Examples

Hypothesis If Then

Ai generator.

hypothesis with if then because

In the vast universe of scientific inquiries, the “if-then” hypothesis structure stands out as an essential tool, bridging observation and prediction. This format not only simplifies complex scientific theories but also provides clarity to young learners and budding scientists. Whether you’re experimenting in a professional lab or just in your backyard, understanding and crafting a Thesis statement succinct “if-then” hypothesis can be the key to unlocking the secrets of the world around us. Dive in to explore, write, and refine!

What is If Then Hypothesis?

The “If-Then” hypothesis is a predictive statement that sets up a cause-and-effect relationship between two variables. It’s structured such that the “If” portion introduces a condition or a cause, and the “Then” portion predicts the effect or outcome of that condition. This format helps in clearly establishing a link between the independent and dependent variables in an experiment.

What is an example of a Hypothesis If Then Statement?

For instance, let’s consider a basic experiment related to plant growth:

  • Hypothesis : If a plant is exposed to direct sunlight for at least 6 hours a day, then it will grow taller than a plant that is kept in the shade.

In this example, the exposure to sunlight (or the lack thereof) is the condition, while the growth of the plant is the predicted outcome. The statement concisely links the cause (sunlight exposure) to the effect (plant growth).

100 If Then Hypothesis Statement Examples

Hypothesis If Then Statement Examples

Size: 215 KB

The “If-Then” hypothesis elegantly captures a cause-and-effect relationship in scientific inquiries. This predictive format, with its concise clarity, bridges observation and anticipated outcome, guiding experiments in a myriad of domains.

