparative study. International Review of Research in Open and Distance Learning. 2013; 14 (3):377–401. [ Google Scholar ]
  • Chen C.H., Wu I.C. The interplay between cognitive and motivational variables in a supportive online learning system for secondary physical education. Computers & Education. 2012; 58 (1):542–550. * [ Google Scholar ]
  • Cho H. Under co-construction: An online community of practice for bilingual pre-service teachers. Computers & Education. 2016; 92 :76–89. * [ Google Scholar ]
  • Cho M.H., Shen D. Self-regulation in online learning. Distance Education. 2013; 34 (3):290–301. [ Google Scholar ]
  • Cole M.T., Shelley D.J., Swartz L.B. Online instruction, e-learning, and student satisfaction: A three-year study. International Review of Research in Open and Distance Learning. 2014; 15 (6) * [ Google Scholar ]
  • Comer D.K., Clark C.R., Canelas D.A. Writing to learn and learning to write across the disciplines: Peer-to-peer writing in introductory-level MOOCs. International Review of Research in Open and Distance Learning. 2014; 15 (5):26–82. * [ Google Scholar ]
  • Cundell A., Sheepy E. Student perceptions of the most effective and engaging online learning activities in a blended graduate seminar. Online Learning. 2018; 22 (3):87–102. * [ Google Scholar ]
  • Cung B., Xu D., Eichhorn S. Increasing interpersonal interactions in an online course: Does increased instructor email activity and voluntary meeting time in a physical classroom facilitate student learning? Online Learning. 2018; 22 (3):193–215. [ Google Scholar ]
  • Cunningham U.M., Fägersten K.B., Holmsten E. Can you hear me, Hanoi?" Compensatory mechanisms employed in synchronous net-based English language learning. International Review of Research in Open and Distance Learning. 2010; 11 (1):161–177. [ Google Scholar ]
  • Davis D., Chen G., Hauff C., Houben G.J. Activating learning at scale: A review of innovations in online learning strategies. Computers & Education. 2018; 125 :327–344. [ Google Scholar ]
  • Delen E., Liew J., Willson V. Effects of interactivity and instructional scaffolding on learning: Self-regulation in online video-based environments. Computers & Education. 2014; 78 :312–320. [ Google Scholar ]
  • Dixson M.D. Measuring student engagement in the online course: The Online Student Engagement scale (OSE) Online Learning. 2015; 19 (4):n4. * [ Google Scholar ]
  • Dray B.J., Lowenthal P.R., Miszkiewicz M.J., Ruiz‐Primo M.A., Marczynski K. Developing an instrument to assess student readiness for online learning: A validation study. Distance Education. 2011; 32 (1):29–47. * [ Google Scholar ]
  • Dziuban C., Moskal P., Thompson J., Kramer L., DeCantis G., Hermsdorfer A. Student satisfaction with online learning: Is it a psychological contract? Online Learning. 2015; 19 (2):n2. * [ Google Scholar ]
  • Ergün E., Usluel Y.K. An analysis of density and degree-centrality according to the social networking structure formed in an online learning environment. Journal of Educational Technology & Society. 2016; 19 (4):34–46. * [ Google Scholar ]
  • Esfijani A. Measuring quality in online education: A meta-synthesis. American Journal of Distance Education. 2018; 32 (1):57–73. [ Google Scholar ]
  • Glazer H.R., Murphy J.A. Optimizing success: A model for persistence in online education. American Journal of Distance Education. 2015; 29 (2):135–144. [ Google Scholar ]
  • Glazer H.R., Wanstreet C.E. Connection to the academic community: Perceptions of students in online education. Quarterly Review of Distance Education. 2011; 12 (1):55. * [ Google Scholar ]
  • Hartnett M., George A.S., Dron J. Examining motivation in online distance learning environments: Complex, multifaceted and situation-dependent. International Review of Research in Open and Distance Learning. 2011; 12 (6):20–38. [ Google Scholar ]
  • Harwell M.R. 2012. Research design in qualitative/quantitative/mixed methods. Section III. Opportunities and challenges in designing and conducting inquiry. [ Google Scholar ]
  • Hung J.L. Trends of e‐learning research from 2000 to 2008: Use of text mining and bibliometrics. British Journal of Educational Technology. 2012; 43 (1):5–16. [ Google Scholar ]
  • Jiang W. Interdependence of roles, role rotation, and sense of community in an online course. Distance Education. 2017; 38 (1):84–105. [ Google Scholar ]
  • Ke F., Kwak D. Online learning across ethnicity and age: A study on learning interaction participation, perception, and learning satisfaction. Computers & Education. 2013; 61 :43–51. [ Google Scholar ]
  • Kent M. Changing the conversation: Facebook as a venue for online class discussion in higher education. MERLOT Journal of Online Learning and Teaching. 2013; 9 (4):546–565. * [ Google Scholar ]
  • Kim C., Park S.W., Cozart J. Affective and motivational factors of learning in online mathematics courses. British Journal of Educational Technology. 2014; 45 (1):171–185. [ Google Scholar ]
  • Kizilcec R.F., Pérez-Sanagustín M., Maldonado J.J. Self-regulated learning strategies predict learner behavior and goal attainment in Massive Open Online Courses. Computers & Education. 2017; 104 :18–33. [ Google Scholar ]
  • Kopp B., Matteucci M.C., Tomasetto C. E-tutorial support for collaborative online learning: An explorative study on experienced and inexperienced e-tutors. Computers & Education. 2012; 58 (1):12–20. [ Google Scholar ]
  • Koseoglu S., Doering A. Understanding complex ecologies: An investigation of student experiences in adventure learning programs. Distance Education. 2011; 32 (3):339–355. * [ Google Scholar ]
  • Kumi-Yeboah A. Designing a cross-cultural collaborative online learning framework for online instructors. Online Learning. 2018; 22 (4):181–201. * [ Google Scholar ]
  • Kuo Y.C., Walker A.E., Belland B.R., Schroder K.E. A predictive study of student satisfaction in online education programs. International Review of Research in Open and Distance Learning. 2013; 14 (1):16–39. * [ Google Scholar ]
  • Kuo Y.C., Walker A.E., Schroder K.E., Belland B.R. Interaction, Internet self-efficacy, and self-regulated learning as predictors of student satisfaction in online education courses. Internet and Higher Education. 2014; 20 :35–50. * [ Google Scholar ]
  • Lee J. An exploratory study of effective online learning: Assessing satisfaction levels of graduate students of mathematics education associated with human and design factors of an online course. International Review of Research in Open and Distance Learning. 2014; 15 (1) [ Google Scholar ]
  • Lee S.M. The relationships between higher order thinking skills, cognitive density, and social presence in online learning. The Internet and Higher Education. 2014; 21 :41–52. * [ Google Scholar ]
  • Lee K. Rethinking the accessibility of online higher education: A historical review. The Internet and Higher Education. 2017; 33 :15–23. [ Google Scholar ]
  • Lee Y., Choi J. A review of online course dropout research: Implications for practice and future research. Educational Technology Research & Development. 2011; 59 (5):593–618. [ Google Scholar ]
  • Li L.Y., Tsai C.C. Accessing online learning material: Quantitative behavior patterns and their effects on motivation and learning performance. Computers & Education. 2017; 114 :286–297. [ Google Scholar ]
  • Liyanagunawardena T., Adams A., Williams S. MOOCs: A systematic study of the published literature 2008-2012. International Review of Research in Open and Distance Learning. 2013; 14 (3):202–227. [ Google Scholar ]
  • Lowes S., Lin P., Kinghorn B.R. Gender differences in online high school courses. Online Learning. 2016; 20 (4):100–117. [ Google Scholar ]
  • Marbouti F., Wise A.F. Starburst: A new graphical interface to support purposeful attention to others' posts in online discussions. Educational Technology Research & Development. 2016; 64 (1):87–113. * [ Google Scholar ]
  • Martin F., Ahlgrim-Delzell L., Budhrani K. Systematic review of two decades (1995 to 2014) of research on synchronous online learning. American Journal of Distance Education. 2017; 31 (1):3–19. [ Google Scholar ]
  • Moore-Adams B.L., Jones W.M., Cohen J. Learning to teach online: A systematic review of the literature on K-12 teacher preparation for teaching online. Distance Education. 2016; 37 (3):333–348. [ Google Scholar ]
  • Murphy E., Rodríguez-Manzanares M.A. Rapport in distance education. International Review of Research in Open and Distance Learning. 2012; 13 (1):167–190. * [ Google Scholar ]
  • Nye A. Building an online academic learning community among undergraduate students. Distance Education. 2015; 36 (1):115–128. * [ Google Scholar ]
  • Olesova L., Slavin M., Lim J. Exploring the effect of scripted roles on cognitive presence in asynchronous online discussions. Online Learning. 2016; 20 (4):34–53. * [ Google Scholar ]
  • Orcutt J.M., Dringus L.P. Beyond being there: Practices that establish presence, engage students and influence intellectual curiosity in a structured online learning environment. Online Learning. 2017; 21 (3):15–35. * [ Google Scholar ]
  • Overbaugh R.C., Nickel C.E. A comparison of student satisfaction and value of academic community between blended and online sections of a university-level educational foundations course. The Internet and Higher Education. 2011; 14 (3):164–174. * [ Google Scholar ]
  • O'Shea S., Stone C., Delahunty J. “I ‘feel’like I am at university even though I am online.” Exploring how students narrate their engagement with higher education institutions in an online learning environment. Distance Education. 2015; 36 (1):41–58. * [ Google Scholar ]
  • Paechter M., Maier B. Online or face-to-face? Students' experiences and preferences in e-learning. Internet and Higher Education. 2010; 13 (4):292–297. [ Google Scholar ]
  • Phirangee K. Students' perceptions of learner-learner interactions that weaken a sense of community in an online learning environment. Online Learning. 2016; 20 (4):13–33. * [ Google Scholar ]
  • Phirangee K., Malec A. Othering in online learning: An examination of social presence, identity, and sense of community. Distance Education. 2017; 38 (2):160–172. * [ Google Scholar ]
  • Preisman K.A. Teaching presence in online education: From the instructor's point of view. Online Learning. 2014; 18 (3):n3. * [ Google Scholar ]
  • Rowe M. Developing graduate attributes in an open online course. British Journal of Educational Technology. 2016; 47 (5):873–882. * [ Google Scholar ]
  • Ruane R., Koku E.F. Social network analysis of undergraduate education student interaction in online peer mentoring settings. Journal of Online Learning and Teaching. 2014; 10 (4):577–589. * [ Google Scholar ]
  • Ruane R., Lee V.J. Analysis of discussion board interaction in an online peer mentoring site. Online Learning. 2016; 20 (4):79–99. * [ Google Scholar ]
  • Rye S.A., Støkken A.M. The implications of the local context in global virtual education. International Review of Research in Open and Distance Learning. 2012; 13 (1):191–206. * [ Google Scholar ]
  • Saadatmand M., Kumpulainen K. Participants' perceptions of learning and networking in connectivist MOOCs. Journal of Online Learning and Teaching. 2014; 10 (1):16. * [ Google Scholar ]
  • Shackelford J.L., Maxwell M. Sense of community in graduate online education: Contribution of learner to learner interaction. International Review of Research in Open and Distance Learning. 2012; 13 (4):228–249. * [ Google Scholar ]
  • Shea P., Bidjerano T. Does online learning impede degree completion? A national study of community college students. Computers & Education. 2014; 75 :103–111. * [ Google Scholar ]
  • Sherry L. Issues in distance learning. International Journal of Educational Telecommunications. 1996; 1 (4):337–365. [ Google Scholar ]
  • Slagter van Tryon P.J., Bishop M.J. Evaluating social connectedness online: The design and development of the social perceptions in learning contexts instrument. Distance Education. 2012; 33 (3):347–364. * [ Google Scholar ]
  • Swaggerty E.A., Broemmel A.D. Authenticity, relevance, and connectedness: Graduate students' learning preferences and experiences in an online reading education course. The Internet and Higher Education. 2017; 32 :80–86. * [ Google Scholar ]
  • Tallent-Runnels M.K., Thomas J.A., Lan W.Y., Cooper S., Ahern T.C., Shaw S.M., Liu X. Teaching courses online: A review of the research. Review of Educational Research. 2006; 76 (1):93–135. doi: 10.3102/00346543076001093. [ CrossRef ] [ Google Scholar ]
  • Tawfik A.A., Giabbanelli P.J., Hogan M., Msilu F., Gill A., York C.S. Effects of success v failure cases on learner-learner interaction. Computers & Education. 2018; 118 :120–132. [ Google Scholar ]
  • Thomas J. Exploring the use of asynchronous online discussion in health care education: A literature review. Computers & Education. 2013; 69 :199–215. [ Google Scholar ]
  • Thormann J., Fidalgo P. Guidelines for online course moderation and community building from a student's perspective. Journal of Online Learning and Teaching. 2014; 10 (3):374–388. * [ Google Scholar ]
  • Tibi M.H. Computer science students' attitudes towards the use of structured and unstructured discussion forums in fully online courses. Online Learning. 2018; 22 (1):93–106. * [ Google Scholar ]
  • Tsai C.W., Chiang Y.C. Research trends in problem‐based learning (pbl) research in e‐learning and online education environments: A review of publications in SSCI‐indexed journals from 2004 to 2012. British Journal of Educational Technology. 2013; 44 (6):E185–E190. [ Google Scholar ]
  • Tsai C.W., Fan Y.T. Research trends in game‐based learning research in online learning environments: A review of studies published in SSCI‐indexed journals from 2003 to 2012. British Journal of Educational Technology. 2013; 44 (5):E115–E119. [ Google Scholar ]
  • Tsai C.W., Shen P.D., Chiang Y.C. Research trends in meaningful learning research on e‐learning and online education environments: A review of studies published in SSCI‐indexed journals from 2003 to 2012. British Journal of Educational Technology. 2013; 44 (6):E179–E184. [ Google Scholar ]
  • Tsai C.W., Shen P.D., Fan Y.T. Research trends in self‐regulated learning research in online learning environments: A review of studies published in selected journals from 2003 to 2012. British Journal of Educational Technology. 2013; 44 (5):E107–E110. [ Google Scholar ]
  • U.S. Department of Education, Institute of Education Sciences . InstituteofEducationSciences; Washington,DC: 2017. What Works Clearinghouse procedures and standards handbook, version3.0. https://ies.ed.gov/ncee/wwc/Docs/referenceresources/wwc_procedures_v3_0_standards_handbook.pdf Retrievedfrom. [ Google Scholar ]
  • Veletsianos G., Shepherdson P. A systematic analysis and synthesis of the empirical MOOC literature published in 2013–2015. International Review of Research in Open and Distance Learning. 2016; 17 (2) [ Google Scholar ]
  • VERBI Software . 2019. MAXQDA 2020 online manual. Retrieved from maxqda. Com/help-max20/welcome [ Google Scholar ]
  • Verstegen D., Dailey-Hebert A., Fonteijn H., Clarebout G., Spruijt A. How do virtual teams collaborate in online learning tasks in a MOOC? International Review of Research in Open and Distance Learning. 2018; 19 (4) * [ Google Scholar ]
  • Wang Y., Baker R. Grit and intention: Why do learners complete MOOCs? International Review of Research in Open and Distance Learning. 2018; 19 (3) * [ Google Scholar ]
  • Wei C.W., Chen N.S., Kinshuk A model for social presence in online classrooms. Educational Technology Research & Development. 2012; 60 (3):529–545. * [ Google Scholar ]
  • Wicks D., Craft B.B., Lee D., Lumpe A., Henrikson R., Baliram N., Wicks K. An evaluation of low versus high collaboration in online learning. Online Learning. 2015; 19 (4):n4. * [ Google Scholar ]
  • Wise A.F., Perera N., Hsiao Y.T., Speer J., Marbouti F. Microanalytic case studies of individual participation patterns in an asynchronous online discussion in an undergraduate blended course. The Internet and Higher Education. 2012; 15 (2):108–117. * [ Google Scholar ]
  • Wisneski J.E., Ozogul G., Bichelmeyer B.A. Does teaching presence transfer between MBA teaching environments? A comparative investigation of instructional design practices associated with teaching presence. The Internet and Higher Education. 2015; 25 :18–27. * [ Google Scholar ]
  • Wladis C., Hachey A.C., Conway K. An investigation of course-level factors as predictors of online STEM course outcomes. Computers & Education. 2014; 77 :145–150. * [ Google Scholar ]
  • Wladis C., Samuels J. Do online readiness surveys do what they claim? Validity, reliability, and subsequent student enrollment decisions. Computers & Education. 2016; 98 :39–56. [ Google Scholar ]
  • Yamagata-Lynch L.C. Blending online asynchronous and synchronous learning. International Review of Research in Open and Distance Learning. 2014; 15 (2) * [ Google Scholar ]
  • Yang J., Kinshuk, Yu H., Chen S.J., Huang R. Strategies for smooth and effective cross-cultural online collaborative learning. Journal of Educational Technology & Society. 2014; 17 (3):208–221. * [ Google Scholar ]
  • Yeboah A.K., Smith P. Relationships between minority students online learning experiences and academic performance. Online Learning. 2016; 20 (4):n4. * [ Google Scholar ]
  • Yu T. Examining construct validity of the student online learning readiness (SOLR) instrument using confirmatory factor analysis. Online Learning. 2018; 22 (4):277–288. * [ Google Scholar ]
  • Yukselturk E., Bulut S. Gender differences in self-regulated online learning environment. Educational Technology & Society. 2009; 12 (3):12–22. [ Google Scholar ]
  • Yukselturk E., Top E. Exploring the link among entry characteristics, participation behaviors and course outcomes of online learners: An examination of learner profile using cluster analysis. British Journal of Educational Technology. 2013; 44 (5):716–728. [ Google Scholar ]
  • Zawacki-Richter O., Backer E., Vogt S. Review of distance education research (2000 to 2008): Analysis of research areas, methods, and authorship patterns. International Review of Research in Open and Distance Learning. 2009; 10 (6):30. doi: 10.19173/irrodl.v10i6.741. [ CrossRef ] [ Google Scholar ]
  • Zhu M., Sari A., Lee M.M. A systematic review of research methods and topics of the empirical MOOC literature (2014–2016) The Internet and Higher Education. 2018; 37 :31–39. [ Google Scholar ]
  • Zimmerman T.D. Exploring learner to content interaction as a success factor in online courses. International Review of Research in Open and Distance Learning. 2012; 13 (4):152–165. [ Google Scholar ]
  • Open access
  • Published: 16 September 2021

Online learning during COVID-19 produced equivalent or better student course performance as compared with pre-pandemic: empirical evidence from a school-wide comparative study

  • Meixun Zheng 1 ,
  • Daniel Bender 1 &
  • Cindy Lyon 1  

BMC Medical Education volume  21 , Article number:  495 ( 2021 ) Cite this article

214k Accesses

95 Citations

118 Altmetric

Metrics details

The COVID-19 pandemic forced dental schools to close their campuses and move didactic instruction online. The abrupt transition to online learning, however, has raised several issues that have not been resolved. While several studies have investigated dental students’ attitude towards online learning during the pandemic, mixed results have been reported. Additionally, little research has been conducted to identify and understand factors, especially pedagogical factors, that impacted students’ acceptance of online learning during campus closure. Furthermore, how online learning during the pandemic impacted students’ learning performance has not been empirically investigated. In March 2020, the dental school studied here moved didactic instruction online in response to government issued stay-at-home orders. This first-of-its-kind comparative study examined students’ perceived effectiveness of online courses during summer quarter 2020, explored pedagogical factors impacting their acceptance of online courses, and empirically evaluated the impact of online learning on students’ course performance, during the pandemic.