  • Plant Growth : If a plant receives fertilizer, then it will grow faster than one without fertilizer.
  • Melting Points : If ice is exposed to temperatures above 0°C, then it will melt.
  • Battery Life : If a battery is used continuously, then it will drain faster than if used intermittently.
  • Sleep & Performance : If a person sleeps less than 6 hours a night, then their cognitive performance will decrease.
  • Diet & Weight : If an individual consumes more calories than they burn, then they will gain weight.
  • Hydration : If a person drinks less than 8 glasses of water daily, then they may experience dehydration.
  • Light & Vision : If a room is darkened, then the pupils of one’s eyes will dilate.
  • Sugar & Energy : If children consume sugary drinks, then they will show increased levels of energy.
  • Study Habits : If a student revises regularly, then they will retain more information than those who cram.
  • Exercise & Health : If a person exercises three times a week, then their cardiovascular health will improve.
  • Noise & Concentration : If a room is noisy, then people inside will find it harder to concentrate.
  • Medication & Pain : If an individual takes painkillers, then they will report reduced pain levels.
  • Soil Quality : If soil is rich in nutrients, then plants grown in it will be healthier.
  • Reading & Vocabulary : If a child reads daily, then their vocabulary will expand faster than a non-reading peer.
  • Social Media : If a teenager spends over 5 hours on social media, then they may experience decreased sleep quality.
  • Sunscreen : If sunscreen is applied, then the chances of getting sunburned decrease.
  • Coffee & Alertness : If an individual drinks coffee in the morning, then they will feel more alert.
  • Music & Productivity : If calming music is played in the workplace, then employees will be more productive.
  • Temperature & Metabolism : If the ambient temperature is cold, then a person’s metabolism will increase.
  • Pets & Stress : If an individual owns a pet, then their stress levels might decrease.
  • Vegetation & Air Quality : If trees are planted in an urban area, then air quality will improve.
  • Vaccination : If a child is vaccinated, then they will have a reduced risk of contracting certain diseases.
  • E-learning : If students use e-learning platforms, then they will have flexible study hours.
  • Recycling : If a community adopts recycling, then landfill waste will decrease.
  • Fast Food : If an individual eats fast food regularly, then their cholesterol levels might rise.
  • UV Light : If UV light is shone on a glow-in-the-dark material, then it will glow more brightly.
  • Brushing Teeth : If a child brushes their teeth twice daily, then they will have fewer cavities than those who don’t.
  • Bird Migration : If the climate becomes colder, then certain birds will migrate to warmer regions.
  • Space Exploration : If astronauts go without gravity for long periods, then their bone density will decrease.
  • Plastic Pollution : If we reduce single-use plastic consumption, then the amount of plastic in the ocean will decrease.
  • Books & Imagination : If a child reads fantasy novels, then their imaginative skills will be enhanced.
  • AI & Efficiency : If companies use artificial intelligence in operations, then their efficiency will improve.
  • Video Games : If children play violent video games, then they might exhibit aggressive behavior.
  • Healthy Diet : If someone consumes a balanced diet, then their overall health will benefit.
  • Deforestation : If forests are cleared at the current rate, then global temperatures will rise due to reduced carbon sequestration.
  • Renewable Energy : If a country invests in renewable energy, then its carbon footprint will decrease.
  • Exercise & Mood : If an individual engages in regular physical activity, then their mood will generally improve.
  • Microplastics : If microplastics enter the water system, then marine life will be at risk.
  • Language Learning : If a person practices a new language daily, then they will become fluent faster.
  • Organic Farming : If farmers use organic methods, then the pesticide residue in the food will decrease.
  • Remote Work : If employees work remotely, then office costs will reduce.
  • Yoga & Flexibility : If someone practices yoga regularly, then their flexibility will increase.
  • Public Transport : If a city improves its public transportation system, then traffic congestion will decrease.
  • Meditation & Stress : If an individual meditates daily, then their stress levels will be lower.
  • Fish & Omega-3 : If someone includes fish in their diet weekly, then their omega-3 fatty acid intake will be adequate.
  • Smartphones & Sleep : If a person uses their smartphone before bed, then their sleep quality might decrease.
  • Waste Segregation : If households segregate waste, then recycling processes will be more efficient.
  • E-Books : If students use e-books instead of paper ones, then paper consumption will decrease.
  • Carpooling : If more people adopt carpooling, then urban air quality will improve due to fewer car emissions.
  • Digital Payments : If digital payment systems are adopted widely, then cash handling costs will reduce.
  • Online Learning : If students engage in online learning platforms, then their access to diverse educational resources will increase.
  • Tree Planting : If a community plants more trees in urban areas, then the air quality will improve due to increased oxygen output.
  • Pet Ownership : If an individual adopts a pet, then they may experience reduced feelings of loneliness.
  • Recycling : If recycling is made mandatory in cities, then landfill waste will decrease significantly.
  • Natural Cleaners : If households use natural cleaning agents, then water pollution from residential areas will decrease.
  • Solar Panels : If a house installs solar panels, then its electricity bill will decrease.
  • Music & Productivity : If workers listen to instrumental music while working, then their productivity might increase.
  • Healthy Breakfast : If someone eats a nutritious breakfast daily, then their energy levels throughout the day will be higher.
  • Water Conservation : If individuals reduce their shower time by 5 minutes, then significant water conservation can be achieved annually.
  • Learning Instruments : If a child learns a musical instrument, then their cognitive and motor skills may improve.
  • Reusable Bags : If shoppers use reusable bags, then the demand for plastic bags will reduce.
  • Public Libraries : If a city invests in public libraries, then the literacy rate of its citizens may rise.
  • Organ Donation : If awareness about organ donation increases, then the waiting list for organ transplants will decrease.
  • Green Spaces : If urban areas increase green spaces, then residents’ mental well-being may improve.
  • Sleep & Memory : If a student gets at least 8 hours of sleep, then their memory retention might be better.
  • Digital Detox : If someone takes a weekly digital detox day, then their stress levels may decrease.
  • Composting : If households start composting kitchen waste, then the amount of organic waste in landfills will reduce.
  • Gardening & Health : If individuals engage in gardening activities, then they might experience improved mental health.
  • Flu Vaccination : If a person gets a flu shot annually, then their chances of getting influenza will reduce.
  • Hand Washing : If people wash their hands regularly, then the spread of common diseases may decrease.
  • Diverse Diet : If someone consumes a diverse range of vegetables, then they will have a better nutrient intake.
  • Physical Books : If a student reads from physical books instead of screens, then they might have better sleep patterns.
  • Mindfulness & Anxiety : If an individual practices mindfulness exercises, then their anxiety levels may decrease.
  • Green Vehicles : If a city promotes the use of electric vehicles, then air pollution levels will reduce.
  • Walking & Health : If someone walks 10,000 steps daily, then their cardiovascular health might improve.
  • Art & Creativity : If children are exposed to art classes from a young age, then their creative thinking skills may enhance.
  • Dark Chocolate : If someone consumes dark chocolate regularly, then their antioxidant intake may increase.
  • Yoga & Flexibility : If an individual practices yoga thrice a week, then their flexibility and posture may improve.
  • Cooking at Home : If families cook meals at home more frequently, then their intake of processed foods might decrease.
  • Local Tourism : If local tourism is promoted, then a region’s economy can benefit due to increased business opportunities.
  • Reading Aloud : If parents read aloud to their children every night, then the children’s vocabulary and comprehension skills might expand.
  • Public Transportation : If cities improve their public transportation system, then the number of cars on the road might decrease.
  • Indoor Plants : If a person keeps indoor plants in their workspace, then their concentration and productivity may enhance due to better air quality.
  • Bird Watching : If an individual engages in bird watching, then their patience and observation skills might develop.
  • Biking to Work : If employees bike to work, then their cardiovascular health can improve and their carbon footprint might reduce.
  • Aquariums & Stress : If someone spends time watching fish in an aquarium, then their stress levels may decrease.
  • Meditation & Focus : If an individual meditates daily, then their attention span and focus might increase.
  • Learning Languages : If a student learns a new language, then their cognitive flexibility and memory retention may improve.
  • Community Gardens : If neighborhoods establish community gardens, then residents may benefit from fresh produce and community bonding.
  • Journaling : If someone journals their thoughts regularly, then their self-awareness and emotional processing might improve.
  • Volunteering : If an individual volunteers once a month, then their sense of purpose and community connection may strengthen.
  • Eco-friendly Products : If consumers prefer eco-friendly products, then industries might adopt more sustainable manufacturing practices.
  • Limiting Screen Time : If children limit their screen time to an hour a day, then their physical activity levels and sleep patterns may benefit.
  • Outdoor Play : If kids play outdoors regularly, then their motor skills and social interactions might develop better.
  • Therapy & Mental Health : If someone attends therapy sessions, then they may experience improved mental well-being and coping strategies.
  • Natural Light : If workspaces are designed to allow more natural light, then employee morale and productivity might rise.
  • Water Intake : If a person drinks at least 8 glasses of water daily, then their hydration levels and skin health may improve.
  • Classical Music : If students listen to classical music while studying, then their concentration might increase.
  • Home Composting : If households adopt composting, then garden soil quality might improve and organic waste in landfills may reduce.
  • Green Roofs : If buildings adopt green roofs, then urban heat islands might decrease, and biodiversity may benefit.

Hypothesis If Then Statement Examples in Research

The crux of experimental research revolves around predicting an outcome. An ‘If-Then’ hypothesis format succinctly conveys anticipated cause-and-effect relationships, enabling clearer comprehension and assessment.

  • DNA Sequencing : If we utilize CRISPR technology for DNA sequencing, then the accuracy of detecting genetic mutations may increase.
  • Drug Efficiency : If a new drug compound is introduced to malignant cells in vitro, then the proliferation rate of these cells might decrease.
  • Digital Learning : If students are exposed to AI-driven educational tools, then their academic performance might significantly improve.
  • Nano-technology : If nanoparticles are used in drug delivery, then the targeting of specific cells may become more efficient.
  • Quantum Computing : If quantum bits replace traditional bits in computing, then the processing speed might witness a revolutionary acceleration.

Hypothesis If Then Statement Examples about Climate Change

Understanding climate change necessitates predicting outcomes based on varied actions or occurrences. These hypotheses present potential scenarios in the vast realm of climate studies.

  • Deforestation : If deforestation rates continue at the current pace, then global carbon dioxide levels will rise significantly.
  • Solar Energy : If solar energy adoption increases by 50% in the next decade, then global reliance on fossil fuels might decrease considerably.
  • Ocean Temperatures : If the world’s oceans warm by another degree Celsius, then coral bleaching events may become twice as frequent.
  • Carbon Taxation : If a global carbon tax is implemented, then emissions from industries might see a drastic reduction.
  • Melting Ice Caps : If polar ice caps continue to melt at the current rate, then sea levels might rise to submerge several coastal cities by 2100.

Hypothesis If Then Statement Examples in Psychology

Psychology delves into understanding behaviors and mental processes. Formulating hypotheses in an ‘If-Then’ structure can streamline experimental setups and interpretations.

  • Mindfulness Meditation : If individuals practice daily mindfulness meditation, then symptoms of anxiety and stress may decrease.
  • Social Media : If teenagers spend over five hours daily on social media, then their self-esteem levels might drop.
  • Cognitive Behavioral Therapy : If patients with depression undergo cognitive-behavioral therapy, then their coping mechanisms may strengthen.
  • Sleep and Memory : If adults get less than six hours of sleep nightly, then their memory retention might deteriorate faster.
  • Nature Exposure : If urban residents are exposed to natural settings weekly, then their mental well-being might improve.

Alternative If Then Hypothesis Statement Examples

Sometimes, researchers propose alternate scenarios to challenge or complement existing beliefs. These hypotheses capture such alternative insights.

  • Vitamin Intake : If individuals consume Vitamin C supplements daily, then their immunity might not necessarily strengthen, contradicting popular belief.
  • Digital Detox : If tech professionals take a monthly digital detox day, then their productivity may not diminish, countering the notion that constant connectivity boosts efficiency.
  • Organic Foods : If consumers solely eat organic foods, then their overall health markers might remain unchanged, challenging the health superiority of organic diets.
  • Exercise Routines : If gym-goers switch to calisthenics from weight training, then muscle mass gain might remain consistent, offering an alternative to traditional gym workouts.
  • E-learning : If students transition from classroom learning to e-learning platforms, then their academic performance may not necessarily drop, challenging the indispensability of physical classrooms.

Hypothesis If Then Statement Examples in Biology

In biology, the interaction of living organisms and their environments often leads to distinct outcomes. The ‘If-Then’ hypothesis structure can efficiently predict these outcomes based on varying factors.

  • Cell Division : If a cell is exposed to radiation, then the rate of its division might decrease significantly.
  • Plant Growth : If plants are provided with blue light, then their growth rate might be faster compared to those exposed to red light.
  • Enzyme Activity : If the temperature of a reaction involving enzymes rises by 10°C, then the activity of the enzymes might double.
  • Animal Behavior : If nocturnal animals are exposed to continuous artificial light, then their feeding and reproductive behaviors might be disrupted.
  • Genetic Modification : If crops are genetically modified for drought resistance, then their yield in arid regions might increase substantially.

Hypothesis If Then Statement Examples in Chemistry

The realm of chemistry is filled with reactions and interactions. Predicting outcomes based on specific conditions is crucial, and the ‘If-Then’ hypothesis structure provides clarity in such predictions.

  • Acid-Base Reactions : If a solution has a pH below 7, then it might turn blue litmus paper red, indicating its acidic nature.
  • Temperature and Reaction Rate : If the temperature of a chemical reaction is increased, then the rate of that reaction might speed up.
  • Metal Reactivity : If zinc metal is placed in copper sulfate solution, then it might displace the copper, indicating its higher reactivity.
  • Organic Synthesis : If an alkene is treated with bromine water, then the solution might decolorize, suggesting the presence of a double bond.
  • Electrolysis : If an aqueous solution of sodium chloride undergoes electrolysis, then chlorine gas might be released at the anode.

Hypothesis If Then Statement Examples in Physics

Physics examines the fundamental principles governing our universe. ‘If-Then’ hypotheses help in determining cause-and-effect relationships amidst complex physical phenomena.

  • Gravity : If an object is dropped from a certain height in a vacuum, then it might accelerate at 9.81 m/s^2, irrespective of its mass.
  • Refraction : If light travels from air into water, then it might bend towards the normal due to the change in speed.
  • Magnetism : If a magnetic field is applied to a moving charged particle, then the particle might experience a force perpendicular to its direction of motion.
  • Thermal Expansion : If a metal rod is heated, then it might expand due to the increased kinetic energy of its atoms.
  • Quantum Mechanics : If an electron is observed in a quantum system, then its wave function might collapse, determining its position.

What is an if-then because hypothesis?

An “if-then-because” hypothesis is a structured statement that predicts the outcome of an experiment based on a proposed cause and effect scenario. The structure usually goes as follows: “If [I do this specific action], then [this particular result will occur] because [of this scientific reason].”

For example: “If I water plants with sugar water, then they will grow taller than the ones watered with plain water because sugar provides additional nutrients to the plants.”

This type of simple hypothesis statement not only predicts the outcome but also provides a reasoning for the expected outcome, thereby setting the groundwork for the experimental procedure and its subsequent analysis.

Is a hypothesis typically an if-then statement?

Yes, a hypothesis is often framed as an “if-then” statement, especially in experimental studies. This format succinctly presents a proposed cause and its expected effect. By specifying a relationship between two variables, it offers clarity to the hypothesis and makes the intended testing straightforward. However, while common, not all hypotheses are written in the “if-then” format.

Is an if-then statement a hypothesis or prediction?

An “if-then” statement can be both a hypothesis and a prediction. However, their contexts differ:

  • Hypothesis: It is a tentative explanation for an observation or phenomenon that can be tested experimentally. When written in the “if-then” format, it usually predicts a relationship between variables based on theoretical understanding.Example: “If a plant is given caffeine, then it will grow faster.”
  • Prediction: It is a specific, testable statement about what will happen under particular conditions. It is based on the hypothesis and narrows down the expected outcomes of an experiment.Example: “If a bean plant is watered with a 1% caffeine solution daily, then after one month, it will be 10% taller than plants watered with plain water.”