The study employed a quasi-experimental design. Participants were 482 pre-doctoral students in a U.S dental school. Students’ perceived effectiveness of online courses during the pandemic was assessed with a survey. Students’ course grades for online courses during summer quarter 2020 were compared with that of a control group who received face-to-face instruction for the same courses before the pandemic in summer quarter 2019.

Survey results revealed that most online courses were well accepted by the students, and 80 % of them wanted to continue with some online instruction post pandemic. Regression analyses revealed that students’ perceived engagement with faculty and classmates predicted their perceived effectiveness of the online course. More notably, Chi Square tests demonstrated that in 16 out of the 17 courses compared, the online cohort during summer quarter 2020 was equally or more likely to get an A course grade than the analogous face-to-face cohort during summer quarter 2019.

Conclusions

This is the first empirical study in dental education to demonstrate that online courses during the pandemic could achieve equivalent or better student course performance than the same pre-pandemic in-person courses. The findings fill in gaps in literature and may inform online learning design moving forward.

Peer Review reports

Introduction

Research across disciplines has demonstrated that well-designed online learning can lead to students’ enhanced motivation, satisfaction, and learning [ 1 , 2 , 3 , 4 , 5 , 6 , 7 ]. A report by the U.S. Department of Education [ 8 ], based on examinations of comparative studies of online and face-to-face versions of the same course from 1996 to 2008, concluded that online learning could produce learning outcomes equivalent to or better than face-to-face learning. The more recent systematic review by Pei and Wu [ 9 ] provided additional evidence that online learning is at least as effective as face-to-face learning for undergraduate medical students.

To take advantage of the opportunities presented by online learning, thought leaders in dental education in the U.S. have advocated for the adoption of online learning in the nation’s dental schools [ 10 , 11 , 12 ]. However, digital innovation has been a slow process in academic dentistry [ 13 , 14 , 15 ]. In March 2020, the COVID-19 pandemic brought unprecedented disruption to dental education by necessitating the need for online learning. In accordance with stay-at-home orders to prevent the spread of the virus, dental schools around the world closed their campuses and moved didactic instruction online.

The abrupt transition to online learning, however, has raised several concerns and question. First, while several studies have examined dental students’ online learning satisfaction during the pandemic, mixed results have been reported. Some studies have reported students’ positive attitude towards online learning [ 15 , 16 , 17 , 18 , 19 , 20 ]. Sadid-Zadeh et al. [ 18 ] found that 99 % of the surveyed dental students at University of Buffalo, in the U.S., were satisfied with live web-based lectures during the pandemic. Schlenz et al. [ 15 ] reported that students in a German dental school had a favorable attitude towards online learning and wanted to continue with online instruction in their future curriculum. Other studies, however, have reported students’ negative online learning experience during the pandemic [ 21 , 22 , 23 , 24 , 25 , 26 ]. For instance, dental students at Harvard University felt that learning during the pandemic had worsened and engagement had decreased [ 23 , 24 ]. In a study with medical and dental students in Pakistan, Abbasi et al. [ 21 ] found that 77 % of the students had negative perceptions about online learning and 84 % reported reduced student-instructor interactions.

In addition to these mixed results, little attention has been given to factors affecting students’ acceptance of online learning during the pandemic. With the likelihood that online learning will persist post pandemic [ 27 ], research in this area is warranted to inform online course design moving forward. In particular, prior research has demonstrated that one of the most important factors influencing students’ performance in any learning environment is a sense of belonging, the feeling of being connected with and supported by the instructor and classmates [ 28 , 29 , 30 , 31 ]. Unfortunately, this aspect of the classroom experience has suffered during school closure. While educational events can be held using a video conferencing system, virtual peer interaction on such platforms has been perceived by medical trainees to be not as easy and personal as physical interaction [ 32 ]. The pandemic highlights the need to examine instructional strategies most suited to the current situation to support students’ engagement with faculty and classmates.

Furthermore, there is considerable concern from the academic community about the quality of online learning. Pre-pandemic, some faculty and students were already skeptical about the value of online learning [ 33 ]. The longer the pandemic lasts, the more they may question the value of online education, asking: Can online learning during the pandemic produce learning outcomes that are similar to face-to-face learning before the pandemic? Despite the documented benefits of online learning prior to the pandemic, the actual impact of online learning during the pandemic on students’ academic performance is still unknown due to reasons outlined below.

On one hand, several factors beyond the technology used could influence the effectiveness of online learning, one of which is the teaching context [ 34 ]. The sudden transition to online learning has posed many challenges to faculty and students. Faculty may not have had adequate time to carefully design online courses to take full advantage of the possibilities of the online format. Some faculty may not have had prior online teaching experience and experienced a deeper learning curve when it came to adopting online teaching methods [ 35 ]. Students may have been at the risk of increased anxiety due to concerns about contracting the virus, on time graduation, finances, and employment [ 36 , 37 ], which may have negatively impacted learning performance [ 38 ]. Therefore, whether online learning during the pandemic could produce learning outcomes similar to those of online learning implemented during more normal times remains to be determined.

Most existing studies on online learning in dental education during the pandemic have only reported students’ satisfaction. The actual impact of the online format on academic performance has not been empirically investigated. The few studies that have examined students’ learning outcomes have only used students’ self-reported data from surveys and focus groups. According to Kaczmarek et al. [ 24 ], 50 % of the participating dental faculty at Harvard University perceived student learning to have worsened during the pandemic and 70 % of the students felt the same. Abbasi et al. [ 21 ] reported that 86 % of medical and dental students in a Pakistan college felt that they learned less online. While student opinions are important, research has demonstrated a poor correlation between students’ perceived learning and actual learning gains [ 39 ]. As we continue to navigate the “new normal” in teaching, students’ learning performance needs to be empirically evaluated to help institutions gauge the impact of this grand online learning experiment.

Research purposes

In March 2020, the University of the Pacific Arthur A. Dugoni School of Dentistry, in the U.S., moved didactic instruction online to ensure the continuity of education during building closure. This study examined students’ acceptance of online learning during the pandemic and its impacting factors, focusing on instructional practices pertaining to students’ engagement/interaction with faculty and classmates. Another purpose of this study was to empirically evaluate the impact of online learning during the pandemic on students’ actual course performance by comparing it with that of a pre-pandemic cohort. To understand the broader impact of the institutional-wide online learning effort, we examined all online courses offered in summer quarter 2020 (July to September) that had a didactic component.

This is the first empirical study in dental education to evaluate students’ learning performance during the pandemic. The study aimed to answer the following three questions.

How well was online learning accepted by students, during the summer quarter 2020 pandemic interruption?

How did instructional strategies, centered around students’ engagement with faculty and classmates, impact their acceptance of online learning?

How did online learning during summer quarter 2020 impact students’ course performance as compared with a previous analogous cohort who received face-to-face instruction in summer quarter 2019?

This study employed a quasi-experimental design. The study was approved by the university’s institutional review board (#2020-68).

Study context and participants

The study was conducted at the Arthur A. Dugoni School of Dentistry, University of the Pacific. The program runs on a quarter system. It offers a 3-year accelerated Doctor of Dental Surgery (DDS) program and a 2-year International Dental Studies (IDS) program for international dentists who have obtained a doctoral degree in dentistry from a country outside the U.S. and want to practice in the U.S. Students advance throughout the program in cohorts. IDS students take some courses together with their DDS peers. All three DDS classes (D1/DDS 2023, D2/DDS 2022, and D3/DDS 2021) and both IDS classes (I1/IDS 2022 and I2/IDS 2021) were invited to participate in the study. The number of students in each class was: D1 = 145, D2 = 143, D3 = 143, I1 = 26, and I2 = 25. This resulted in a total of 482 student participants.

During campus closure, faculty delivered remote instruction in various ways, including live online classes via Zoom @  [ 40 ], self-paced online modules on the school’s learning management system Canvas @  [ 41 ], or a combination of live and self-paced delivery. For self-paced modules, students studied assigned readings and/or viewings such as videos and pre-recorded slide presentations. Some faculty also developed self-paced online lessons with SoftChalk @  [ 42 ], a cloud-based platform that supports the inclusion of gamified learning by insertion of various mini learning activities. The SoftChalk lessons were integrated with Canvas @  [ 41 ] and faculty could monitor students’ progress. After students completed the pre-assigned online materials, some faculty held virtual office hours or live online discussion sessions for students to ask questions and discuss key concepts.

Data collection and analysis

Student survey.

Students’ perceived effectiveness of summer quarter 2020 online courses was evaluated by the school’s Office of Academic Affairs in lieu of the regular course evaluation process. A total of 19 courses for DDS students and 10 courses for IDS students were evaluated. An 8-question survey developed by the researchers (Additional file 1 ) was administered online in the last week of summer quarter 2020. Course directors invited student to take the survey during live online classes. The survey introduction stated that taking the survey was voluntary and that their anonymous responses would be reported in aggregated form for research purposes. Students were invited to continue with the survey if they chose to participate; otherwise, they could exit the survey. The number of students in each class who took the survey was as follows: D1 ( n  = 142; 98 %), D2 ( n  = 133; 93 %), D3 ( n  = 61; 43 %), I1 ( n  = 23; 88 %), and I2 ( n  = 20; 80 %). This resulted in a total of 379 (79 %) respondents across all classes.

The survey questions were on a 4-point scale, ranging from Strongly Disagree (1 point), Disagree (2 points), Agree (3 points), and Strongly Agree (4 points). Students were asked to rate each online course by responding to four statements: “ I could fully engage with the instructor and classmates in this course”; “The online format of this course supported my learning”; “Overall this online course is effective.”, and “ I would have preferred face-to-face instruction for this course ”. For the first three survey questions, a higher mean score indicated a more positive attitude toward the online course. For the fourth question “ I would have preferred face-to-face instruction for this course ”, a higher mean score indicated that more students would have preferred face-to-face instruction for the course. Two additional survey questions asked students to select their preferred online delivery method for fully online courses during the pandemic from three given choices (synchronous online/live, asynchronous online/self-paced, and a combination of both), and to report whether they wanted to continue with some online instruction post pandemic. Finally, two open-ended questions at the end of the survey allowed students to comment on the aspects of online format that they found to be helpful and to provide suggestion for improvement. For the purpose of this study, we focused on the quantitative data from the Likert-scale questions.

Descriptive data such as the mean scores were reported for each course. Regression analyses were conducted to examine the relationship between instructional strategies focusing on students’ engagement with faculty and classmates, and their overall perceived effectiveness of the online course. The independent variable was student responses to the question “ I could fully engage with the instructor and classmates in this course ”, and the dependent variable was their answer to the question “ Overall, this online course is effective .”

Student course grades

Using Chi-square tests, student course grade distributions (A, B, C, D, and F) for summer quarter 2020 online courses were compared with that of a previous cohort who received face-to-face instruction for the same course in summer quarter 2019. Note that as a result of the school’s pre-doctoral curriculum redesign implemented in July 2019, not all courses offered in summer quarter 2020 were offered in the previous year in summer quarter 2019. In other words, some of the courses offered in summer quarter 2020 were new courses offered for the first time. Because these new courses did not have a previous face-to-face version to compare to, they were excluded from data analysis. For some other courses, while course content remained the same between 2019 and 2020, the sequence of course topics within the course had changed. These courses were also excluded from data analysis.

After excluding the aforementioned courses, it resulted in a total of 17 “comparable” courses that were included in data analysis (see the subsequent section). For these courses, the instructor, course content, and course goals were the same in both 2019 and 2020. The assessment methods and grading policies also remained the same through both years. For exams and quizzes, multiple choice questions were the dominating format for both years. While some exam questions in 2020 were different from 2019, faculty reported that the overall exam difficulty level was similar. The main difference in assessment was testing conditions. The 2019 cohort took computer-based exams in the physical classroom with faculty proctoring, and the 2020 cohort took exams at home with remote proctoring to ensure exam integrity. The remote proctoring software monitored the student during the exam through a web camera on their computer/laptop. The recorded video file flags suspicious activities for faculty review after exam completion.

Students’ perceived effectiveness of online learning

Table  1 summarized data on DDS students’ perceived effectiveness of each online course during summer quarter 2020. For the survey question “ Overall, this online course is effective ”, the majority of courses received a mean score that was approaching or over 3 points on the 4-point scale, suggesting that online learning was generally well accepted by students. Despite overall positive online course experiences, for many of the courses examined, there was an equal split in student responses to the question “ I would have preferred face-to-face instruction for this course .” Additionally, for students’ preferred online delivery method for fully online courses, about half of the students in each class preferred a combination of synchronous and asynchronous online learning (see Fig.  1 ). Finally, the majority of students wanted faculty to continue with some online instruction post pandemic: D1class (110; 78.60 %), D2 class (104; 80 %), and D3 class (49; 83.10 %).

While most online courses received favorable ratings, some variations did exist among courses. For D1 courses, “ Anatomy & Histology ” received lower ratings than others. This could be explained by its lab component, which didn’t lend itself as well to the online format. For D2 courses, several of them received lower ratings than others, especially for the survey question on students’ perceived engagement with faculty and classmates.

figure 1

DDS students’ preferred online delivery method for fully online courses

Table  2 summarized IDS students’ perceived effectiveness of each online course during summer quarter 2020. For the survey question “ Overall, this online course is effective ”, all courses received a mean score that was approaching or over 3 points on a 4-point scale, suggesting that online learning was well accepted by students. For the survey question “ I would have preferred face-to-face instruction for this course ”, for most online courses examined, the percentage of students who would have preferred face-to-face instruction was similar to that of students who preferred online instruction for the course. Like their DDS peers, about half of the IDS students in each class also preferred a combination of synchronous and asynchronous online delivery for fully online courses (See Fig.  2 ). Finally, the majority of IDS students (I1, n = 18, 81.80 %; I2, n = 16, 84.20 %) wanted to continue with some online learning after the pandemic is over.

figure 2

IDS students’ preferred online delivery method for fully online courses

Factors impacting students’ acceptance of online learning

For all 19 online courses taken by DDS students, regression analyses indicated that there was a significantly positive relationship between students’ perceived engagement with faculty and classmates and their perceived effectiveness of the course. P value was 0.00 across all courses. The ranges of effect size (r 2 ) were: D1 courses (0.26 to 0.50), D2 courses (0.39 to 0.650), and D3 courses (0.22 to 0.44), indicating moderate to high correlations across courses.

For 9 out of the 10 online courses taken by IDS students, there was a positive relationship between students’ perceived engagement with faculty and classmates and their perceived effectiveness of the course. P value was 0.00 across courses. The ranges of effect size were: I1 courses (0.35 to 0.77) and I2 courses (0.47 to 0.63), indicating consistently high correlations across courses. The only course in which students’ perceived engagement with faculty and classmates didn’t predict perceived effective of the course was “ Integrated Clinical Science III (ICS III) ”, which the I2 class took together with their D3 peers.

Impact of online learning on students’ course performance

Chi square test results (Table  3 ) indicated that in 4 out of the 17 courses compared, the online cohort during summer quarter 2020 was more likely to receive an A grade than the face-to-face cohort during summer quarter 2019. In 12 of the courses, the online cohort were equally likely to receive an A grade as the face-to-face cohort. In the remaining one course, the online cohort was less likely to receive an A grade than the face-to-face cohort.

Students’ acceptance of online learning during the pandemic

Survey results revealed that students had generally positive perceptions about online learning during the pandemic and the majority of them wanted to continue with some online learning post pandemic. Overall, our findings supported several other studies in dental [ 18 , 20 ], medical [ 43 , 44 ], and nursing [ 45 ] education that have also reported students’ positive attitudes towards online learning during the pandemic. In their written comments in the survey, students cited enhanced flexibility as one of the greatest benefits of online learning. Some students also commented that typing questions in the chat box during live online classes was less intimidating than speaking in class. Others explicitly stated that not having to commute to/from school provided more time for sleep, which helped with self-care and mental health. Our findings are in line with previous studies which have also demonstrated that online learning offered higher flexibility [ 46 , 47 ]. Meanwhile, consistent with findings of other researchers [ 19 , 21 , 46 ], our students felt difficulty engaging with faculty and classmates in several online courses.