How do you write an If Then Hypothesis Statement? – A Step by Step Guide

  • Identify the Variables: Determine the independent variable (the factor you’ll change) and the dependent variable (the factor you’ll measure).
  • Frame the Relationship: Using your understanding of the topic, establish a potential relationship between the identified variables.
  • Start with “If”: Begin your hypothesis with “If” followed by your independent variable.
  • Follow with “Then”: After stating your independent variable, include “then” followed by the potential outcome or change in the dependent variable you expect.
  • Review for Clarity: Ensure your hypothesis is clear, concise, and testable. It should state a specific relationship between the variables.

Tips for Writing If Then Hypothesis

  • Be Specific: Ensure your variables are clearly defined. Instead of “If I water plants more,” use “If I water plants twice daily.”
  • Ensure Testability: Your hypothesis should propose a relationship that can be tested through an experiment.
  • Avoid Conclusions: A hypothesis is a prediction, not a conclusion. It shouldn’t state a known fact but should be based on prior knowledge.
  • Use Simple Language: Especially when the audience might not have a deep understanding of the topic. Keeping it straightforward ensures comprehension.
  • Revise and Refine: After drafting your hypothesis, revisit it to check for clarity, specificity, and relevance to the research question at hand.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

Banner

Scientific Method: Step 3: HYPOTHESIS

  • Step 1: QUESTION
  • Step 2: RESEARCH
  • Step 3: HYPOTHESIS
  • Step 4: EXPERIMENT
  • Step 5: DATA
  • Step 6: CONCLUSION

Step 3: State your hypothesis

Now it's time to state your hypothesis . The hypothesis is an educated guess as to what will happen during your experiment. 

The hypothesis is often written using the words "IF" and "THEN." For example, " If I do not study, then I will fail the test." The "if' and "then" statements reflect your independent and dependent variables . 

The hypothesis should relate back to your original question and must be testable .

A word about variables...

Your experiment will include variables to measure and to explain any cause and effect. Below you will find some useful links describing the different types of variables.

  • "What are independent and dependent variables" NCES
  • [VIDEO] Biology: Independent vs. Dependent Variables (Nucleus Medical Media) Video explaining independent and dependent variables, with examples.

Resource Links

  • What is and How to Write a Good Hypothesis in Research? (Elsevier)
  • Hypothesis brochure from Penn State/Berks

  • << Previous: Step 2: RESEARCH
  • Next: Step 4: EXPERIMENT >>
  • Last Updated: Aug 26, 2024 10:04 AM
  • URL: https://harford.libguides.com/scientific_method

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Hypothesis Examples

Hypothesis Examples

A hypothesis is a prediction of the outcome of a test. It forms the basis for designing an experiment in the scientific method . A good hypothesis is testable, meaning it makes a prediction you can check with observation or experimentation. Here are different hypothesis examples.

Null Hypothesis Examples

The null hypothesis (H 0 ) is also known as the zero-difference or no-difference hypothesis. It predicts that changing one variable ( independent variable ) will have no effect on the variable being measured ( dependent variable ). Here are null hypothesis examples:

  • Plant growth is unaffected by temperature.
  • If you increase temperature, then solubility of salt will increase.
  • Incidence of skin cancer is unrelated to ultraviolet light exposure.
  • All brands of light bulb last equally long.
  • Cats have no preference for the color of cat food.
  • All daisies have the same number of petals.

Sometimes the null hypothesis shows there is a suspected correlation between two variables. For example, if you think plant growth is affected by temperature, you state the null hypothesis: “Plant growth is not affected by temperature.” Why do you do this, rather than say “If you change temperature, plant growth will be affected”? The answer is because it’s easier applying a statistical test that shows, with a high level of confidence, a null hypothesis is correct or incorrect.

Research Hypothesis Examples

A research hypothesis (H 1 ) is a type of hypothesis used to design an experiment. This type of hypothesis is often written as an if-then statement because it’s easy identifying the independent and dependent variables and seeing how one affects the other. If-then statements explore cause and effect. In other cases, the hypothesis shows a correlation between two variables. Here are some research hypothesis examples:

  • If you leave the lights on, then it takes longer for people to fall asleep.
  • If you refrigerate apples, they last longer before going bad.
  • If you keep the curtains closed, then you need less electricity to heat or cool the house (the electric bill is lower).
  • If you leave a bucket of water uncovered, then it evaporates more quickly.
  • Goldfish lose their color if they are not exposed to light.
  • Workers who take vacations are more productive than those who never take time off.

Is It Okay to Disprove a Hypothesis?

Yes! You may even choose to write your hypothesis in such a way that it can be disproved because it’s easier to prove a statement is wrong than to prove it is right. In other cases, if your prediction is incorrect, that doesn’t mean the science is bad. Revising a hypothesis is common. It demonstrates you learned something you did not know before you conducted the experiment.

Test yourself with a Scientific Method Quiz .

  • Mellenbergh, G.J. (2008). Chapter 8: Research designs: Testing of research hypotheses. In H.J. Adèr & G.J. Mellenbergh (eds.), Advising on Research Methods: A Consultant’s Companion . Huizen, The Netherlands: Johannes van Kessel Publishing.
  • Popper, Karl R. (1959). The Logic of Scientific Discovery . Hutchinson & Co. ISBN 3-1614-8410-X.
  • Schick, Theodore; Vaughn, Lewis (2002). How to think about weird things: critical thinking for a New Age . Boston: McGraw-Hill Higher Education. ISBN 0-7674-2048-9.
  • Tobi, Hilde; Kampen, Jarl K. (2018). “Research design: the methodology for interdisciplinary research framework”. Quality & Quantity . 52 (3): 1209–1225. doi: 10.1007/s11135-017-0513-8

Related Posts

  • How It Works
  • PhD thesis writing
  • Master thesis writing
  • Bachelor thesis writing
  • Dissertation writing service
  • Dissertation abstract writing
  • Thesis proposal writing
  • Thesis editing service
  • Thesis proofreading service
  • Thesis formatting service
  • Coursework writing service
  • Research paper writing service
  • Architecture thesis writing
  • Computer science thesis writing
  • Engineering thesis writing
  • History thesis writing
  • MBA thesis writing
  • Nursing dissertation writing
  • Psychology dissertation writing
  • Sociology thesis writing
  • Statistics dissertation writing
  • Buy dissertation online
  • Write my dissertation
  • Cheap thesis
  • Cheap dissertation
  • Custom dissertation
  • Dissertation help
  • Pay for thesis
  • Pay for dissertation
  • Senior thesis
  • Write my thesis

How To Write A Hypothesis Guide And Detailed Instructions

how to write a hypothesis

Whether you’re studying for a college degree, MBA, or Ph.D., developing a hypothesis for your research is mandatory. You must know how to write a good hypothesis to impress your professors. Now, how should a hypothesis be written?

This is where some students get confused and exhausted. You already know that you’re to formulate a hypothesis around something testable. But you don’t know how to create hypotheses based on previous observations that you would later explain in your paper or journal.

In this article, you’ll learn what a hypothesis is, how to make a hypothesis, examples of how to write hypothesis statement, and how to go about yours.

What Is A Hypothesis?

A hypothesis is a statement that is not proven, and it’s an assumption that you’ll base your research on. They must be testable: they must have answers that can be checked with experiments and evidence.

The theory around your hypothesis becomes valid when it’s proven to be true through experiments. Scientists have rules for writing that make their chemistry, physics, and biology research reproducible.

An essential part is that they must understand the experiments of others so that they can build on them and improve them. These rules define how scientists write about science. This rule applies to hypotheses, too.

Why Do You Need A Hypothesis?

Writing a good hypothesis is a key part of any scientific exploration. It allows a broad and open-ended question that compels you to investigate. There are many other reasons, including:

It’s different from a theory because a theory is something like:

“The earth orbits around the sun.”

This is not testable because we know that it’s true. A theory is more like an explanation for why something happens, while a hypothesis is a guess about what will happen and why it would.

A hypothesis is a statement of the relationship you’ve observed in a pair of variables. The easiest way to think about it is that the hypothesis is your testable statement for your research project.

You would typically use your background knowledge and experience as a researcher to come up with this statement before you set out to collect data. A good hypothesis will give you insight into what kind of data you need to collect to answer the question (or provide evidence).

For example:

“People who live in cities have higher stress levels than those who live in rural areas because there are more people around them all day long!”

This hypothesis would then lead us to ask questions like “How do we measure stress?” or “What factors contribute to stress?” You’ll provide answers to these questions with the paper.

A hypothesis can be proven or disproven throughout an experiment. The most common way to disprove a hypothesis is through statistical significance testing. This entails using probability and data analysis to show that there’s no practical difference between the two compared groups.

The hypothesis is a testable statement about how the world works. It’s also a way to properly arrange and structure your data. Without a hypothesis, you won’t even know what to set your scientific experiment on. A hypothesis is what you’ll use to predict what will happen in the future, and the data you collect during the research will help validate or disprove this.

In science, you’re always trying to figure out why things happen the way they do and what factors affect them. When you know how something works, “why do some people get sick while others don’t?” You might make up a hypothesis to test your idea: “People who are exposed to germs get flu symptoms.” Here’s how to start a hypothesis as the answer lets you determine whether your idea is right or wrong; an experiment then validates (or disproves) it.

Now that you know why you need to formulate a testable hypothesis, learn how to write a research hypothesis with tangible examples.

How To Write A Hypothesis

Before you start your experiments in the lab, it’s important to take some time to think about what you’re trying to achieve. After all, you can’t know your research destination until you plan it beforehand. This is why mastering how to state a hypothesis gives room for healthy predictions. Here’s how you formulate hypothesis:

Your first step is to determine what you want to investigate. You can start with a question you’d like to answer or a problem that needs solving.For example, if you’re a teacher trying to improve your students’ reading skills, you might ask:

“What techniques can I use for my students to boost reading comprehension scores on their standardized tests?”

This could also be stated as “Do test-taking strategies lead to improved standardized test scores?”

Once your question pops in your mind, especially while reflecting on a scientific paper you’ve read or a documentary you saw, write it down and commence research.

You need some facts to state a hypothesis and prove it. It might be tricky to get these facts, and you’ll want to look for relevant and irrelevant information.

Relevant information is directly related to your hypothesis. For example, your relevant sources would be academic, examination, and psychology journals, quantitative data or news outlets for the above statement.

Irrelevant information is any other kind of data, and this could be random news outlets or interviews that could help bolster what your assumptions are.

Use the word “because” to indicate that your variable causes or explains another variable. For example: If we are testing whether exercise leads to weight loss, our sentence might look like this:

“Consistent gym practice causes weight loss because it burns calories and gets the body in shape.”

You need to identify if your hypothesis is testable or if it’s an opinion you can’t prove. You can’t test what you don’t know or can’t prove. So you’d need to rewrite your hypothesis if you think it’s not testable.

Your hypothesis should be clear, concise, testable, specific, and relevant. The best way to do this is to write a brief summary of your hypothesis in the form: “If X happens, then Y will happen.”

Here’s a sample hypothesis:

“If I add 15 minutes to my sitting time everyday, then my body mass index (BMI) will reduce by 5 points in three months.”

Now that you’ve defined your idea, it’s time for the actual experiment to determine whether it’ll work.

How To Write A Hypothesis Statement: Example Of A Hypothesis

There are numerous examples of a hypothesis statement you can take a clue from. A scientific hypothesis examines two variables that need evidence-based research to be considered valid. For example:

“If I increase the amount of water applied to a plant garden, then it will make it grow faster.”

You have identified the independent and dependent variables in this statement. The independent variable is “amount of water applied,” and the dependent variable is “grow faster.” You also included a control group, which is important in scientific experiments to eliminate bias from other factors that could influence your results.

In this case, you are comparing how much growth there would be if you increase the amount of water versus how much growth there would be if you do not increase it.

You then need to research the topic in detail and design an experiment before you can write your report. The first step is to decide what you’re going to measure, how you’ll measure it, and how many times you’ll do this so that it’s accurate.