There were some variations among individual courses in students’ acceptance of the online format. One factor that could partially account for the observed differences was instructional strategies. In particular, our regression analysis results demonstrated a positive correlation between students’ perceived engagement with faculty and classmates and their perceived overall effectiveness of the online course. Other aspects of course design might also have influenced students’ overall rating of the online course. For instance, some D2 students commented that the requirements of the course “ Integrated Case-based Seminars (ICS II) ” were not clear and that assessment did not align with lecture materials. It is important to remember that communicating course requirements clearly and aligning course content and assessment are principles that should be applied in any course, whether face-to-face or online. Our results highlighted the importance of providing faculty training on basic educational design principles and online learning design strategies. Furthermore, the nature of the course might also have impacted student ratings. For example, D1 course “ Anatomy and Histology ” had a lab component, which did not lend itself as well to the online format. Many students reported that it was difficult to see faculty’s live demonstration during Zoom lectures, which may have resulted in a lower student satisfaction rating.

As for students’ preferred online delivery method for fully online courses during the pandemic, about half of them preferred a combination of synchronous and asynchronous online learning. In light of this finding, as we continue with remote learning until public health directives allow a return to campus, we will encourage faculty to integrate these two online delivery modalities. Finally, in view of the result that over 80 % of the students wanted to continue with some online instruction after the pandemic, the school will advocate for blended learning in the post-pandemic world [ 48 ]. For future face-to-face courses on campus after the pandemic, faculty are encouraged to deliver some content online to reduce classroom seat time and make learning more flexible. Taken together, our findings not only add to the overall picture of the current situation but may inform learning design moving forward.

Role of online engagement and interaction

To reiterate, we found that students’ perceived engagement with faculty and classmates predicted their perceived overall effectiveness of the online course. This aligns with the larger literature on best practices in online learning design. Extensive research prior to the pandemic has confirmed that the effectiveness of online learning is determined by a number of factors beyond the tools used, including students’ interactions with the instructor and classmates [ 49 , 50 , 51 , 52 ]. Online students may feel isolated due to reduced or lack of interaction [ 53 , 54 ]. Therefore, in designing online learning experiences, it is important to remember that learning is a social process [ 55 ]. Faculty’s role is not only to transmit content but also to promote the different types of interactions that are an integral part of the online learning process [ 33 ]. The online teaching model in which faculty uploads materials online but teach it in the same way as in the physical classroom, without special effort to engage students, doesn’t make the best use of the online format. Putting the “sage on the screen” during a live class meeting on a video conferencing system is not different from “sage on the stage” in the physical classroom - both provide limited space for engagement. Such one-way monologue devalues the potentials that online learning presents.

In light of the critical role that social interaction plays in online learning, faculty are encouraged to use the interactive features of online learning platforms to provide clear channels for student-instructor and student-student interactions. In the open-ended comments, students highlighted several instructional strategies that they perceived to be helpful for learning. For live online classes, these included conducting breakout room activities, using the chat box to facilitate discussions, polling, and integrating gameplay with apps such as Kahoot! @  [ 56 ]. For self-paced classes, students appreciated that faculty held virtual office hours or subsequent live online discussion sessions to reinforce understanding of the pre-assigned materials.

Quality of online education during the pandemic

This study provided empirical evidence in dental education that it was possible to ensure the continuity of education without sacrificing the quality of education provided to students during forced migration to distance learning upon building closure. To reiterate, in all but one online course offered in summer quarter 2020, students were equally or more likely to get an A grade than the face-to-face cohort from summer quarter 2019. Even for courses that had less student support for the online format (e.g., the D1 course “ Anatomy and Histology ”), there was a significant increase in the number of students who earned an A grade in 2020 as compared with the previous year. The reduced capacity for technical training during the pandemic may have resulted in more study time for didactic content. Overall, our results resonate with several studies in health sciences education before the pandemic that the quality of learning is comparable in face-to-face and online formats [ 9 , 57 , 58 ]. For the only course ( Integrated Case-based Seminars ICS II) in which the online cohort had inferior performance than the face-to-face cohort, as mentioned earlier, students reported that assessment was not aligned with course materials and that course expectations were not clear. This might explain why students’ course performance was not as strong as expected.

Limitations

This study used a pre-existing control group from the previous year. There may have been individual differences between students in the online and the face-to-face cohorts, such as motivation, learning style, and prior knowledge, that could have impacted the observed outcomes. Additionally, even though course content and assessment methods were largely the same in 2019 and 2020, changes in other aspects of the course could have impacted students’ course performance. Some faculty may have been more compassionate with grading (e.g., more flexible with assignment deadlines) in summer quarter 2020 given the hardship students experienced during the pandemic. On the other hand, remote proctoring in summer quarter 2020 may have heightened some students’ exam anxiety knowing that they were being monitored through a webcam. The existence and magnitude of effect of these factors needs to be further investigated.

This present study only examined the correlation between students’ perceived online engagement and their perceived overall effectiveness of the online course. Other factors that might impact their acceptance of the online format need to be further researched in future studies. Another future direction is to examine how students’ perceived online engagement correlates with their actual course performance. Because the survey data collected for our present study are anonymous, we cannot match students’ perceived online engagement data with their course grades to run this additional analysis. It should also be noted that this study was focused on didactic online instruction. Future studies might examine how technical training was impacted during the COVID building closure. It was also out of the scope of this study to examine how student characteristics, especially high and low academic performance as reflected by individual grades, affects their online learning experience and performance. We plan to conduct a follow-up study to examine which group of students are most impacted by the online format. Finally, this study was conducted in a single dental school, and so the findings may not be generalizable to other schools and disciplines. Future studies could be conducted in another school or disciplines to compare results.

This study revealed that dental students had generally favorable attitudes towards online learning during the COVID-19 pandemic and that their perceived engagement with faculty and classmates predicted their acceptance of the online course. Most notably, this is the first study in dental education to demonstrate that online learning during the pandemic could achieve similar or better learning outcomes than face-to-face learning before the pandemic. Findings of our study could contribute significantly to the literature on online learning during the COVID-19 pandemic in health sciences education. The results could also inform future online learning design as we re-envision the future of online learning.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Bello G, Pennisi MA, Maviglia R, Maggiore SM, Bocci MG, Montini L, et al. Online vs live methods for teaching difficult airway management to anesthesiology residents. Intensive Care Med. 2005; 31 (4): 547–552.

Article   Google Scholar  

Ruiz JG, Mintzer MJ, Leipzig RM. The impact of e-learning in medical education. Acad Med. 2006; 81(3): 207–12.

Kavadella A, Tsiklakis K, Vougiouklakis G, Lionarakis A. Evaluation of a blended learning course for teaching oral radiology to undergraduate dental students. Eur J Dent Educ. 2012; 16(1): 88–95.

de Jong N, Verstegen DL, Tan FS, O’Connor SJ. A comparison of classroom and online asynchronous problem-based learning for students undertaking statistics training as part of a public health master’s degree. Adv Health Sci Educ. 2013; 18(2):245–64.

Hegeman JS. Using instructor-generated video lectures in online mathematics coursesimproves student learning. Online Learn. 2015;19(3):70–87.

Gaupp R, Körner M, Fabry G. Effects of a case-based interactive e-learning course on knowledge and attitudes about patient safety: a quasi-experimental study with third-year medical students. BMC Med Educ. 2016; 16(1):172.

Zheng M, Bender D, Reid L, Milani J. An interactive online approach to teaching evidence-based dentistry with Web 2.0 technology. J Dent Educ. 2017; 81(8): 995–1003.

Means B, Toyama Y, Murphy R, Bakia M, Jones K. Evaluation of evidence-based practices in online learning: A meta-analysis and review of online learning studies. U.S. Department of Education, Office of Planning, Evaluation and Policy Development. Washington D.C. 2009.

Google Scholar  

Pei L, Wu H. Does online learning work better than offline learning in undergraduate medical education? A systematic review and meta-analysis. Med Educ Online. 2019; 24(1):1666538.

Andrews KG, Demps EL. Distance education in the U.S. and Canadian undergraduate dental curriculum. J Dent Educ. 2003; 67(4):427–38.

Kassebaum DK, Hendricson WD, Taft T, Haden NK. The dental curriculum at North American dental institutions in 2002–03: a survey of current structure, recent innovations, and planned changes. J Dent Educ. 2004; 68(9):914–931.

Haden NK, Hendricson WD, Kassebaum DK, Ranney RR, Weinstein G, Anderson EL, et al. Curriculum changes in dental education, 2003–09. J Dent Educ. 2010; 74(5):539–57.

DeBate RD, Cragun D, Severson HH, Shaw T, Christiansen S, Koerber A, et al. Factors for increasing adoption of e-courses among dental and dental hygiene faculty members. J Dent Educ. 2011; 75 (5): 589–597.

Saeed SG, Bain J, Khoo E, Siqueira WL. COVID-19: Finding silver linings for dental education. J Dent Educ. 2020; 84(10):1060–1063.

Schlenz MA, Schmidt A, Wöstmann B, Krämer N, Schulz-Weidner N. Students’ and lecturers’ perspective on the implementation of online learning in dental education due to SARS-CoV-2 (COVID-19): a cross-sectional study. BMC Med Educ. 2020;20(1):1–7.

Donn J, Scott JA, Binnie V, Bell A. A pilot of a virtual Objective Structured Clinical Examination in dental education. A response to COVID-19. Eur J Dent Educ. 2020; https://doi.org/10.1111/eje.12624

Hung M, Licari FW, Hon ES, Lauren E, Su S, Birmingham WC, Wadsworth LL, Lassetter JH, Graff TC, Harman W, et al. In an era of uncertainty: impact of COVID-19 on dental education. J Dent Educ. 2020; 85 (2): 148–156.

Sadid-Zadeh R, Wee A, Li R, Somogyi‐Ganss E. Audience and presenter comparison of live web‐based lectures and traditional classroom lectures during the COVID‐19 pandemic. J Prosthodont. 2020. doi: https://doi.org/10.1111/jopr.13301

Wang K, Zhang L, Ye L. A nationwide survey of online teaching strategies in dental education in China. J Dent Educ. 2020; 85 (2): 128–134.

Rad FA, Otaki F, Baqain Z, Zary N, Al-Halabi M. Rapid transition to distance learning due to COVID-19: Perceptions of postgraduate dental learners and instructors. PLoS One. 2021; 16(2): e0246584.

Abbasi S, Ayoob T, Malik A, Memon SI. Perceptions of students regarding E-learning during Covid-19 at a private medical college. Pak J Med Sci. 2020; 3 6 : 57–61.

Al-Azzam N, Elsalem L, Gombedza F. A cross-sectional study to determine factors affecting dental and medical students’ preference for virtual learning during the COVID-19 outbreak. Heliyon. 6(12). 2020. doi: https://doi.org/10.1016/j.heliyon.2020.e05704

Chen E, Kaczmarek K, Ohyama H. Student perceptions of distance learning strategies during COVID-19. J Dent Educ. 2020. doi: https://doi.org/10.1002/jdd.12339

Kaczmarek K, Chen E, Ohyama H. Distance learning in the COVID-19 era: Comparison of student and faculty perceptions. J Dent Educ. 2020. https://doi.org/10.1002/jdd.12469

Sarwar H, Akhtar H, Naeem MM, Khan JA, Waraich K, Shabbir S, et al. Self-reported effectiveness of e-learning classes during COVID-19 pandemic: A nation-wide survey of Pakistani undergraduate dentistry students. Eur J Dent. 2020; 14 (S01): S34-S43.

Al-Taweel FB, Abdulkareem AA, Gul SS, Alshami ML. Evaluation of technology‐based learning by dental students during the pandemic outbreak of coronavirus disease 2019. Eur J Dent Educ. 2021; 25(1): 183–190.

Elangovan S, Mahrous A, Marchini L. Disruptions during a pandemic: Gaps identified and lessons learned. J Dent Educ. 2020; 84 (11): 1270–1274.

Goodenow C. Classroom belonging among early adolescent students: Relationships to motivation and achievement. J Early Adolesc.1993; 13(1): 21–43.

Goodenow C. The psychological sense of school membership among adolescents: Scale development and educational correlates. Psychol Sch. 1993; 30(1): 79–90.

St-Amand J, Girard S, Smith J. Sense of belonging at school: Defining attributes, determinants, and sustaining strategies. IAFOR Journal of Education. 2017; 5(2):105–19.

Peacock S, Cowan J. Promoting sense of belonging in online learning communities of inquiry at accredited courses. Online Learn. 2019; 23(2): 67–81.

Chan GM, Kanneganti A, Yasin N, Ismail-Pratt I, Logan SJ. Well‐being, obstetrics and gynecology and COVID‐19: Leaving no trainee behind. Aust N Z J Obstet Gynaecol. 2020; 60(6): 983–986.

Hodges C, Moore S, Lockee B, Trust T, Bond A. The difference between emergency remote teaching and online learning. Educause Review. 2020; 2 7 , 1–12.

Means B, Bakia M, Murphy R. Learning online: What research tells us about whether, when and how. Routledge. 2014.

Iyer P, Aziz K, Ojcius DM. Impact of COVID-19 on dental education in the United States. J Dent Educ. 2020; 84(6): 718–722.

Machado RA, Bonan PRF, Perez DEDC, Martelli JÚnior H. 2020. COVID-19 pandemic and the impact on dental education: Discussing current and future perspectives. Braz Oral Res. 2020; 34: e083.

Wu DT, Wu KY, Nguyen TT, Tran SD. The impact of COVID-19 on dental education in North America-Where do we go next? Eur J Dent Educ. 2020; 24(4): 825–827.

de Oliveira Araújo FJ, de Lima LSA, Cidade PIM, Nobre CB, Neto MLR. Impact of Sars-Cov-2 and its reverberation in global higher education and mental health. Psychiatry Res. 2020; 288:112977. doi: https://doi.org/10.1016/j.psychres.2020.112977

Persky AM, Lee E, Schlesselman LS. Perception of learning versus performance as outcome measures of educational research. Am J Pharm Educ. 2020; 8 4 (7): ajpe7782.

Zoom @ . Zoom Video Communications , San Jose, CA, USA. https://zoom.us/

Canvas @ . Instructure, INC. Salt Lake City, UT, USA. https://www.instructure.com/canvas

SoftChalk @ . SoftChalk LLC . San Antonio, TX, USA. https://www.softchalkcloud.com/

Agarwal S, Kaushik JS. Student’s perception of online learning during COVID pandemic. Indian J Pediatr. 2020; 87: 554–554.

Khalil R, Mansour AE, Fadda WA, Almisnid K, Aldamegh M, Al-Nafeesah A, et al. The sudden transition to synchronized online learning during the COVID-19 pandemic in Saudi Arabia: a qualitative study exploring medical students’ perspectives. BMC Med Educ. 2020; 20(1): 1–10.

Riley E, Capps N, Ward N, McCormack L, Staley J. Maintaining academic performance and student satisfaction during the remote transition of a nursing obstetrics course to online instruction. Online Learn. 2021; 25(1), 220–229.

Amir LR, Tanti I, Maharani DA, Wimardhani YS, Julia V, Sulijaya B, et al. Student perspective of classroom and distance learning during COVID-19 pandemic in the undergraduate dental study program Universitas Indonesia. BMC Med Educ. 2020; 20(1):1–8.

Dost S, Hossain A, Shehab M, Abdelwahed A, Al-Nusair L. Perceptions of medical students towards online teaching during the COVID-19 pandemic: a national cross-sectional survey of 2721 UK medical students. BMJ Open. 2020; 10(11).

Graham CR, Woodfield W, Harrison JB. A framework for institutional adoption and implementation of blended learning in higher education. Internet High Educ. 2013; 18 : 4–14.

Sing C, Khine M. An analysis of interaction and participation patterns in online community. J Educ Techno Soc. 2006; 9(1): 250–261.

Bernard RM, Abrami PC, Borokhovski E, Wade CA, Tamim RM, Surkes MA, et al. A meta-analysis of three types of interaction treatments in distance education. Rev Educ Res. 2009; 79(3): 1243–1289.

Fedynich L, Bradley KS, Bradley J. Graduate students’ perceptions of online learning. Res High Educ. 2015; 27.

Tanis CJ. The seven principles of online learning: Feedback from faculty and alumni on its importance for teaching and learning. Res Learn Technol. 2020; 28 . https://doi.org/10.25304/rlt.v28.2319

Dixson MD. Measuring student engagement in the online course: The Online Student Engagement scale (OSE). Online Learn. 2015; 19 (4).

Kwary DA, Fauzie S. Students’ achievement and opinions on the implementation of e-learning for phonetics and phonology lectures at Airlangga University. Educ Pesqui. 2018; 44 .

Vygotsky LS. Mind in society: The development of higher psychological processes. Cambridge (MA): Harvard University Press. 1978.

Kahoot! @ . Oslo, Norway. https://kahoot.com/

Davis J, Chryssafidou E, Zamora J, Davies D, Khan K, Coomarasamy A. Computer-based teaching is as good as face to face lecture-based teaching of evidence-based medicine: a randomised controlled trial. BMC Med Educ. 2007; 7(1): 1–6.

Davis J, Crabb S, Rogers E, Zamora J, Khan K. Computer-based teaching is as good as face to face lecture-based teaching of evidence-based medicine: a randomized controlled trial. Med Teach. 2008; 30(3): 302–307.

Download references

Acknowledgements

Not applicable.

Authors’ information

MZ is an Associate Professor of Learning Sciences and Senior Instructional Designer at School of Dentistry, University of the Pacific. She has a PhD in Education, with a specialty on learning sciences and technology. She has dedicated her entire career to conducting research on online learning, learning technology, and faculty development. Her research has resulted in several peer-reviewed publications in medical, dental, and educational technology journals. MZ has also presented regularly at national conferences.