Once you’ve measured your experiment, interpreting the results can be challenging. You should look at graphs or charts of your data to see if any patterns or trends might indicate a cause-and-effect relationship between two things (like applying more water to the plant garden and faster growth).

After looking at the results of your experiment and deciding whether or not they support your original hypothesis, use this new knowledge in your conclusion. Write up something like:

“Based on my findings, it’s clear that applying more water to any plant garden would make the plant garden grow faster and greener.”

Then, write an introduction section where you can explain why this project interests/matters/is relevant to your reader. At this point, your hypothesis is no longer an educated guess. It started as one (with the observation or thoughts/idea) and ended as verifiable.

Format For Hypothesis: How Should A Hypothesis Be Written?

The usual format of a hypothesis is If – (then) – because.

Because we have the idea that if a hypothesis is formatted as an if-then statement, it’s clear what the hypothesis is about. This can be helpful for your readers and yourself if you ever need to come back and look at your work.

So, now that you know how to format it correctly (and why) let’s look at some hypothesis examples.

“If snow falls, then I’ll catch a cold when I get outside because cold can be a result of heavy snow.”
“If anyone in my family eats cake, then we will feel sick because the cake contains ingredients we are allergic to.”
“Some grasses never grow because they’re stumped every day.”

All these show that two variables must come together in the sentence. The variables must also be a probability the research attempts to solve to make them valid statements.

How To Know Your Hypothesis Is Good

Now that you know how to create a hypothesis, you need to know if it’s good through these pointers:

State a Hypothesis as Clearly as Possible You can choose precise words that are neither ambiguous nor too technical. You should also avoid jargon and words with multiple meanings to keep your language simple and clear. Don’t use fancy or pretentious words unless they’re absolutely necessary for the meaning you want to convey, and make sure you’ve used them in their correct context. In addition, use a tone of voice appropriate to the audience. A scientific paper may need more formal language than an article for popular consumption. A Good Hypothesis Should Explain the Bond Between Multiple Variables The main purpose of forming a hypothesis is to explain the relationship between multiple variables clearly. The relationship should be testable for it to be proven. This is, why if X leads to Y, what is in between that connects X and Y? This must reflect in the hypothesis as it’s the factor that’ll be experimented. A Hypothesis should Be Testable This means that your hypothesis should be a statement that can be proven or disproven with an experiment. You want to make sure your hypothesis is specific enough to guide you towards the right experiment but not so specific that it eliminates any other possible outcomes of your experiment. Also, a hypothesis should not make claims about unobservable things (like feelings or thoughts). Instead, focus on observable results (things we can see) like measurements and observations from experiments conducted by scientists over time.If your hypothesis isn’t testable, then it needs to be reformulated.

What Should You Do If Your Hypothesis Is Incorrect?

You need to reformulate your thesis if it’s incorrect. You may have to reevaluate the problem or look at it differently. It’s also possible that you need to test your hypothesis with a different method of experimentation.

Here are some ideas from the best scientific thesis writing help experts:

Try Another Approach: Try looking at your hypothesis from a different angle, or consider changing up your methods entirely (for example, instead of asking people what they think will happen in the future and then testing their opinions against reality, you could run an experiment where participants predict events and then actually follow up on those predictions). Share Your Idea with a Third Party: Your hypothesis can be tested by allowing a third party to observe the results of your attempt to prove or disprove the statement. For example, if you’re testing whether peanuts can be made into peanut butter using only as few steps as possible, have someone else make it for you or observe them make it.

Document how you made your product and recorded any necessary changes along the way. This will help you know what works and doesn’t so that you’ll make changes to the whole idea.

Get Hypothesis Writing Help

Writing a hypothesis is smart work. You need professionals who know how to write a scientific hypothesis and journal that reflect the experiment supporting the hypothesis. You need professionals who are also expert writers and can offer writing help online.

We offer some of the best writing helpers online, with fast with turnovers. Our writers create the best hypothesis scenario with the possibility to ace any experiment at a cheap price. They will offer writing help if you need these professionals to help write a good hypothesis for you. After all, you need to complete your degrees stronger than you started. A great paper by professionals can seal that deal, and our master thesis writing service is here to help.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Comment * Error message

Name * Error message

Email * Error message

Save my name, email, and website in this browser for the next time I comment.

As Putin continues killing civilians, bombing kindergartens, and threatening WWIII, Ukraine fights for the world's peaceful future.

Ukraine Live Updates

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

What Is a Hypothesis and How Do I Write One?

author image

General Education

body-glowing-question-mark

Think about something strange and unexplainable in your life. Maybe you get a headache right before it rains, or maybe you think your favorite sports team wins when you wear a certain color. If you wanted to see whether these are just coincidences or scientific fact, you would form a hypothesis, then create an experiment to see whether that hypothesis is true or not.

But what is a hypothesis, anyway? If you’re not sure about what a hypothesis is--or how to test for one!--you’re in the right place. This article will teach you everything you need to know about hypotheses, including: 

  • Defining the term “hypothesis” 
  • Providing hypothesis examples 
  • Giving you tips for how to write your own hypothesis

So let’s get started!

body-picture-ask-sign

What Is a Hypothesis?

Merriam Webster defines a hypothesis as “an assumption or concession made for the sake of argument.” In other words, a hypothesis is an educated guess . Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it’s true or not. Keep in mind that in science, a hypothesis should be testable. You have to be able to design an experiment that tests your hypothesis in order for it to be valid. 

As you could assume from that statement, it’s easy to make a bad hypothesis. But when you’re holding an experiment, it’s even more important that your guesses be good...after all, you’re spending time (and maybe money!) to figure out more about your observation. That’s why we refer to a hypothesis as an educated guess--good hypotheses are based on existing data and research to make them as sound as possible.

Hypotheses are one part of what’s called the scientific method .  Every (good) experiment or study is based in the scientific method. The scientific method gives order and structure to experiments and ensures that interference from scientists or outside influences does not skew the results. It’s important that you understand the concepts of the scientific method before holding your own experiment. Though it may vary among scientists, the scientific method is generally made up of six steps (in order):

  • Observation
  • Asking questions
  • Forming a hypothesis
  • Analyze the data
  • Communicate your results

You’ll notice that the hypothesis comes pretty early on when conducting an experiment. That’s because experiments work best when they’re trying to answer one specific question. And you can’t conduct an experiment until you know what you’re trying to prove!

Independent and Dependent Variables 

After doing your research, you’re ready for another important step in forming your hypothesis: identifying variables. Variables are basically any factor that could influence the outcome of your experiment . Variables have to be measurable and related to the topic being studied.

There are two types of variables:  independent variables and dependent variables. I ndependent variables remain constant . For example, age is an independent variable; it will stay the same, and researchers can look at different ages to see if it has an effect on the dependent variable. 

Speaking of dependent variables... dependent variables are subject to the influence of the independent variable , meaning that they are not constant. Let’s say you want to test whether a person’s age affects how much sleep they need. In that case, the independent variable is age (like we mentioned above), and the dependent variable is how much sleep a person gets. 

Variables will be crucial in writing your hypothesis. You need to be able to identify which variable is which, as both the independent and dependent variables will be written into your hypothesis. For instance, in a study about exercise, the independent variable might be the speed at which the respondents walk for thirty minutes, and the dependent variable would be their heart rate. In your study and in your hypothesis, you’re trying to understand the relationship between the two variables.

Elements of a Good Hypothesis

The best hypotheses start by asking the right questions . For instance, if you’ve observed that the grass is greener when it rains twice a week, you could ask what kind of grass it is, what elevation it’s at, and if the grass across the street responds to rain in the same way. Any of these questions could become the backbone of experiments to test why the grass gets greener when it rains fairly frequently.

As you’re asking more questions about your first observation, make sure you’re also making more observations . If it doesn’t rain for two weeks and the grass still looks green, that’s an important observation that could influence your hypothesis. You'll continue observing all throughout your experiment, but until the hypothesis is finalized, every observation should be noted.

Finally, you should consult secondary research before writing your hypothesis . Secondary research is comprised of results found and published by other people. You can usually find this information online or at your library. Additionally, m ake sure the research you find is credible and related to your topic. If you’re studying the correlation between rain and grass growth, it would help you to research rain patterns over the past twenty years for your county, published by a local agricultural association. You should also research the types of grass common in your area, the type of grass in your lawn, and whether anyone else has conducted experiments about your hypothesis. Also be sure you’re checking the quality of your research . Research done by a middle school student about what minerals can be found in rainwater would be less useful than an article published by a local university.

body-pencil-notebook-writing

Writing Your Hypothesis

Once you’ve considered all of the factors above, you’re ready to start writing your hypothesis. Hypotheses usually take a certain form when they’re written out in a research report.

When you boil down your hypothesis statement, you are writing down your best guess and not the question at hand . This means that your statement should be written as if it is fact already, even though you are simply testing it.

The reason for this is that, after you have completed your study, you'll either accept or reject your if-then or your null hypothesis. All hypothesis testing examples should be measurable and able to be confirmed or denied. You cannot confirm a question, only a statement! 

In fact, you come up with hypothesis examples all the time! For instance, when you guess on the outcome of a basketball game, you don’t say, “Will the Miami Heat beat the Boston Celtics?” but instead, “I think the Miami Heat will beat the Boston Celtics.” You state it as if it is already true, even if it turns out you’re wrong. You do the same thing when writing your hypothesis.

Additionally, keep in mind that hypotheses can range from very specific to very broad.  These hypotheses can be specific, but if your hypothesis testing examples involve a broad range of causes and effects, your hypothesis can also be broad.  

body-hand-number-two

The Two Types of Hypotheses

Now that you understand what goes into a hypothesis, it’s time to look more closely at the two most common types of hypothesis: the if-then hypothesis and the null hypothesis.

#1: If-Then Hypotheses

First of all, if-then hypotheses typically follow this formula:

If ____ happens, then ____ will happen.

The goal of this type of hypothesis is to test the causal relationship between the independent and dependent variable. It’s fairly simple, and each hypothesis can vary in how detailed it can be. We create if-then hypotheses all the time with our daily predictions. Here are some examples of hypotheses that use an if-then structure from daily life: 

  • If I get enough sleep, I’ll be able to get more work done tomorrow.
  • If the bus is on time, I can make it to my friend’s birthday party. 
  • If I study every night this week, I’ll get a better grade on my exam. 

In each of these situations, you’re making a guess on how an independent variable (sleep, time, or studying) will affect a dependent variable (the amount of work you can do, making it to a party on time, or getting better grades). 

You may still be asking, “What is an example of a hypothesis used in scientific research?” Take one of the hypothesis examples from a real-world study on whether using technology before bed affects children’s sleep patterns. The hypothesis read s:

“We hypothesized that increased hours of tablet- and phone-based screen time at bedtime would be inversely correlated with sleep quality and child attention.”

It might not look like it, but this is an if-then statement. The researchers basically said, “If children have more screen usage at bedtime, then their quality of sleep and attention will be worse.” The sleep quality and attention are the dependent variables and the screen usage is the independent variable. (Usually, the independent variable comes after the “if” and the dependent variable comes after the “then,” as it is the independent variable that affects the dependent variable.) This is an excellent example of how flexible hypothesis statements can be, as long as the general idea of “if-then” and the independent and dependent variables are present.

#2: Null Hypotheses

Your if-then hypothesis is not the only one needed to complete a successful experiment, however. You also need a null hypothesis to test it against. In its most basic form, the null hypothesis is the opposite of your if-then hypothesis . When you write your null hypothesis, you are writing a hypothesis that suggests that your guess is not true, and that the independent and dependent variables have no relationship .

One null hypothesis for the cell phone and sleep study from the last section might say: 

“If children have more screen usage at bedtime, their quality of sleep and attention will not be worse.” 

In this case, this is a null hypothesis because it’s asking the opposite of the original thesis! 