DB is an Assistant Dean for Academic Affairs at School of Dentistry, University of the Pacific. He has an EdD degree in education, with a concentration on learning and instruction. Over the past decades, DB has been overseeing and delivering faculty pedagogical development programs to dental faculty. His research interest lies in educational leadership and instructional innovation. DB has co-authored several peer-reviewed publications in health sciences education and presented regularly at national conferences.

CL is Associate Dean of Oral Healthcare Education, School of Dentistry, University of the Pacific. She has a Doctor of Dental Surgery (DDS) degree and an EdD degree with a focus on educational leadership. Her professional interest lies in educational leadership, oral healthcare education innovation, and faculty development. CL has co-authored several publications in peer-reviewed journals in health sciences education and presented regularly at national conferences.

Author information

Authors and affiliations.

Office of Academic Affairs, Arthur A. Dugoni School of Dentistry, University of the Pacific, CA, San Francisco, USA

Meixun Zheng, Daniel Bender & Cindy Lyon

You can also search for this author in PubMed   Google Scholar

Contributions

MZ analyzed the data and wrote the initial draft of the manuscript. DB and CL both provided assistance with research design, data collection, and reviewed and edited the manuscript. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Meixun Zheng .

Ethics declarations

Ethics approval and consent to participate.

The study was approved by the institutional review board at University of the Pacific in the U.S. (#2020-68). Informed consent was obtained from all participants. All methods were carried out in accordance with relevant guidelines and regulations.

Consent for publication

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1:.

Survey of online courses during COVID-19 pandemic.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Zheng, M., Bender, D. & Lyon, C. Online learning during COVID-19 produced equivalent or better student course performance as compared with pre-pandemic: empirical evidence from a school-wide comparative study. BMC Med Educ 21 , 495 (2021). https://doi.org/10.1186/s12909-021-02909-z

Download citation

Received : 31 March 2021

Accepted : 26 August 2021

Published : 16 September 2021

DOI : https://doi.org/10.1186/s12909-021-02909-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Dental education
  • Online learning
  • COVID-19 pandemic
  • Instructional strategies
  • Interaction
  • Learning performance

BMC Medical Education

ISSN: 1472-6920

research paper about online classes

  • Research article
  • Open access
  • Published: 02 October 2020

Development of a new model on utilizing online learning platforms to improve students’ academic achievements and satisfaction

  • Hassan Abuhassna   ORCID: orcid.org/0000-0002-5774-3652 1 ,
  • Waleed Mugahed Al-Rahmi 1 ,
  • Noraffandy Yahya 1 ,
  • Megat Aman Zahiri Megat Zakaria 1 ,
  • Azlina Bt. Mohd Kosnin 1 &
  • Mohamad Darwish 2  

International Journal of Educational Technology in Higher Education volume  17 , Article number:  38 ( 2020 ) Cite this article

183k Accesses

122 Citations

7 Altmetric

Metrics details

This research aims to explore and investigate potential factors influencing students’ academic achievements and satisfaction with using online learning platforms. This study was constructed based on Transactional Distance Theory (TDT) and Bloom’s Taxonomy Theory (BTT). This study was conducted on 243 students using online learning platforms in higher education. This research utilized a quantitative research method. The model of this research illustrates eleven factors on using online learning platforms to improve students’ academic achievements and satisfaction. The findings showed that the students’ background, experience, collaborations, interactions, and autonomy positively affected students’ satisfaction. Moreover, effects of the students’ application, remembering, understanding, analyzing, and satisfaction was positively aligned with students’ academic achievements. Consequently, the empirical findings present a strong support to the integrative association between TDT and BTT theories in relation to using online learning platforms to improve students’ academic achievements and satisfaction, which could help decision makers in universities and higher education and colleges to plan, evaluate, and implement online learning platforms in their institutions.

Introduction

Higher education organizations over the previous two decades have offered full courses online as an integral part of their curricula, besides encouraging the completion throughout the online courses. Additionally, the number of students who are not participating in any courses online has continued to drop over the past few years. Similarly, it is perfectly possible to state that learning online is obviously an educational platform (Allen, Seaman, Poulin, & Straut, 2016 ). Courses online are trying to connect social networking components, experts’ content, because online resources are growing on daily basis. Such courses depend on active participation of a significant number of learners who participate independently in accordance with their education objectives, skills, and previous background and experience (McAuley, Stewart, Siemens, & Cormier, 2010 ). Nevertheless, learners differ in their previous background and experience, along with their education techniques, which clearly influence their online courses results besides their achievement (Kauffman, 2015 ). Consequently, despite the online learning evolution, learning online possibly will not be appropriate for each learner (Bouhnik & Carmi, 2013 ). Nevertheless, while online learning application among academic world has grown rapidly, not enough is identified regarding learners’ previous background and experience in learning online. Not so long ago, investigation concentrated on particular characteristics of learners’ experiences along with beliefs, for instance collaboration with their own instructor, online course quality, or studying with a certain learning management system (LMS) (Alexander & Golja, 2007 ; (Lester & King, 2009 ). Generally, limited courses or a single institution were investigated (Coates, James, & Baldwin, 2005 ; Lee, Yoon, & Lee, 2009 ). Few studies examined bigger sample sizes between one or more particular institutes (Alexander & Golja, 2007 ). Additionally, there is a shortage of researches that examine learners’ previous background and experience comparing face-to-face along with learning online elements, e.g., (Bliuc, Goodyear, & Ellis, 2007 ). The development of learners’ previous background and experience, skills, are realized to be the major advantages for administrative level for learning online.

Similarly, learners’ satisfaction and academic achievement towards learning online attracted considerable attention from scholars who employed several theoretical models in order to evaluate learners’ satisfaction and academic achievements (Abuhassna, Megat, Yahaya, Azlina, & Al-rahmi, 2020 ; Abuhassna & Yahaya, 2018 ; Al-Rahmi, Othman, & Yusuf, 2015a ; Al-Rahmi, Othman, & Yusuf, 2015b ). This present study highlights the effects of online learning platforms on student’s satisfaction, in relation to their background and prior experiences towards online learning platforms to identify learners that are going to be satisfied toward online course. Furthermore, this research explores the effects of transactional distance theory (TDT); student collaboration, student- instructor dialogue or communication, and student autonomy in relation to their satisfaction. Accordingly, this study investigates students’ academic achievements within online platforms, utilizing Bloom theory to measure students’ achievements through four main components, namely, understanding, remembering, applying, and analyzing. This study could have a significant influence on online course design and development. Additionally, this research may influence not only academic online courses but then other educational organizations according to the fact that several organizations offer training courses and solutions online. Both researchers and Instructors will be able to utilize and elaborate in accordance with the preliminary model, which was developed throughout this research, on the effects of online platforms on student’s satisfaction and academic achievements. Advantages of online learning and along with its applications were mentioned in earlier correlated literature (Abuhassna et al., 2020 ;Abuhassna & Yahaya, 2018 ; Al-Rahmi et al., 2018 ). However, despite the growing usage of online platforms, there is a shortage of employing this technology, which creates an issue in itself (Abuhassna & Yahaya, 2018 ; Al-Rahmi et al., 2018 ). Consequently, the research problem lies in the point that a model needs to be created to locate the significant evidence based on the data of student’s background, experiences and interactions within online learning environments which influence their academic performance and satisfaction. Thus, this developed model must be as a guidance for instructors and decision makers in the online education industry in terms of using online platforms to improve students learning experience through online platforms. Bearing in mind these conditions, our major problem was: how could we enhance students online learning experience in relation to both their academic achievements and satisfaction?

Research questions

The major research question that are anticipated to be answered is:

how could we enhance students online learning experience in relation to both their academic achievements and satisfaction?

To be able to answer this question, it is required to examine numerous sub-questions which have been stated as follow:

Q1: What is the relationship between students’ background and students’ satisfaction?

Q2: What is the relationship between students’ experience and students’ satisfaction?

Q3: What is the relationship between students’ collaboration and students’ satisfaction?

Q4: What is the relationship between students’ interaction and students’ satisfaction?

Q5: What is the relationship between students’ autonomy and students’ satisfaction?

Q6: What is the relationship between students’ satisfaction and students’ academic achievements?

Q7: What is the relationship between students’ application and students’ academic achievements?

Q8: What is the relationship between students’ remembering and students’ academic achievements?

Q9: What is the relationship between students’ understanding and students’ academic achievements?

Q10: What is the relationship between students’ analyzing and students’ academic achievements?

Research theory and hypotheses development

When designing web-courses within online learning instructions or mechanisms in general, educators are left with several decisions and considerations to face, which accordingly affect how students experience instruction, how they construct and process knowledge, how students could be satisfied through this experiment, and how web-based learning courses could enhance their academic achievements. In this study, we construct our theoretical framework according to Moore transactional distance theory (TDT) to measure student’s satisfaction, in addition to Bloom theory components to measure students’ academic achievements. Though the origins of TDT can be traced to the work of Dewey, it is Michael Moore who is identified as the innovator of this theory that first appeared in 1972. In his study and development of the theory, he acknowledged three main components of TDT that work as the base for much of the research on DL. Also, Bloom’s Taxonomy was established in 1956 under the direction of educational psychologist to measure students’ academic achievement (Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956 ). TDT theory has been selected in this study since Transactional distance’s term indicates the geographical space between the student and instructor. Based on the learning understanding, which happens through learner’s interaction with his environment. This theory considers the role of each of these elements (Student’s autonomy, Dialogue, and class structure) whereas these three elements could help to investigate student’s satisfaction. Moore’s ( 1990 ) notion of ‘Transactional Distance’ adopt the distance that happens in all relations in education. The distance in the theory is mainly specified the dialogue’s amount which happens between the student and the teacher, and the structure’s amount in the course design. Which serves the main goal of this study as to enhance students online learning experience in relation to their satisfaction. Whereas, Bloom Theory has been selected in this study in addition to TDT to enhance students online learning experience in relation to their student’s achievements. In a conclusion both methods were implemented to develop and hypothesis this study hypothesis. See Fig.  1 .

figure 1

Research Model and Hypotheses

Hypothesis of the study

H1: There is a significant relationship between students’ background and students’ satisfaction.

H2: There is a significant relationship between students’ experience and students’ satisfaction.

H3: There is a significant relationship between students’ collaboration and students’ satisfaction.

H4: There is a significant relationship between students’ interaction and students’ satisfaction.

H5: There is a significant relationship between students’ autonomy and students’ satisfaction.

H6: There is a significant relationship between students’ satisfaction and students’ academic achievements.

H7: There is a significant relationship between students’ application and students’ academic achievements.

H8: There is a significant relationship between students’ remembering and students’ academic achievements.

H9: There is a significant relationship between students’ understanding and students’ academic achievements.

H10: There is a significant relationship between students’ analyzing and students’ academic achievements.

Hypothesis developments and literature review

This Section of the study will discuss the study hypothesis and relates each hypothesis to its related studies from the literature.

Students background toward online platforms

Students’ background regarding online platforms in this study is referred to as their readiness and willingness to use and adapt to different online platforms, providing them with the needed support and assistance. Students’ background towards online learning is a crucial component throughout this process, as prior research revealed that there are implementation issues, for instance; the deficiency of qualified lecturers, infrastructure and facilities, in addition to students’ readiness, besides students’ resistance to accept online learning platforms in addition to the Learning Management System (LMS) platforms, as educational tools (Azhari & Ming, 2015 ). However, student demand continued to increase, spreading to global audiences due to its exceptional functionality, flexibility and eventual accessibility (Azhari & Ming, 2015 ). There have been persistent apprehensions regarding online learning quality compared with traditional learning settings. In their research, (Paechter & Maier, 2010 ; Panyajamorn, Suthathip, Kohda, Chongphaisal, & Supnithi, 2018 ) have discovered that Austrian learners continue to prefer traditional learning environments due to communication goals, along with the interpersonal relations preservation. Moreover, (Lau & Shaikh, 2012 ) have discovered that Malaysian learners’ internet efficiency and computer skills, along with their personal demographics like gender, background, level of the study, as well as their financial income lead to a significant difference in their readiness towards online learning platforms. Abuhassna and Yahaya ( 2018 ) claimed that the current technologies in education play an essential role in providing a full online learning experience which is close enough to a face-to-face class in spite of the physical separation of the students from their educator, along with other students. Platforms of online learning lend themselves towards a less hierarchical methodology in education, fulfilling the learning desires of individuals which do not approach new information in a linear or a systematic manner. Platforms of online learning additionally are the most suitable ways for autonomous students (Abuhassna et al., 2020 ; Abuhassna & Yahaya, 2018 ; Paechter & Maier, 2010 ; Panyajamorn et al., 2018 ).

Students experience toward online platforms

Students’ experience in the current research indicates that learners must have prior experience in relation to utilizing online learning platform in their education settings. Thus, students experience towards online learning offers several advantages among themselves and their instructors in strengthening students’ learning experiences especially for isolated learners (Jaques & Salmon, 2007 ; Lau & Shaikh, 2012 ; Salmon, 2011 ; Salmon, 2014 ). Regardless of student recognition of the advantages towards supporting their learning throughout utilizing the technology, difficulties may occur through the boundaries about their technical capabilities and prior experiences towards utilizing the software itself from the perspective of its functionality. As demonstrated over learner’s experience and feedback from several online sessions over the years, this may frequently become a frustration source between both learners and their instructors, as this may make typically uncomplicated duties, for instance, watching a video, uploading a document, and other simple tasks to be progressively complicated for them, having no such prior experience. Furthermore, when filling out evaluations, for instance, online group presentations, the relatively limited capability to communicate face-to-face then to rely on a non-verbal signal along with audience’s body language might be a discouraging component. Nonetheless, the significance of being in a position to participate with other colleagues employing online sessions, which are occasionally nonvisual, for instance; teleconference format is a progressively significant skill in the modern workplace, thus affirming the importance of concise, clear, intensive interactions skills (Salmon, 2011 ; Salmon, 2014 ).

Student collaboration among themselves in online platforms

Students’ collaborations in the current study refers to the communication and feedback among themselves in online platforms. To refine and measure transactional distance using a survey tool, (Rabinovich, 2009 ) created a survey instrument to measure transactional distance in a higher education setting. A survey was sent to 235 students enrolled in a synchronous web-based graduate class in business regarding transactional distance and Collaborations (Rabinovich, 2009 ). The synchronous learning environment was described as a place where “live on-campus classes are conveyed simultaneously to both in-class students on campus and remote students on the Web who join via virtual classroom Web collaboration software” (Rabinovich, 2009 ). The virtual classroom software is similar to the characteristics of the two different software described by (Falloon, 2011 ; Mathieson, 2012 ) that it allows for students to interact with the educator and fellow students in real-time (Rabinovich, 2009 ). Moreover, (Kassandrinou, Angelaki, & Mavroidis, 2014 ) reported that the instructor plays a crucial role as interaction and communication helpers, as they are tasked with fostering, reassuring and assisting communication and interaction among students. Face-to-face tutorials have proven to be a vast opportunity for a multitude of students to interchange ideas, argue the content of the course and its related concerns (Vasala & Andreadou, 2010 ).

Students’ interactions with the instructor in online platforms

Purposeful interaction or (dialogue) in the current study describes communication that is learner-learner and learner-instructor which is designed to improve the understanding of the student. According to (Shearer, 2010 ) communication should also be constructive in that it builds upon ideas and work from others, as well as assists others in learning. (Moore, 1972 ) affirmed that learners also must realize that, and value the importance of the learning interactions as a vital part of the learning process. In a manner similar to (Benson & Samarawickrema, 2009 ] study of teacher preparatory students, (Falloon, 2011 ) investigated the use of digital tools in a case study at a teacher education program in New Zealand. (Mathieson, 2012 ) also explored the role dialogue plays in digital learning environments. She created a digital survey that examined students’ perception of audio-visual feedback in courses that utilize screen casting digital tools. (Moore, 2007 ) discusses autonomous learners searching for courses that do not stress structure and dialogue in order explain and enhance their learning progression. (Abuhassna et al., 2020 ; Abuhassna & Yahaya, 2018 ; Al-Rahmi et al., 2015b ; Al-Rahmi, Othman, & Yusuf, 2015d ; Furnborough, 2012 ) concluded that the feeling of cooperation that learners’ share with their fellow students effect their reaction concerning their collaboration with their peers.

Student autonomy in online platforms

Student autonomy in the current study refers to their independence and motivation towards learning. The learner is the motivation of the way toward learning, along with their expectations and requirements, thinking about everyone as a unique individual and hence investigating their own capacities and possibilities. Thus, extraordinary importance is attributed to autonomy in DL environments, since the option of instructive intercession offered in distance education empowers students towards learning autonomy (Massimo, 2014 ). In this respect, the connection between autonomy of student and explicit parts of the learning procedure are in the center of consideration as mentioned. (Madjar, Nave, & Hen, 2013 ) concluded that a learners’ autonomy-supportive environment provides these learners with adoption of a more aims guided learning, leading to more learning achievements. This is why autonomy is desired in the online settings for both individual development and greater achievement in academic environments. The researchers also indicate in their research that while autonomy supports outcomes in goals and aims guiding, educator practices mainly lead to goals which necessary cannot adapt. Thus, supportive-autonomy learning process needs to be designed with affective elements consideration as well. However, (Stroet, Opdenakker, & Minnaert, 2013 ) efficiently surveyed 71 experimental studies on the impacts of autonomy supportive teaching on motivation of learner and discovered a clear positive correlation. Similar to attribution theory, the relationship between learner control and inspiration involves the possibility of learners adjusting their own inspirations, for example, learners may be competent to change self-determined extrinsic motivation to intrinsic motivation. However, (Jacobs, Renandya, & Power, 2016 ) further indicated that learners will not reach the same level of autonomy without reviewing learner’s autonomy insights, reflecting on their learning experiences, sharing these experiences and reflections with other learners, and realizing the elements influencing all these processes, and the process of learning as well.

Student satisfaction in online platforms

Student satisfaction in the current study refers to the fact that there are many factors that play a role in determining the learner’s satisfaction, such as faculty, institution, individual learner element, interaction/communication elements, the course elements, and learning environment. Discussion of the elements also related to the role of the instructor, with the learner’s attitude, social presence, usefulness, and effectiveness of Online Platforms. (Yu, 2015 ) investigated that student satisfaction was positively associated with interaction, self-efficacy and self-regulation without significant gender variations. (Choy & Quek, 2016 ). examined the relationships between the learners’ perceived teaching, social, and cognitive element. In addition, satisfaction, academic performance, and achievement can be measured using a revised form of the survey instrument. (Kirmizi, 2014 ) studied connection between 6 psychosocial scales: personal relevance, educator assistance, student interaction and collaboration, student autonomy, authentic learning, along with active learning. A moderate level of correlation was found between these mentioned variables. Learner satisfaction predictors were educator support, personal relevance and authentic learning, while authentic learning was the only academic success predictor. Findings of (Bordelon, 2013 ) determined and described a positive correlation between both achievement and satisfaction. He demonstrated that the reasons behind these conclusions could be cultural variations in learner’s satisfaction which point out learning accession Zhu ( 2012 ). Scholars in the field of student satisfaction emphasis on the delivery besides the operational side of the student’s experience in the teaching process (Al-Rahmi, Othman, & Yusuf, 2015e ).

Students’ academic achievements in online platforms

Students achievements in this study refers to Bloom’s main four components of achievements, which are remembering, understanding, applying, and analyzing. Finding in a study conducted by (Whitmer, 2013 ) revealed the relationships between student academic achievement and the LMS usage, thus the findings showed a highly systematic association ( p  < .0000) in relation to every variable. These variables described 12% and 23% of variations within the final course marks, which indicates that learners who employed the LMS more often obtained higher marks than the others. Thus, the correlation techniques examined these variables separately to ascertain their association with the final mark. Moreover, it is not the technology itself; it is the educational methods in relation to which technology has been utilized that create a change in learners’ achievement. Instruments used are significant in identifying the technology impact, moreover, it is the implementation of those instruments under specific activities and for certain purposes which indicates whether or not they are effective. In contrast, a study conducted by (Barkand, 2017 ) revealed that LMS tools were not considered to have an effect on semester final grades when categorized by school year. In his study, semester final grades were a measure of student achievement, which has subjective elements. To account for the subjective elements in semester final grades, the study also included objective post test scores to evaluate student learning. Additionally, in this study, we refer to Bloom’s Taxonomy established in 1956 under the direction of educational psychologist for measuring students’ academic achievement (Bloom et al., 1956 ). Moreover, in this study, we selected fours domains of Blooms Taxonomy in order to achieve this study objectives, which are; application: which refers to using a concept in new context, for instance; applying what has been learned inside the classroom into different circumstances; remembering, which refers to recalling or retrieving prior learned knowledge; understanding, which refers to realizing the meaning, then clarification of problems instructions; analyzing, which refers to separating concepts or material into parts in such a way that its structure can be distinguished, understood among inferences and facts.

Students’ application

Applying involves “carrying out or using a procedure through executing or implementing” (Anderson & Krathwohl, 2001 ). Applying in this study refers to the student’s ability to use online platforms, such as how to log in, how to end session, how to download materials, how to access links and videos. Students can exchange information about a specific topic in online platforms such as Moodle, Google Documents, Wikis and apply knowledge to create and participate in online platforms.

Students’ remembering

Remembering is defined as “retrieving, recognizing, and recalling relevant knowledge from long-term memory” (Anderson & Krathwohl, 2001 ). In this study, remembering is referred to the ability to organize and remember online resources to easily find information on the internet. Moreover, students can easily cooperate with their colleagues and educator, contributing to the educational process and justifying their study procedure. Anderson and Krathwohl ( 2001 ) In their review of Bloom’s taxonomy, Anderson and Krathwohl ( 2001 ) recognized greater learning levels as creating, evaluating, and analyzing, with the lower learning levels as applying, understanding, and remembering.

Students’ understanding

Understanding involves “constructing meaning from oral, written, and graphic messages through interpreting, exemplifying, classifying, summarizing, inferring, comparing, and explaining” (Anderson & Krathwohl, 2001 ). In this study, understanding is referred to as understanding regarding a subject then putting forward new suggestions about online settings, for instance; understanding how e-learning works, or LMS. For example, students use online platforms to review concepts, courses, and prominent resources are being used inside the classroom environment.

Students’ analyzing

Analyzing includes “breaking material into constituent parts, determining how the parts relate to one another and to an overall structure or purpose through differentiating, organizing, and attributing” (Anderson & Krathwohl, 2001 ). Analyzing refers to the student’s ability to connect, discuss, mark-up, then evaluate the information received into one certain workplace or playground. Solomon and Schrum ( 2010 ) claim that educators have started employing online platforms for a range of activities, since they have become more familiar and there are ways for learners to benefit from using them. Generally, the purpose and goal are to publicize the development types, innovation, as well as additional activities that their learners usually do independently. Such instruments have also provided instructors ways to encourage and promote genuine cooperation in their project’s development (Solomon & Schrum, 2010 ).

Research methodology

A quantitative approach was implemented in this study to provide an inclusive insight in relation to students online learning experience and how to enhance both their satisfaction and academic achievements using a questionnaire. Two experts were referred for the evaluation of the questionnaire’s content. Before the collection of the data, permission regarding the current research purpose has been obtained from Universiti Teknologi Malaysia (UTM). In relation to the sampling and population, this research was conducted among undergraduate learners who have been online learning users. Learners, who had manually obtained the questionnaires, have been requested to fill in their details, then fill their own assessments regarding online learning platforms and its effects towards their academic achievements. Thus, for data analysis, the data that were attained from questionnaires were then analyzed using the Statistical Package for the Social Sciences (SPSS). Specifically, Structural Equation Modeling (SEM- Amos), which has been employed as a primary data analysis tool. Moreover, utilizing SEM-Amos process involves two main phases: evaluating construct validity, the convergent validity, along with the discriminant validity of the measurements; then analyzing the structural model. These mentioned two phases followed the recommendations of (Bagozzi, Yi, & Nassen, 1998; Hair, Sarstedt, Ringle, & Mena, 2012a , 2012b ).

Sample characteristics and data collection

A total of 283 questionnaires were distributed manually; of these, only 264, which make up 93.3% of the total number, were returned to the authors. Excluding the 26 incomplete questionnaires, 264 were evaluated employing SPSS. A total of 21 questionnaires have been excluded: 14 were incomplete and 7 having outliners. Thus, the overall number of valid questionnaires was 243 following this exclusion. This exclusion step is being supported by Hair et al. ( 2012a , 2012b ) . Moreover, Venkatesh, Thong, & Xu, 2012 who pointed out that this procedure is essential to be implemented as the existence of outliers could be a reason for inaccurate results. Regarding the respondent’s demographic details: 91 (37.4%) were males, and 152 (62.6%) were females. 149 (61.3%) were in the age range of 18 t0 20 years old, 77 (31.7%) were in the age range of 21 to 24 years old, and 17 (7.0%) were in the age range of 25 to 29 years old. Regarding level of study: 63 (25.9%) were from level 1, 72 (29.6%) were from level 2, 50 (20.6%) were from level 3, and 58 (23.9%) were from level 4.

Measurement instruments

The questionnaire in this study has been developed to fit the study hypothesis. Consequently, it was developed based into both theories that have been utilized in this study. The questionnaire has two main sections, first section aims to measure student satisfaction which is based on the TDT theory variables. Second section of the questionnaire has been developed to measure students’ academic achievement based on Bloom theory. According to Bloom theory there are four variables that measure students’ achievements, which are application, remembering, understanding, analyzing. On that basis the questionnaire has been developed to measure both students’ satisfaction and academic achievements . The construct items were adapted to ensure content validity. This questionnaire consisted of two main sections. First part covered the demographic details of the respondents’ including age, gender, educational level. The second part comprises 51 items which were adapted from previous researches as following; student background, five items, student experience, five items adapted from (Akaslan & Law, 2011 ), student collaborations, and, student interactions items adapted from (Bolliger & Inan, 2012 ), student autonomy, five items adapted from (Barnard et al., 2009 ; Pintrich, Smith, Garcia, & McKeachie, 1991 ), student satisfaction, six items adapted from (The blended learning impact evaluation at UCF is conducted by Research Initiative for Teaching Effectiveness, n.d. ). Moreover, effects of the students’ application, four items, students’ remembering, four items, students’ understanding, four items, students’ analyzing, four items, and students’ academic achievements, four items adapted from (Pekrun, Goetz, & Perry, 2005 ). The questionnaire has been distributed to the students after taking the online course.

Result and analysis

Cronbach’s Alpha reliability coefficient result was 0.917 among all research model factors. Thus, the discriminant validity (DV) assessment was carried out through utilizing three criteria, which are: index between variables, which is expected to be less than 0.80 (Bagozzi, Yi, & Nassen, 1988 ); each construct AVE value must be equal to or higher than 0.50; square of (AVE) between every construct should be higher, in value, than the inter construct correlations (IC) associated with the factor [49]. Furthermore, the crematory factor analysis (CFA) findings along with factor loading (FL) should therefore be 0.70 or above although the Cronbach’s Alpha (CA) results are confirmed to be ≥0.70 [50]. Researchers have also added that composite reliability (CR) is supposed to be ≥0.70.

Model analysis

Current research employed AMOS 23 to analyze the data. Both structural equation modeling (SEM) as well as confirmatory factor analysis (CFA) have been employed as the main analysis tools. Uni-dimensionality, reliability, convergent validity along with discriminant validity have been employed to assess the measurement model. (Bagozzi et al., 1988 ; Byrne, 2010 ; Kline, 2011 ) highlighted that goodness-of-fit guidelines, such as the normed chi-square, chi-square/degree of freedom, normed fit index (NFI), relative fit index (RFI), Tucker-Lewis coefficient (TLI) comparative fit index (CFI), incremental fit index (IFI), the parsimonious goodness of fit index (PGFI), thus, the root mean square error of approximation (RMSEA) besides the root mean-square residual (RMR). All these are tools which could be utilized as the assessment procedures for the model estimation. See Table  1 & Fig.  2 .

figure 2

Measurement Model

Measurement model

Such type of validity is commonly employed to specify the size difference between a concept and its indicators and other concepts (Hair et al., 2012a , 2012b ). Through analysis in this context, discriminant validity has proven to be positive over all concepts given that values have been over 0.50 (cut-off value) from p  = 0.001 according to Fornell and Larcker ( 1981 ). In line with Hair et al. ( 2012a , 2012b ) . Bagozzi, Yi, & Nassen, (1998), the correlation between items at any two specified constructs must not exceed the square root of the average variance that is shared between them in a single construct. The outcomes values of composite reliability (CR) besides those of Cronbach’s Alpha (CA) remained about 0.70 and over, while the outcomes of the average variance extracted (AVE) remained about 0.50 and higher, indicating that all factor loadings (FL) were significant, thereby fulfilling conventions in the current assessment Bagozzi, Yi, & Nassen, (1998), and Byrne ( 2010 ). Following sections expand on the results of the measurement model. Findings of validity, reliability, average variance extracted (AVE), composite reliability (CR) as well as Cronbach’s Alpha (CA) have all been accepted, which also demonstrated determining the discriminant validity. It is determined that all the values of (CR) vary between 0.812 and 0.917, meaning they are above the cut-off value of 0.70. The (CA) result values also varied between 0.839 and 0.897 exceeding the cut-off value of 0.70. Thus, the (AVE) was similarly higher than 0.50, varying between 0.610 and 0.684. All these findings are positive, thus indicating significant (FLs) and they comply with the conventional assessment guidelines Bagozzi, Yi, & Nassen, (1998), along with Fornell and Larcker ( 1981 ). See Table  2 and Additional file  1 .

Structural model analysis

In the current study, the path modeling analysis has been utilized to examine the impact of students’ academic achievements among higher education institutions through the following factors (students’ background, students’ experience, students’ collaborations, students’ interaction, students’ autonomy, students’ remembering, students’ understanding, students’ analyzing, students’ application, students’ satisfaction), which is based on online learning. The findings are displayed then compared in hypothesis testing discussion. Subsequently, as the second stage, factor analysis (CFA) has being conducted on structural equation modeling (SEM) in order to assess the proposed hypotheses as demonstrated in Fig.  3 .

figure 3

Findings for the Proposed Model Path analysis

As shown in both Figs.  3 and 4 , all hypotheses have been accepted. Moreover, Table  3 below shows that the fundamental statistics of the model was good, which indicates model validity along with the testing results of the hypotheses through demonstrating the values of unstandardized coefficients besides standard errors of the structural model.

figure 4

Findings for the Proposed Model T.Values

The first direct five assumptions, students’ background, students’ experience, students’ collaborations, students’ interaction; students’ autonomy with students’ satisfaction, were addressed. In accordance with Fig.  4 and Table 3 , relations between students’ background and students’ satisfaction was (β = .281, t = 5.591, p  < 0.001), demonstrating that the first hypothesis (H1) has suggested a positive and significant relationship. Following hypothesis illustrated the relationship between students’ experience and students’ satisfaction (β = .111, t = 1.951, p  < 0.001), demonstrating that the second hypothesis (H2) proposed a positive and significant relationship. Third hypothesis illustrated the relationship between students’ collaborations and students’ satisfaction (β = .123, t = 2.584, p  < 0.001) demonstrating that the third hypothesis (H3) has suggested a positive and significant relationship. Additionally, the relationship between students’ background and students’ satisfaction was (β = .116, t = 2.212, p < 0.001), indicating that the fourth hypothesis (H4) has suggested a positive and significant relationship. Further to the above-mentioned findings, the relationship between students’ autonomy and students’ satisfaction was (β = .470, t = 7.711, p  < 0.001), demonstrating that the fifth hypothesis (H5) has suggested a positive and significant relationship. Moreover, in the second section, five assumptions were discussed, which are students’ satisfaction, students’ remembering, students’ understanding, students’ analyzing, students’ application along with students’ academic achievements.

As shown in Fig. 4 and Table 3 , the association between students’ satisfaction and students’ academic achievements was (β = .135, t = 3.473, p  < 0.001), demonstrating that the sixth hypothesis (H6) has suggested a positive and significant relationship. Following hypothesis indicated the relationship between students’ application and students’ academic achievements (β = .215, t = 6.361, p  < 0.001), indicating that the seventh hypothesis (H7) has suggested a positive and significant relationship. Thus, the eighth hypothesis indicated the relationship between students’ remembering and students’ academic achievements was (β = .154, t = 4.228, p  < 0.001), demonstrating that the eight hypothesis (H8) has suggested a positive and significant relationship. Additionally, the correlation between students’ understanding and students’ academic achievements was (β = .252, t = 6.513, p < 0.001), demonstrating that the ninth hypothesis (H9) has suggested a positive and significant relationship. Finally, the relationship between students’ analyzing and students’ academic achievements was (β = .179, t = 6.215, p < 0.001), demonstrating that the tenth hypothesis (H10) has suggested a positive and significant relationship. Accordingly, this current model demonstrated student’s compatibility to use online learning platforms to improve students’ academic achievements and satisfaction. This is in accordance with earlier investigations (Abuhassna & Yahaya, 2018 ; Al-Rahmi et al., 2018 ; Al-rahmi, Othman, & Yusuf, 2015c ; Barkand, 2017 ; Madjar et al., 2013 ; Salmon, 2014 ).

Discussion and implications

Developing a new hybrid technology acceptance model through combining TDT and BTT has been the major objective of the current research, which aimed to investigate the guiding factors towards utilizing online learning platforms to improve students’ academic achievements and satisfaction in higher education institutions. The current research is intensifying a step forward by implementing TDT along with a BTT model. Using the proposed model, the current research examined how students’ background, students’ experience, students’ collaborations, students’ interactions, and students’ autonomy positively affected students’ satisfaction. Moreover, effects of the students’ application, students’ remembering, students’ understanding, students’ analyzing, and students’ satisfaction positively affected students’ academic achievements. The current research found that students’ background, students’ experience, students’ collaborations, students’ interactions, and students’ autonomy were influenced by students’ satisfaction. Also, effects of the students’ application, students’ remembering, students’ understanding, students’ analyzing, and students’ satisfaction positively affected students’ academic achievements. This conclusion is consistent with earlier correlated literature. Thus, this reveals that learners first make sure whether using platforms of online learning were able to meet their study requirements, or that using platforms of online learning are relevant to their study process before considering employing such technology in their study. Learners have been noted to perceive that platforms of online learning is more useful only once they discover that such a technology is actually better than the traditional learning which does not include online learning platforms (Choy & Quek, 2016 ; Illinois Online Network, 2003 ). Using the proposed model, the current research examined how to improve students’ academic achievements and satisfaction. Thus, the following section will be a comparison between this study results and previous research, as follows.

The first hypotheses of this study demonstrated a positive and significant association between students’ prior background towards online platforms with their satisfaction. As clearly investigated in Osika and Sharp ( 2002 ) study, numerous learners deprived of these main skills enroll in the courses, struggle, and subsequently drop out. In addition, Bocchi, Eastman, and Swift ( 2004 ) investigation claimed that prior knowledge of students’ concerns, demands along with their anticipations is crucial in constructing an efficient instruction. Thus, to clarify, students must have prior knowledge and background before letting them into the online platforms. On the other hand, there are constant concerns about the online learning platforms quality in comparison to a face-to-face learning environment, as students do not have the essential skills required toward using online learning platforms (Illinois Online Network, 2003 ). Moreover, a study by Alalwan et al. ( 2019 ) discovered that Austrian learners still would rather choose face-to-face learning for communication purposes, and the preservation of interpersonal relations. This is due to the fact that learners do not as yet have the background knowledge and skills needed towards using online learning platforms. Additional research by Orton-Johnson ( 2009 ) among UK learners claimed that learners have not accepted online materials, and continue to prefer traditional context materials as the medium for their learning, which also indicates the importance of prior knowledge and background towards online platforms before going through such a technology.

The second hypotheses of this study proposed a positive and significant association between students’ experience along with students’ satisfaction, which revealed that putting the students in such an experience would provide and support them with the ability to overcome all difficulties that arise through the limits around the technical ability of the online platforms. This is in line with some earlier researches regarding the reasons that lead to people’s technology acceptance behavior. One reason is the notion of “conformity,” which means the degree to which an individual take into consideration that an innovation is consistent with their existing demands, experiences, values and practices (Chau & Hu, 2002 ; Moore & Benbasat, 1991 ; Rogers, 2003 ; Taylor & Todd, 1995 ). Moreover, (Anderson & Reed, 1998 ; Galvin, 2003 ; Lewis, 2004 ) claimed that most students who had prior experience with online education tended to exhibit positive attitudes toward online education, and it affects their attitudes toward online learning platforms.

The third hypotheses of this study demonstrated a positive and significant association among student collaboration with themselves in online platforms, which indicates the key role of collaboration between students in order to make the experiment more realistic and increase their ability to feel more involved and active. This is agreement with Al-rahmi, Othman, and Yusuf ( 2015f ) who claimed that type, quality, and amount of feedback that each student received was correlated to a student’s sense of success or course satisfaction. Moreover, Rabinovich ( 2009 ) found that all types of dialogue were important to transactional distance, which make it easier for the student to adapt to online learning platform. Also, online learning platforms enable learners to share then exchange information among their colleagues Abuhassna et al., 2020 ; Abuhassna & Yahaya, 2018 ).

Students’ interaction with the instructor in online platforms

The fourth hypothesis of this study proposed a positive and significant correlation between students’ collaborations and students’ satisfaction, which indicates the significance of the communication between students and their instructor throughout the online platforms experiment. These results agree with (Mathieson, 2012 ) results, which stated that the ability of communication between students and their instructor lowered the sense of separation between learner and educator. Moreover, in line with (Kassandrinou et al., 2014 ), communication guides learners to undergo constructive emotions, for example relief, satisfaction and excitement, which assist them to achieve their educational goals. In addition, (Furnborough, 2012 ) draws conclusion that learners’ feeling of cooperating with their fellow students effects their reaction concerning their collaboration with their peers. Moreover, Kassandrinou et al., 2014 focused on the instructor as crucial part as interaction and communication helpers, as they are thought to constantly foster, reassure and assist communication and interaction amongst students.

Student’s autonomy in online platforms

The fifth hypotheses of this study proposed a positive and significant relationship between student’s autonomy and online learning platforms, which indicates that students need a sense of dependence towards online platforms, which agrees with Madjar et al. ( 2013 ) who concluded that a learners’ autonomy-supportive environment provides these learners with adoption of more aims, leading to more learning achievements. Moreover, Stroet et al. ( 2013 ) found a clear positive correlation on the impacts of autonomy supportive teaching on motivation of learner. O’Donnell, Chang, and Miller ( 2013 ) also argues that autonomy is the ability of the learners to govern themselves, especially in the process of making decisions and setting their own course and taking responsibility for their own actions.

Student’s satisfaction in online platforms

The sixth hypotheses of this study proposed a positive and significant correlation between student’s satisfaction with online learning platforms, which indicates a level of acceptance by the students to adapt into online learning platforms. This is in agreement with Zhu ( 2012 ) who reported that student’s satisfaction in online platforms is a statement of confidence with the system. Moreover, Kirmizi ( 2014 ) study revealed that the predictors of the learners’ satisfaction were educator’s support, personal relevance and authentic learning, whereas the authentic learning is only the predictor of academic success. Furthermore, the findings of Bordelon ( 2013 ) stated and determined a positive correlation between both satisfaction and achievement. In addition, the results of Mahle ( 2011 ) clarified that student satisfaction occurs when it is realized that the accomplishment has met the learners’ expectations, which is then considered a short-term attitude toward the learning procedure.

Hypotheses seven, eight, nine and ten of this study proposed a positive and significant relationship between student’s academic achievements with online learning platforms, which indicates the key main role of online platform with students’ academic achievements. This agrees with Whitmer ( 2013 ) findings, which revealed that the associations between student usage of the LMS and academic achievement exposed a highly systematic relationship. In contrast, Barkand ( 2017 ) found that there is no significant difference in students’ academic achievements in utilizing online platforms regarding students’ academic achievements, which is due to the fact that academic achievement towards online learning platforms requires a certain set of skills and knowledge as mentioned in the above sections in order to make such technology a success.

The seventh hypotheses of this study proposed a positive and significant correlation between students’ application and students’ academic achievements, which indicates the major key of applying in the learning process as an effected element. This is in line with the Computer Science Teachers’ Association (CSTA) taskforce in the U. S (Computer Science Teachers’ Association (CSTA), 2011 ), where they mentioned that applying elements of computer skills is essential in all state curricula, directing to their value for improving pupils’ higher order thinking in addition to general problem-solving abilities. Moreover, Gouws, Bradshaw, and Wentworth ( 2013 ) created a theoretical framework which drawn education computational thoughts compared to cognitive levels established from Bloom’s Taxonomy of Learning Purposes. Four thinking skill levels have been utilized to assess the ‘cognitive demands’ initiated by computational concepts for instance abstraction, modelling, developing algorithms, generating automated processes. Through the iPad app, LightBot. thinking skills remained recognizing (which means recognize and recall expertise correlating to the problem); Understanding (interpret, compare besides explain the problem); whereas, applying (make use of computer skills to create a solution) then Assimilating (critically decompose and analyses the problem).

The eighth hypotheses of this study proposed a positive and significant correlation between students’ remembering and students’ academic achievements, which indicates the importance of remembering as a process of retrieving information relating to what needed to be done and/or outcome attributes) over the procedure of learning according to Bloom’s Taxonomy of Educational Objectives. Additionally, Falloon ( 2016 ) claimed that responding to data indicated the use of general thinking skills to clarify and understand steps and stages needed to complete a task (average 29%); recalling or remembering information about a task or available tools (average 13%); and discussing and understanding success criteria (average 3%).

The ninth hypotheses of this study proposed a positive and significant correlation between students’ understanding and students’ academic achievements, which indicates its significance with the academic achievements as a process of criticizing the task or the problem faced by the students into phases or activities to help understanding of how to resolve the problem. The current results agree with Falloon ( 2016 ) who demonstrated the necessity to build understanding over the thinking processes employed by students once they are engaged in their work. In addition, Falloon ( 2016 ) suggested that the purpose and nature of questioning was broader than this, with questioning of self and others being an important strategy in solution development. In many respects, the questioning for those students was not much a perspective, although more a practice, to the degree that assisted them to understand their tasks, analyze intended or developed explanations and to evaluate their outcomes.

The tenth hypotheses of this study proposed a positive and significant correlation between students’ understanding and students’ academic achievements, which reveals the importance of analysis as a process of employing general thinking besides computational knowledge in order to realize the challenges through using online platforms, in addition to predictive thinking to categorize, explore and fix any possible errors throughout the whole process. Falloon ( 2016 ) claimed that analyzing was often a collaborative procedure between pairs receiving and giving counseling from others to assist in solving complications. On the other hand, online learning platforms are highly dependent on connecting and sharing as a basic strategy that needs to be employed over all stages of online learning settings, whether between students and students, or between students and their instructor. Moreover, Falloon ( 2016 ) findings showed that Analyzing (average 17%) was present in various phases of these online students’ work, which is based on what phase they were at together with their tasks, despite the fact that most analysis was associated with students depending on themselves during online process.

Conclusion and future work

In this investigation, both transactional distance theory (TDT) and Bloom’s Taxonomy theory (BTT) have been validated in the educational context, providing further understanding towards the students’ prospective perceptions on using online learning platforms to improve students’ academic achievement and satisfaction. The contribution that the current research might have to the field of online learning platforms have been discussed and explained. Additional insights towards students’ satisfactions and students’ academic achievements have also been presented. The current research emphasizes that the incorporation of both TDT and BTT can positively influence the research outcome. The current research has determined that numerous stakeholders, for instance developers, system designers, along with institutional users of online learning platforms reasonably consider student demands and needs, then ensure that the such a system is effectively meeting their requirements and needs. Adoption among users of online learning platforms could be broadly clarified by the eleven factor features which is based on this research model. Thus, the current research suggests more investigation be carried out to examine relationships among the complexity of online learning platforms combined with technology acceptance model (TAM).

Recommendations for stakeholders of online platforms

Based on the study findings, the first recommendation would be for administrators of higher institution. In order to implement online learning, there must be more interest given to the course structure design, whereas it should be based on theories and prior literature. Moreover, instructor and course developer need to be trained and skilled to achieve online learning platforms goals. Workshops and training sessions must be given for both instructors and students to make them more familiar in order to take the most advantages of the learning management system like Moodle and LMS. The software itself is not enough for creating an online learning environment that is suitable for students and instructors. If instructors were not trained and unaware of utilizing the software (e.g. Moodle) in the class, then the quality of education imparted to students will be jeopardized. Training and assessing the class instructor and making modifications to the software could result in a good environment for the instructor and a quality education for the student. Both students’ satisfaction and academic achievements depends on their prior knowledge and experience in relation to online learning. This current research intended to investigate student satisfaction and academic achievements in relation to online learning platforms in on of the higher education in Malaysia. Future research could integrate more in relation to blended learning settings.

Availability of data and materials

All the hardcopy questionnaires, data and statistical analysis are available.

Abuhassna, H., Megat, A., Yahaya, N., Azlina, M., & Al-rahmi, W. M. (2020). Examining Students' satisfaction and learning autonomy through web-based courses. International Journal of Advanced Trends in Computer Science and Engineering , 1 (9), 356–370. https://doi.org/10.30534/ijatcse/2020/53912020 .

Article   Google Scholar  

Abuhassna, H., & Yahaya, N. (2018). Students’ utilization of distance learning through an interventional online module based on Moore transactional distance theory. Eurasia Journal of Mathematics, Science and Technology Education , 14 (7), 3043–3052. https://doi.org/10.29333/ejmste/91606 .

Akaslan, D., & Law, E. L.-C. (2011). Measuring student E-learning readiness: A case about the subject of Electricity in Higher Education Institutions in Turkey. In H. Leung, E. Popescu, Y. Cao, R. W. H. Lau, & W. Nejdl (Eds.), ICWL 2011. LNCS, vol. 7048 , (pp. 209–218). Heidelberg: Springer.

Google Scholar  

Alalwan, N., Al-Rahmi, W. M., Alfarraj, O., Alzahrani, A., Yahaya, N., & Al-Rahmi, A. M. (2019). Integrated three theories to develop a model of factors affecting students’ academic performance in higher education. IEEE Access , 7 , 98725–98742.

Alexander, S., & Golja, T. (2007). Using students' experiences to derive quality in an e-learning system: An institution's perspective. Educational Technology & Society , 10 (2), 17–33.

Allen, I. E., Seaman, J., Poulin, R., & Straut, T. T. (2016). Online report card: Tracking online education in the United States. Babson survey research group and the online learning consortium (OLC), Pearson, and WCET state authorization Network .

Al-Rahmi, W., Othman, M. S., & Yusuf, L. M. (2015b). The role of social media for collaborative learning to improve academic performance of students and researchers in Malaysian higher education. The International Review of Research in Open and Distributed Learning , 16 (4). http://www.irrodl.org/index.php/irrodl/article/view/2326 . https://doi.org/10.19173/irrodl.v16i4.2326 .

Al-Rahmi, W. M., Alias, N., Othman, M. S., Alzahrani, A. I., Alfarraj, O., Saged, A. A., & Rahman, N. S. A. (2018). Use of e-learning by university students in Malaysian higher educational institutions: A case in Universiti Teknologi Malaysia. IEEE Access , 6 , 14268–14276.

Al-Rahmi, W. M., Othman, M. S., & Yusuf, L. M. (2015a). The effectiveness of using e-learning in Malaysian higher education: A case study Universiti Teknologi Malaysia. Mediterranean Journal of Social Sciences , 6 (5), 625–625.

Al-rahmi, W. M., Othman, M. S., & Yusuf, L. M. (2015c). Using social media for research: The role of interactivity, collaborative learning, and engagement on the performance of students in Malaysian post-secondary institutes. Mediterranean Journal of Social Sciences , 6 (5), 536.

Al-Rahmi, W. M., Othman, M. S., & Yusuf, L. M. (2015d). Exploring the factors that affect student satisfaction through using e-learning in Malaysian higher education institutions. Mediterranean Journal of Social Sciences , 6 (4), 299.

Al-Rahmi, W. M., Othman, M. S., & Yusuf, L. M. (2015e). Effect of engagement and collaborative learning on satisfaction through the use of social media on Malaysian higher education. Res. J. Appl. Sci., Eng. Technol , 9 (12), 1132–1142.

Anderson, D. K., & Reed, W. M. (1998). The effects of internet instruction, prior computer experience, and learning style on teachers’ internet attitudes and knowledge. Journal of Educational Computing Research , 19 (3), 227–246. https://doi.org/10.2190/8WX1-5Q3J-P3BW-JD61 .

Anderson, L. W., & Krathwohl, D. R. (Eds.) (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives . New York: Longman.

Azhari, F. A., & Ming, L. C. (2015). Review of e-learning practice at the tertiary education level in Malaysia. Indian Journal of Pharmaceutical Education and Research , 49 (4), 248–257.

Bagozzi, R. P., Yi, Y., & Nassen, K. D. (1988). Representation of measurement error in marketing variables: Review of approaches and extension to three-facet designs. Elsevier. Journal of Econometrics , 89 (1–2), 393–421.

Barkand, J. M. (2017). Using educational data mining techniques to analyze the effect of instructors' LMS tool use frequency on student learning and achievement in online secondary courses. Available from ProQuest Dissertations & Theses Global. Retrieved from https://vpn.utm.my/docview/2007550976?accountid=41678

Barnard, L., Lan, W. Y., To, Y. M, Paton, V. O., & Lai, S. L. (2009). Measuring self-regulation in online and blended learning environments. The Internet and Higher Education , 12 (1), 1–6. https://doi.org/10.1016/j.iheduc.2008.10.005 .

Benson, R., & Samarawickrema, G. (2009). Addressing the context of e-learning: Using transactional distance theory to inform design. Distance Education Journal , 30 (1), 5–21.

Bliuc, A. M., Goodyear, P., & Ellis, R. A. (2007). Research focus and methodological choices in studies into students' experiences of blended learning in higher education. The Internet and Higher Education , 10 , 231–244.

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of educational objectives, handbook I: The cognitive domain . New York: David McKay Co Inc.

Bocchi, J., Eastman, J. K., & Swift, C. O. (2004). Retaining the online learner: Profile of students in an online MBA program and implications for teaching them. Journal of Education for Business , 79 (4), 245–253.

Bolliger, D. U., & Inan, F. A. (2012). Development and validation of the online student connectedness survey (OSCS). The International Review of Research in Open and Distributed Learning , 13 (3), 41–65. https://doi.org/10.19173/irrodl.v13i3.1171 .

Bordelon, K. (2013). Perceptions of achievement and satisfaction as related to interactions in online courses (PhD dissertation) . Northcentral University.

Bouhnik, D., & Carmi, G. (2013). Thinking styles in virtual learning courses , (p. 141e145). Toronto: Proceedings of the 2013 international conference on information society (i-society) Retrieved from: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber¼6619545 .

Byrne, B. M. (2010). Structural equation modeling with AMOS: Basic concepts, applications, and programming , (2nd ed., ). New York: Routledge.

Chau, P. Y. K., & Hu, P. J. (2002). Examining a model of information technology acceptance by individual professionals: An exploratory study. Journal of Management Information System , 18 (4), 191–229.

Choy, J. L. F., & Quek, C. L. (2016). Modelling relationships between students’ academic achievement and community of inquiry in an online learning environment for a blended course. Australasian Journal of Educational Technology , 32 (4), 106–124 https://doi.org/10.14742/ajet.2500 .

Coates, H., James, R., & Baldwin, G. (2005). A critical examination of the effects of learning management systems on university teaching and learning. Tertiary Education and Management , 11 , 19–36.

Computer Science Teachers’ Association (CSTA). (2011) The computational thinking leadership toolkit. [Online] Available from: http://www.csta.acm.org/Curriculum/sub/CompThinking.html [Accessed 13 Jan 2020].

Falloon, G. (2011). Exploring the virtual classroom: What students need to know (and teachers should consider). Journal of online learning and teaching. , 7 (4), 439–451.

Falloon, G. W. (2016). An analysis of young students’ thinking when completing basic coding tasks using scratch Jnr. On the iPad. Journal of Computer-Assisted Learning , 32 , 576–379.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research , 18 (1), 39–50. https://doi.org/10.2307/3151312 .

Furnborough, C. (2012). Making the most of others: Autonomous interdependence in adult beginner distance language learners. Distance Education , 33 (1), 99–116. https://doi.org/10.1080/01587919.2012.667962 .

Galvin, T. (2003). The (22nd Annual) 2003. Industry report. Training , 40 (9), 19–45.

Gouws, L., Bradshaw, K., & Wentworth, P. (2013). Computational thinking in educational activities. In J. Carter, I. Utting, & A. Clear (Eds.), The proceedings of the 18th conference on innovation and Technology in Computer Science Education , (pp. 10–15). Canterbury: ACM.

Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012a). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science. , 40 (3), 414–433.

Illinois Online Network. 2003. Learning styles and the online environment. Illinois Online Network and the Board of Trustees of the University of Illinois, http://illinois.online.uillinois.edu/IONresources/instructionaldesign/learningstyles.html

Jacobs, G. M., Renandya, W. A., & Power, M. (2016). Learner autonomy. In G. Jacobs, W. A. Renandya, & M. Power (Eds.), Simple, powerful strategies for student centered learning . New York: Springer International Publishing. https://doi.org/10.1007/978-3-319-25712-9_3 .

Chapter   Google Scholar  

Jaques, D., & Salmon, G. (2007). Learning in groups: A handbook for face-to-face and online environments . Abingdon: Routledge.

Book   Google Scholar  

Kassandrinou, A., Angelaki, C., & Mavroidis, I. (2014). Transactional distance among Open University students. How does it affect the learning Progress? European journal of open. Distance and e-Learning , 16 (1), 78–93.

Kauffman, H. (2015). A review of predictive factors of student success in and satisfaction with online learning. Research in Learning Technology , 23 , 1e13. https://doi.org/10.3402/rlt.v23.26507 .

Kirmizi, O. (2014). A Study on the Predictors of Success and Satisfaction in an Online Higher Education Program in Turkey. International Journal of Education , 6 , 4.

Kline, R. B. (2011). Principles and practice of structural equation modeling , (3rd ed., ). New York: The Guilford Press.

MATH   Google Scholar  

Lau, C. Y., & Shaikh, J. M. (2012). The impacts of personal qualities on online learning readiness at Curtin Sarawak Malaysia (CSM). Educational Research and Reviews , 7 (20), 430–444.

Lee, B. C., Yoon, J. O., & Lee, I. (2009). Learners' acceptance of e-learning in South Korea: Theories and results. Computers & Education , 53 , 1320–1329.

Lester, P. M., & King, C. M. (2009). Analog vs. digital instruction and learning: Teaching within first and second life environments. Journal of Computer-Mediated Communication , 14 , 457–483.

Lewis, N. (2004). Military student participation in distance learning . Doctorate dissertation. Johnson & Wales University. USA.

Madjar, N., Nave, A., & Hen, S. (2013). Are teachers’ psychological control, autonomy support and autonomy suppression associated with students’ goals? Educational Studies , 39 (1), 43–55. https://doi.org/10.1080/03055698.2012.667871 .

Mahle, M. (2011). Effects of interaction on student achievement and motivation in distance education. Quarterly Review of Distance Education , 12 (3), 207–215, 222.

Massimo, P. (2014). Multidimensional analysis applied to the quality of the websites: Some empirical evidences from the Italian public sector. Economics and Sociology , 7 (4), 128–138. https://doi.org/10.14254/2071-789X.2014/7-4/9 .

Mathieson, K. (2012). Exploring student perceptions of audiovisual feedback via screen casting in online courses. American Journal of Distance Education , 26 (3), 143–156.

McAuley, A., Stewart, B., Siemens, G., & Cormier, D. (2010). The MOOC model for digital practice (created through funding received by the University of Prince Edward Island through the social sciences and humanities research Council's “knowledge synthesis Grants on the digital economy”) .

Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perception of adopting an information technology innovation. Information System Research , 2 (3), 192–223.

Moore, M. (1990). Background and overview of contemporary American distance education. In M. Moore (Ed.) Contemporary issues in American distance education.

Moore, M. G. (1972). Learner autonomy: The second dimension of independent learning .

Moore, M. G. (2007). Theory of transactional distance. In M. G. Moore (Ed.), Handbook of distance education . Lawrence Erlbaum Associates.

O’Donnell, S. L., Chang, K. B., & Miller, K. S. (2013). Relations among autonomy, attribution style, and happiness in college students. College Student Journal .

Orton-Johnson, K. (2009). ‘I’ve stuck to the path I’m afraid’: Exploring student non-use of blended learning. British Journal of Educational Technology , 40 (5), 837–847.

Osika, R. E., & Sharp, D. P. (2002). Minimum technical competencies for distance learning students. Journal of Research on Technology in Education , 34 (3), 318–325.

Paechter, M., & Maier, B. (2010). Online or face-to-face? Students’ experiences and preferences in e-learning. Internet and Higher Education , 13 (4), 292–297.

Panyajamorn, T., Suthathip, S., Kohda, Y., Chongphaisal, P., & Supnithi, T. (2018). Effectiveness of E learning design and affecting variables in Thai public schools. Malaysian Journal of Learning and Instruction , 15 (1), 1–34.

Pekrun, R., Goetz, T., & Perry, P. R. (2005). Academic Emotions Questionnaire (AEQ): User's Manual . Munich: University of Munich, Department of Psychology; University of Manitoba Retrieved February 21, 2017. Available online at: https://de.scribd.com/doc/217451779/2005-AEQ-Manual# (Accessed 17 July 2019.

Pintrich, P. R., Smith, D. A. F., Garcia, T., & McKeachie, W. J. (1991). A manual for the use of the motivated strategies for learning questionnaire (MSLQ) . Ann Arbor: The University of Michigan.

Rabinovich, T. (2009). Transactional distance in a synchronous web-extended classroom learning environment . Unpublished doctoral dissertation. Massachusetts: Boston University.

Rogers, E. M. (2003). Diffusion of innovations , (5th ed., ). New York: Free Press.

Salmon, G. (2011). E-moderating: The key to teaching and learning online , (3rd ed., ). London: Routledge.

Salmon, G. (2014). Learning innovation: A framework for transformation. European Journal of Open, Distance and e-Learning , 17 (1), 219–235.

Shearer, R. L. (2010). Transactional distance and dialogue: An exploratory study to refine the theoretical construct of dialogue in online learning. Dissertation Abstracts International Section A , 71 , 800.

Solomon, G., & Schrum, L. (2010). Web 2.0 how-to for educators .

Stroet, K., Opdenakker, M. C., & Minnaert, A. (2013). Effects of need supportive teaching on early adolescents’ motivation and engagement: A review of the literature. Educational Research Review , 9 , 65–87.

Taylor, S., & Todd, P. A. (1995). Assessing IT usage: The role of prior experience. MIS Quarterly , 19 (2), 561–570.

The blended learning impact evaluation at UCF is conducted by Research Initiative for Teaching Effectiveness. (n.d.) https://digitallearning.ucf.edu/learning-analytics/ . Accessed 25 Feb 2020.

Vasala, P., & Andreadou, D. (2010). Student’s support from tutors and peer students in distance learning. Perceptions of Hellenic Open University “studies in education” postgraduate program graduates. Open Education – The Journal for Open and Distance Education and Educational Technology , 6 (1–2), 123–137 (in Greek with English abstract).

Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly , 36 (1), 157–178.

Whitmer J.C. (2013). Logging on to improve achievement: Evaluating the relationship between use of the learning management system, student characteristics, and academic achievement in a hybrid large enrollment undergraduate course. Doctorate dissertation, university of California. USA.

Yu, Z. (2015). Indicators of satisfaction in clickers aided EFL class. Frontiers in Psychology , 6 , 587 https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00587/full .

Zhu, C. (2012). Student satisfaction, performance, and knowledge construction in online collaborative learning. Educational Technology & Society , 15 (1), 127–136.

Download references

Acknowledgements

Not applicable.

Declarations

The study involved both undergraduate and graduate students at unviersiti teknologi Malaysia (UTM), an ethical approve was taken before collecting any data from the participants

Author information

Authors and affiliations.

Faculty of Social Sciences & Humanities, School of Education, Universiti Teknologi Malaysia, UTM, 81310, Skudai, Johor, Malaysia

Hassan Abuhassna, Waleed Mugahed Al-Rahmi, Noraffandy Yahya, Megat Aman Zahiri Megat Zakaria & Azlina Bt. Mohd Kosnin

Faculty of Engineering, School of Civil Engineering, Universiti Teknologi Malaysia, UTM, 81310, Skudai, Johor, Malaysia

Mohamad Darwish

You can also search for this author in PubMed   Google Scholar

Contributions

The corresponding author worked in writing the paper, collecting the data, the second author done all the statistical analysis. Moreover, all authors worked collaboratively to write the literature review and discussion and read and approved the final manuscript.

Corresponding author

Correspondence to Hassan Abuhassna .

Ethics declarations

Competing interests.

This paper is an original work, as its main objective is to develop a model to enhance students’ satisfaction and academic achievement towards using online platforms. As Universiti teknologi Malaysia (UTM) implementing a fully online courses starting from the second semester of 2020.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Additional file 1..

General objective of the study

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Abuhassna, H., Al-Rahmi, W.M., Yahya, N. et al. Development of a new model on utilizing online learning platforms to improve students’ academic achievements and satisfaction. Int J Educ Technol High Educ 17 , 38 (2020). https://doi.org/10.1186/s41239-020-00216-z

Download citation

Received : 10 March 2020

Accepted : 19 May 2020

Published : 02 October 2020

DOI : https://doi.org/10.1186/s41239-020-00216-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Online learning platforms
  • Students’ achievements
  • student’s satisfaction
  • Transactional distance theory (TDT)
  • Bloom’s taxonomy theory (BTT)

research paper about online classes

Advertisement

Advertisement

A Survey on the Effectiveness of Online Teaching–Learning Methods for University and College Students

  • Article of professional interests
  • Published: 05 April 2021
  • Volume 102 , pages 1325–1334, ( 2021 )

Cite this article

research paper about online classes

  • Preethi Sheba Hepsiba Darius   ORCID: orcid.org/0000-0003-0882-6213 1 ,
  • Edison Gundabattini   ORCID: orcid.org/0000-0003-4217-2321 2 &
  • Darius Gnanaraj Solomon   ORCID: orcid.org/0000-0001-5321-5775 2  

134k Accesses

38 Citations

Explore all metrics

Online teaching–learning methods have been followed by world-class universities for more than a decade to cater to the needs of students who stay far away from universities/colleges. But during the COVID-19 pandemic period, online teaching–learning helped almost all universities, colleges, and affiliated students. An attempt is made to find the effectiveness of online teaching–learning methods for university and college students by conducting an online survey. A questionnaire has been specially designed and deployed among university and college students. About 450 students from various universities, engineering colleges, medical colleges in South India have taken part in the survey and submitted responses. It was found that the following methods promote effective online learning: animations, digital collaborations with peers, video lectures delivered by faculty handling the subject, online quiz having multiple-choice questions, availability of student version software, a conducive environment at home, interactions by the faculty during lectures and online materials provided by the faculty. Moreover, online classes are more effective because they provide PPTs in front of every student, lectures are heard by all students at the sound level of their choice, and walking/travel to reach classes is eliminated.

Explore related subjects

  • Artificial Intelligence

Avoid common mistakes on your manuscript.

Introduction

Critical thinking and creativity of students increase with innovative educational methods according to the world declaration on higher education in the twenty-first century [ 1 ]. Innovative educational strategies and educational innovations are required to make the students learn. There are three vertices in the teaching–learning process viz., teaching, communication technology through digital tools, and innovative practices in teaching. In the first vertex, the teacher is a facilitator and provides resources and tools to students and helps them to develop new knowledge and skills. Project-based learning helps teachers and students to promote collaborative learning by discussing specific topics. Cognitive independence is developed among students. To promote global learning, teachers are required to innovate permanently. It is possible when university professors and researchers are given space to new educational forms in different areas of specializations. Virtual classrooms, unlike traditional classrooms, give unlimited scope for introducing teaching innovation strategies. The second vertex refers to the use of Information and Communication Technology (ICT) tools for promoting innovative education. Learning management systems (LMS) help in teaching, learning, educational administration, testing, and evaluation. The use of ICT tools promotes technological innovations and advances in learning and knowledge management. The third vertex deals with innovations in teaching/learning to solve problems faced by teachers and students. Creative use of new elements related to curriculum, production of something new, and transformations emerge in classrooms resulting in educational innovations. Evaluations are necessary to improve the innovations so that successful methods can be implemented in all teaching and learning community in an institution [ 2 ]. The pandemic has forced digital learning and job portal Naukri.com reports a fourfold growth for teaching professionals in the e-learning medium [ 3 ]. The initiatives are taken by the government also focus on online mode as an option in a post-covid world [ 4 ]. A notable learning experience design consultant pointed out that, educators are entrusted to lead the way as the world changes and are actively involved in the transformation [ 5 ]. Weiss notes that an educator needs to make the lectures more interesting [ 6 ].

This paper presents the online teaching–learning tools, methods, and a survey on the innovative practices in teaching and learning. Advantages and obstacles in online teaching, various components on the effective use of online tools, team-based collaborative learning, simulation, and animation-based learning are discussed in detail. The outcome of a survey on the effectiveness of online teaching and learning is included. The following sections present the online teaching–learning tools, the details of the questionnaire used for the survey, and the outcome of the survey.

Online Teaching and Learning Tools

The four essential parts of online teaching [ 7 ] are virtual classrooms, individual activities, assessments in real-time, and collaborative group work. Online teaching tools are used to facilitate faculty-student interaction as well as student–student collaborations [ 8 ]. The ease of use, the satisfaction level, the usefulness, and the confidence level of the instructor is crucial [ 9 ] in motivating the instructor to use online teaching tools. Higher education institutes recognize the need to accommodate wide diverse learners and Hilliard [ 10 ] points out that technical support and awareness to both faculty and student is essential in the age of blended learning. Data analytics tool coupled with the LMS is essential to enhance [ 11 ] the quality of teaching and improve the course design. The effective usage of online tools is depicted in Fig.  1 comprising of an instructor to student delivery, collaboration among students, training for the tools, and data analytics for constant improvement of course and assessment methods.

figure 1

The various components of effective usage of online tools

Online Teaching Tools

A plethora of online teaching tools are available and this poses a challenge for decision-makers to choose the tools that best suits the needs of the course. The need for the tools, the cost, usability, and features determine which tools are adopted by various learners and institutions. Many universities have offered online classes for students. These are taken up by students opting for part-time courses. This offers them flexibility in timing and eliminates the need for travel to campus. The pandemic situation in 2019 has forced many if not all institutions to completely shift classes online. LMS tools are packaged as Software as a Service (SaaS) and the pricing generally falls into 4 categories: (i) per learner, per month (ii) per learner, per use (iii) per course (iv) licensing fee for on-premise installation [ 12 ].

Online Learning Tools

Online teaching/learning as part of the ongoing semester is typically part of a classroom management tool. GSuite for education [ 13 ] and Microsoft Teams [ 14 ] are both widely adopted by schools and colleges during the COVID-19 pandemic to effectively shift regular classes online. Other popular learning management systems that have been adopted as part of blended learning are Edmodo [ 15 ], Blackboard [ 16 ], and MoodleCloud [ 17 ]. Davis et al. [ 18 ] point out advantages and obstacles for both students and instructors about online teaching shown in Table 1 .

The effectiveness of course delivery depends on using the appropriate tools in the course design. This involves engaging the learners and modifying the course design to cater to various learning styles.

A Survey on Innovative Practices in Teaching and Learning

The questionnaire aims to identify the effectiveness of various online tools and technologies, the preferred learning methods of students, and other factors that might influence the teaching–learning process. The parameters were based on different types of learners, advantages, and obstacles to online learning [ 10 , 18 ]. Questions 1–4 are used to comprehend the learning style of the student. Questions 5–7 are posed to find out the effectiveness of the medium used for teaching and evaluation. Questions 8–12 are framed to identify the various barriers to online learning faced by students.

This methodology is adopted as most of the students are attending online courses from home and polls of this kind will go well with the students from various universities. Students participated in the survey and answered most of the questionnaire enthusiastically. The only challenge was a suitable environment and free time for them to answer the questionnaire, as they are already loaded with lots of online work. Students from various universities pursuing professional courses like engineering and medicine took part in this survey. They are from various branches of sciences and technologies. Students are from private universities, colleges, and government institutions. Figure  2 shows the institution-wise respondents. Microsoft Teams and Google meet platforms were used for this survey among university, medical college, and engineering college students. About 450 students responded to this survey. 52% of the respondents are from VIT University Vellore, Tamil Nadu, 23% of the respondents are from CMR Institute of Technology (CMRIT), Bangalore, 15% of the respondents are from medical colleges and 10% are from other engineering colleges. During this pandemic period, VIT students are staying with parents who are living in different states of India like Andhra, Telangana, Kerala, Karnataka, MP, Haryana, Punjab, Maharashtra, Andaman, and so on. Only a few students are living in Tamil Nadu. Some of the students are staying with parents in other countries like Dubai, Oman, South Africa, and so on. Some of the students of CMRIT Bangalore are living in Bangalore and others in towns and villages of Karnataka state. Students of medical colleges are living in different parts of Tamil Nadu and students of engineering colleges are living in different parts of Andhra Pradesh. Hence, the survey is done in a wider geographical region.

figure 2

Institution-wise respondents

Figure  3 shows the branch-wise respondents. It is shown that 158 students belong to mechanical/civil engineering. 108 respondents belong to computer science and engineering, 68 students belong to medicine, 58 students belong to electrical & electronics engineering, and electronics & communication engineering. 58 students belong to other disciplines.

figure 3

Branch-wise respondents

Questionnaire Used

Students were assured of their confidentiality and were promised that their names would not appear in the document. A list of the questions asked as part of the survey is given below.

Questionnaire:

Sample group: B Tech students from different branches of sciences across various engineering institutions and MBBS medical students.

Which of the methods engage you personally to learn digitally ?

Individual assignment

Small group (No. 5 students) work

Large group (No. 10 students and more) work

Project-based learning

Which of the digital collaborations enables you to work on a specific task at ease

Two by two (2 member team)

Small group workgroup (No. 5 students) work

Which of the digital approaches motivate you to learn

Whiteboard and pen

PowerPoint presentation

Digital pen and slate

My experience with online learning from home digitally

I am learning at my own pace comfortably

My situational challenges are not suitable

I can learn better with uninterrupted network connectivity

I am distracted with various activities at home, viz. TV, chatting, etc.

Which type of recorded video lecture is more effective for learning ?

delivered by my faculty

delivered by NPTEL

delivered by reputed Overseas Universities

delivered by unknown experts

Which type of quiz is more effective for testing the understanding?

Traditional—pen and paper—MCQ

Traditional—pen and paper—short answers

Online quiz—MCQ

Online quiz—short answers

Student version software downloaded from the internet is useful for learning

Unable to decide

Online teaching – learning takes place effectively because:

Every student can hear the lecture clearly

PPTs are available right in front of every student

Students can ask doubts without much reservation

Students need not walk long distances before reaching the class

Which of the following statements is true of online learning off-campus ?

No one disturbs me during my online learning.

My friend/family member/roommate/neighbor occasionally disturb me

My friend/family member/roommate/neighbor constantly disturb me

At home/place of residence, how many responsibilities do you have?

I don’t have many responsibilities.

I have a moderate amount of responsibilities, but I have sufficient time for online learning.

I have many responsibilities; I don’t have any time left for online learning.

What is your most preferred method for clearing doubts in online learning?

Ask the professor during/after an online lecture

Post the query in a discussion forum of your class and get help from your peers

Go through online material providing an additional explanation.

Which of the following devices do you use for your online learning?

A laptop/desktop computer

A smartphone

Other devices

Outcome of the survey

Students would prefer to work in a group of 5 students to engage personally in digital learning as seen from Fig.  4 .

figure 4

Personal engagement in digital learning

Digital collaboration to enable students to work at ease on a specific task is to allow them to work in small groups of 5 students as seen in Fig.  5 .

figure 5

Digital collaboration to enable students to work at ease

Animations are found to be the best digital approach motivating many students to learn as seen in Fig.  6 .

figure 6

Digital approaches that motivate students to learn

The online learning experience of students is shown in Fig.  7 . The majority of students have said that they can learn at their own pace comfortably through online learning.

figure 7

The online learning experience of students

The effectiveness of the recorded video lecture is shown in Fig.  8 . The majority of students agree that the video lectures delivered by his/her faculty teaching the subject help students to learn effectively.

figure 8

More effective recorded video lecture

Online quiz having multiple-choice questions (MCQ) is preferred by most of the students for testing their understanding of the subject as seen in Fig.  9 .

figure 9

More effective quiz for testing the understanding

The usefulness of the student version of the software downloaded from the internet is shown in Fig.  10 . 45.7% of the students agree that it is useful for learning whereas 45.2% of them are unable to decide. The rest of the students feel that the student version of the software is not useful.

figure 10

The usefulness of the student version of the software

The reasons for the effectiveness of online teaching–learning are shown in Fig.  11 . The majority of the students, feel that the PPTs are available right in front of every student so that following the lecture makes the learning effective. In universities where a fully flexible credit system (FFCS) is followed, students need to walk long distances for reaching their classrooms. Day Scholars in universities as well as engineering colleges are required to travel a considerable distance before reaching the first-hour class. According to many students, online learning is more effective since walking/traveling is completed eliminated. If the voice of the faculty member is feeble, students sitting in the last few rows of the class would not hear the lecture completely. Some students feel that online learning is more effective since the lecture is reaching every student irrespective of the number of students in a virtual classroom.

figure 11

Reasons for the effectiveness of online teaching–learning

50.3% of students agree that they do not have any disturbance during online learning and it is more effective. Many of them feel that occasionally their friends or relatives disturb students during their online learning as shown in Fig.  12 .

figure 12

Disturbances during online learning

Figure  13 shows the environment at home for online learning. 76.9% of the respondents stated that they have a moderate amount of responsibilities at home but they have sufficient time for online learning. 16.1% of them have said that they do not have many responsibilities whereas 7% of them claimed that they have many responsibilities at home and they do not have any time left for online learning.

figure 13

The environment at home for online learning

Figure  14 shows the methods adopted for clearing doubts in online learning. 43.2% of the respondents ask the Professor and get their doubts clarified during online lectures. 25.5% of them post queries in the discussion forum and help from peers. 31.3% of them go through the online materials providing additional explanation and get their doubts clarified.

figure 14

Methods adopted for clearing doubts in online learning

Figure  15 shows the devices used by students for online learning. Most of the students use laptop/desktop computers, many of them use smartphones and very few students use tablets.

figure 15

Devices used for online learning

The association between responses 1 and 2 is tested using the chi-square test. The results are presented in Table 2 which shows the observed cell totals, expected cell values, and chi-square statistic for each cell. It is seen that association exists between several responses between questions.

The observed cell values indicate that the highest association is found between responses 1b and 2b since both these responses are related to a small working group having 5 members. The lowest association is found between the responses of 1c and 2a having the lowest observed cell value and expected cell value. The reason for this is response 1c shows the work done by a 10 member team and the response 2a shows a two-member team. The chi-square statistic is 65.6025. The p value is < 0.00001. The result is significant at p  < 0.05.

The outcome of a survey on the effectiveness of innovations in online teaching–learning methods for university and college students is presented. About 450 students belonging to VIT Vellore, CMRIT Bangalore, Medical College, Pudukkottai, and engineering colleges have responded to the survey. A questionnaire designed for taking is survey is presented. The chi-square statistic is 65.6025. The p value is < 0.00001. The result is significant at p  < 0.05. Associations between several responses of questions exist. The survey undertaken provides an estimate of the effectiveness and pitfalls of online teaching during the online teaching that has been taking place during the pandemic. The study done paves the way for educators to understand the effectiveness of online teaching. It is important to redesign the course delivery in an online mode to make students engaged and the outcome of the survey supports these aforementioned observations.

The outcome of the survey is given below:

A small group of 5 students would help students to have digital collaboration and engage personally in digital learning.

Animations are found to be the best digital approach for effective learning.

Online learning helps students to learn at their own pace comfortably.

Students prefer to learn from video lectures delivered by his/her faculty handling the subject.

Online quiz having multiple-choice questions (MCQ) preferred by students.

Student version software is useful for learning.

Online classes are more effective because they provide PPTs in front of every student, lectures are heard by all students at the sound level of their choice, and walking/travel to reach classes is eliminated.

Students do not have any disturbances or distractions which make learning more effective.

But for a few students, most of the students have no or limited responsibilities at home which provides a good ambiance and a nice environment for effective online learning.

Students can get their doubts clarified during lectures, by posting queries in discussion forums and by referring to online materials provided by the faculty.

World Declaration on Higher Education for the Twenty-first Century: Vision and Action (1998) https://unesdoc.unesco.org/ark:/48223/pf0000141952 . Accessed on 10 December 2020.

S. Cadena-Vela, J.O. Herrera, G. Torres, G. Mejía-Madrid, Innovation in the university, in: Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality-TEEM’18 (2018), pp. 799–805. https://doi.org/10.1145/3284179.3284308

Demand for online tutors soars, pay increases 28%. Times of India (2020) https://timesofindia.indiatimes.com/city/chennai/demand-for-online-tutors-soars-pay-increases-28/articleshow/77939414.cms . Accessed on 7 December 2020

Can 100 top universities expand e-learning opportunities for 3.7 crore students. Times of India (2020) https://timesofindia.indiatimes.com/home/education/news/can-100-top-universities-expand-e-learning-opportunities-for-3-7-crore-students/articleshow/76032068.cms . Accessed on 9 December 2020.

C. Malemed, Retooling instructional design (2019). https://theelearningcoach.com/elearning2-0/retooling-instructional-design/ accessed on 8 December 2020

C. Wiess, COVID-19 and its impact on learning (2020). https://elearninfo247.com/2020/03/16/covid-19-and-its-impact-on-learning/ . Accessed on 10 December 2020

E. Alqurashi, Technology tools for teaching and learning in real-time, in Educational Technology and Resources for Synchronous Learning in Higher Education (IGI Global, 2019), pp. 255–278

J.M. Mbuva, Examining the effectiveness of online educational technological tools for teaching and learning and the challenges ahead. J. Higher Educ. Theory Pract. 15 (2), 113 (2015)

Google Scholar  

S.N.M. Mohamad, M.A.M. Salleh, S. Salam, Factors affecting lecturer’s motivation in using online teaching tools. Procedia Soc. Behav. Sci. 195 , 1778–1784 (2015)

Article   Google Scholar  

A.T. Hilliard, Global blended learning practices for teaching and learning, leadership and professional development. J. Int. Educ. Res. 11 (3), 179–188 (2015)

M. Moussavi, Y. Amannejad, M. Moshirpour, E. Marasco, L. Behjat, Importance of data analytics for improving teaching and learning methods, in Data Management and Analysis (Springer, Cham, 2020), pp. 91–101

P. Berking, S. Gallagher, Choosing a learning management system, in Advanced Distributed Learning (ADL) Co-Laboratories (2013), pp 40–62

R.J.M. Ventayen, K.L.A. Estira, M.J. De Guzman, C.M. Cabaluna, N.N. Espinosa, Usability evaluation of google classroom: basis for the adaptation of gsuite e-learning platform. Asia Pac. J. Educ. Arts Sci. 5 (1), 47–51 (2018)

B.N. Ilag, Introduction: microsoft teams, in Introducing Microsoft Teams (Apress, Berkeley, CA, 2018), pp. 1–42

A.S. Alqahtani, The use of Edmodo: its impact on learning and students’ attitudes towards it. J. Inf. Technol. Educ. 18 , 319–330 (2019)

J. Uziak, M.T. Oladiran, E. Lorencowicz, K. Becker, Students’ and instructor’s perspectives on the use of Blackboard Platform for delivering an engineering course. Electron. J. E-Learn. 16 (1), 1 (2018)

T. Makarchuk, V. Trofimov, S. Demchenko, Modeling the life cycle of the e-learning course using Moodle Cloud LMS, in Conferences of the Department Informatics , No. 1 (Publishing house Science and Economics Varna, 2019), pp. 62–71

N.L. Davis, M. Gough, L.L. Taylor, Online teaching: advantages, obstacles, and tools for getting it right. J. Teach. Travel Tour. 19 (3), 256–263 (2019)

Download references

Author information

Authors and affiliations.

Department of Computer Science and Engineering, CMR Institute of Technology, Bangalore, 560037, India

Preethi Sheba Hepsiba Darius

School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, India

Edison Gundabattini & Darius Gnanaraj Solomon

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Darius Gnanaraj Solomon .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Darius, P.S.H., Gundabattini, E. & Solomon, D.G. A Survey on the Effectiveness of Online Teaching–Learning Methods for University and College Students. J. Inst. Eng. India Ser. B 102 , 1325–1334 (2021). https://doi.org/10.1007/s40031-021-00581-x

Download citation

Received : 10 August 2020

Accepted : 18 March 2021

Published : 05 April 2021

Issue Date : December 2021

DOI : https://doi.org/10.1007/s40031-021-00581-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Learning management
  • Learning environment
  • Teaching and learning
  • Digital learning
  • Collaborative learning
  • Online learning
  • Find a journal
  • Publish with us
  • Track your research
  • DOI: 10.62517/jhve.202416108
  • Corpus ID: 271550484

Research on the Construction of Financial Accounting Courses based on SPOC Model

  • Published in Journal of Higher Vocational… 1 January 2024
  • Education, Business, Computer Science
  • Journal of Higher Vocational Education

Related Papers

Showing 1 through 3 of 0 Related Papers

A study of effectiveness of online learning

  • February 2021
  • Conference: National Confrence DYPIMS 2021

Vinita Tiwari at Balaji Institute of international business

  • Balaji Institute of international business

Abhay Tiwari

Abstract and Figures

: understanding of learning of concepts

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Tuan Nguyen

  • Landra Rezabek
  • Dr Jyoti Agarwal
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

IMAGES

  1. 📌 Research Paper on Online Learning

    research paper about online classes

  2. Position Paper Traditional Vs Online Classes

    research paper about online classes

  3. (PDF) Online Education and Its Effective Practice: A Research Review

    research paper about online classes

  4. Conclusion of Online Education & Impact of Online Classes on Students

    research paper about online classes

  5. (PDF) PROBLEMS OF ONLINE CLASSES

    research paper about online classes

  6. (PDF) The Impact of Online Classes on Adolescent's Internet Use

    research paper about online classes

VIDEO

  1. A Comparative Study on the Students’ Perceptions’ about Online Learning vs Face-to-Face Learning

  2. How to access and download paid research papers for free (all steps)?

  3. What is The Importance of Research in Environmental Science

  4. How to Write Research Paper

  5. Essay on Online Education

  6. Get Your research paper easily just in few clicks....✌🏻📋

COMMENTS

  1. The effects of online education on academic success: A meta-analysis

    The purpose of this study is to determine the effect size of online education on academic achievement. Before determining the effect sizes in the study, the probability of publication bias of this meta-analysis study was analyzed by using the funnel plot, Orwin's Safe N Analysis, Duval and Tweedie's Trip and Fill Analysis, and Egger's Regression Test.

  2. Online and face‐to‐face learning: Evidence from students' performance

    Purely online courses are offered entirely over the internet, while blended learning combines traditional F2F classes with learning over the internet, and learning supported by other technologies ... As reported in 355 research reports, summaries and papers. North Carolina State University. [Google Scholar] Shachar, M. , & Neumann, Y. (2010).

  3. The effects of online education on academic success: A meta-analysis

    The effects of online education on academic success

  4. Impact of online classes on the satisfaction and performance of

    The third section deals with the research methodology of the paper as per APA guideline. The outcomes and corresponding results of the empirical analysis are then discussed. ... The present study results will help the educators increase the student's satisfaction and performance in online classes. The current research assists educators in ...

  5. Impact of online classes on the satisfaction and performance of

    Impact of online classes on the satisfaction and ...

  6. PDF Students' Perceptions towards the Quality of Online Education: A

    Students' Perceptions towards the Quality of Online Education

  7. Review of Education

    This systematic analysis examines effectiveness research on online and blended learning from schools, particularly relevant during the Covid-19 pandemic, and also educational games, computer-supported cooperative learning (CSCL) and computer-assisted instruction (CAI), largely used in schools but with potential for outside school.

  8. Students' experience of online learning during the COVID‐19 pandemic: A

    Students' experience of online learning during the COVID‐19 ...

  9. Integrating students' perspectives about online learning: a hierarchy

    This article reports on a large-scale (n = 987), exploratory factor analysis study incorporating various concepts identified in the literature as critical success factors for online learning from the students' perspective, and then determines their hierarchical significance. Seven factors--Basic Online Modality, Instructional Support, Teaching Presence, Cognitive Presence, Online Social ...

  10. (Pdf) Research on Online Learning

    The CoI model has formed the basis for a good deal of research on online learning. Most of this research. has focused on one of the three pr esences, social presence being the most frequently ...

  11. Online Education and Its Effective Practice: A Research Review

    Online Education a nd Its Effective Practice: A Research Re view. Anna Sun and Xiufang Chen. Rowan University, Glassboro, NJ, USA. [email protected] [email protected]. Abstrac t. Using a qualitative ...

  12. (PDF) IMPACT OF ONLINE CLASSES ON THE HEALTH AND ...

    Abstract. Purpose of the study: The paper discusses the impact of digital education on the health and well-being of students who have been taking online classes since the onset of COVID-19. The ...

  13. Frontiers

    A Comparative Analysis of Student Performance in an ...

  14. A systematic review of research on online teaching and learning from

    A systematic review of research on online teaching and ...

  15. Online Education: Worldwide Status, Challenges, Trends, and Implications

    Asia and Middle East. Liu (Citation 2009) in China explored course design based on pedagogical, psychological, social, and technological perspectives and found it to be more flexible and useful.A phenomenographic study (Zhao, McConnel, & Jiang, Citation 2009) proposed five conceptual categories as centrality of the lecture, online cooperation learning, network learning, student learning and ...

  16. Online learning during COVID-19 produced equivalent or better student

    Online learning during COVID-19 produced equivalent or ...

  17. PDF Online Vs. Face-to-Face: A Comparison of Student Outcomes with ...

    returns-on-investment for online education. (In fact, she finds that students personally pay more for online education relative to face-to-face education.) Although the online approach offers freedom, it requires more discipline from both students and educators. Students must make the effort to complete the material within the required time frame.

  18. Development of a new model on utilizing online learning platforms to

    Development of a new model on utilizing online learning ...

  19. A Survey on the Effectiveness of Online Teaching-Learning ...

    Online teaching-learning methods have been followed by world-class universities for more than a decade to cater to the needs of students who stay far away from universities/colleges. But during the COVID-19 pandemic period, online teaching-learning helped almost all universities, colleges, and affiliated students. An attempt is made to find the effectiveness of online teaching-learning ...

  20. Traditional Learning Compared to Online Learning During the COVID-19

    In Saudi Arabia, the recent transfer of education to online delivery has not been optional. The COVID-19 pandemic has, for example, forced educators to convert university courses to online learning, with the most significant challenge likely being the mass transfer of all students and all staff to digital platforms on the same day (Chaka, 2020 ...

  21. A systematic review of research on online teaching and learning from

    1. Introduction. Online learning has been on the increase in the last two decades. In the United States, though higher education enrollment has declined, online learning enrollment in public institutions has continued to increase (Allen & Seaman, 2017), and so has the research on online learning.There have been review studies conducted on specific areas on online learning such as innovations ...

  22. (PDF) A comparative study on effectiveness of online and offline

    The objective of the study is to assess the effectiveness of online and offline learning through higher education. The sudden outbreak of Covid-19 in various part of the world in 2020 has severely ...

  23. Research on the Construction of Financial Accounting Courses based on

    The construction path of the SPOC blended teaching model in the college course of "Financial Accounting", which integrates online teaching platforms and traditional face-to-face teaching to improve students' learning effectiveness and participation, is explored. In the current information age, with the continuous advancement of technology, the teaching mode of higher education is also ...

  24. A study of effectiveness of online learning

    1. 90% students have started the online mode of learning and 74% professors have started the. online mode of teaching, during this pandem ic. 2. 84 % of students understand the concepts taught to ...