Conversely, if your if-then hypothesis suggests that your two variables have no relationship, then your null hypothesis would suggest that there is one. So, pretend that there is a study that is asking the question, “Does the amount of followers on Instagram influence how long people spend on the app?” The independent variable is the amount of followers, and the dependent variable is the time spent. But if you, as the researcher, don’t think there is a relationship between the number of followers and time spent, you might write an if-then hypothesis that reads:

“If people have many followers on Instagram, they will not spend more time on the app than people who have less.”

In this case, the if-then suggests there isn’t a relationship between the variables. In that case, one of the null hypothesis examples might say:

“If people have many followers on Instagram, they will spend more time on the app than people who have less.”

You then test both the if-then and the null hypothesis to gauge if there is a relationship between the variables, and if so, how much of a relationship. 

feature_tips

4 Tips to Write the Best Hypothesis

If you’re going to take the time to hold an experiment, whether in school or by yourself, you’re also going to want to take the time to make sure your hypothesis is a good one. The best hypotheses have four major elements in common: plausibility, defined concepts, observability, and general explanation.

#1: Plausibility

At first glance, this quality of a hypothesis might seem obvious. When your hypothesis is plausible, that means it’s possible given what we know about science and general common sense. However, improbable hypotheses are more common than you might think. 

Imagine you’re studying weight gain and television watching habits. If you hypothesize that people who watch more than  twenty hours of television a week will gain two hundred pounds or more over the course of a year, this might be improbable (though it’s potentially possible). Consequently, c ommon sense can tell us the results of the study before the study even begins.

Improbable hypotheses generally go against  science, as well. Take this hypothesis example: 

“If a person smokes one cigarette a day, then they will have lungs just as healthy as the average person’s.” 

This hypothesis is obviously untrue, as studies have shown again and again that cigarettes negatively affect lung health. You must be careful that your hypotheses do not reflect your own personal opinion more than they do scientifically-supported findings. This plausibility points to the necessity of research before the hypothesis is written to make sure that your hypothesis has not already been disproven.

#2: Defined Concepts

The more advanced you are in your studies, the more likely that the terms you’re using in your hypothesis are specific to a limited set of knowledge. One of the hypothesis testing examples might include the readability of printed text in newspapers, where you might use words like “kerning” and “x-height.” Unless your readers have a background in graphic design, it’s likely that they won’t know what you mean by these terms. Thus, it’s important to either write what they mean in the hypothesis itself or in the report before the hypothesis.

Here’s what we mean. Which of the following sentences makes more sense to the common person?

If the kerning is greater than average, more words will be read per minute.

If the space between letters is greater than average, more words will be read per minute.

For people reading your report that are not experts in typography, simply adding a few more words will be helpful in clarifying exactly what the experiment is all about. It’s always a good idea to make your research and findings as accessible as possible. 

body-blue-eye

Good hypotheses ensure that you can observe the results. 

#3: Observability

In order to measure the truth or falsity of your hypothesis, you must be able to see your variables and the way they interact. For instance, if your hypothesis is that the flight patterns of satellites affect the strength of certain television signals, yet you don’t have a telescope to view the satellites or a television to monitor the signal strength, you cannot properly observe your hypothesis and thus cannot continue your study.

Some variables may seem easy to observe, but if you do not have a system of measurement in place, you cannot observe your hypothesis properly. Here’s an example: if you’re experimenting on the effect of healthy food on overall happiness, but you don’t have a way to monitor and measure what “overall happiness” means, your results will not reflect the truth. Monitoring how often someone smiles for a whole day is not reasonably observable, but having the participants state how happy they feel on a scale of one to ten is more observable. 

In writing your hypothesis, always keep in mind how you'll execute the experiment.

#4: Generalizability 

Perhaps you’d like to study what color your best friend wears the most often by observing and documenting the colors she wears each day of the week. This might be fun information for her and you to know, but beyond you two, there aren’t many people who could benefit from this experiment. When you start an experiment, you should note how generalizable your findings may be if they are confirmed. Generalizability is basically how common a particular phenomenon is to other people’s everyday life.

Let’s say you’re asking a question about the health benefits of eating an apple for one day only, you need to realize that the experiment may be too specific to be helpful. It does not help to explain a phenomenon that many people experience. If you find yourself with too specific of a hypothesis, go back to asking the big question: what is it that you want to know, and what do you think will happen between your two variables?

body-experiment-chemistry

Hypothesis Testing Examples

We know it can be hard to write a good hypothesis unless you’ve seen some good hypothesis examples. We’ve included four hypothesis examples based on some made-up experiments. Use these as templates or launch pads for coming up with your own hypotheses.

Experiment #1: Students Studying Outside (Writing a Hypothesis)

You are a student at PrepScholar University. When you walk around campus, you notice that, when the temperature is above 60 degrees, more students study in the quad. You want to know when your fellow students are more likely to study outside. With this information, how do you make the best hypothesis possible?

You must remember to make additional observations and do secondary research before writing your hypothesis. In doing so, you notice that no one studies outside when it’s 75 degrees and raining, so this should be included in your experiment. Also, studies done on the topic beforehand suggested that students are more likely to study in temperatures less than 85 degrees. With this in mind, you feel confident that you can identify your variables and write your hypotheses:

If-then: “If the temperature in Fahrenheit is less than 60 degrees, significantly fewer students will study outside.”

Null: “If the temperature in Fahrenheit is less than 60 degrees, the same number of students will study outside as when it is more than 60 degrees.”

These hypotheses are plausible, as the temperatures are reasonably within the bounds of what is possible. The number of people in the quad is also easily observable. It is also not a phenomenon specific to only one person or at one time, but instead can explain a phenomenon for a broader group of people.

To complete this experiment, you pick the month of October to observe the quad. Every day (except on the days where it’s raining)from 3 to 4 PM, when most classes have released for the day, you observe how many people are on the quad. You measure how many people come  and how many leave. You also write down the temperature on the hour. 

After writing down all of your observations and putting them on a graph, you find that the most students study on the quad when it is 70 degrees outside, and that the number of students drops a lot once the temperature reaches 60 degrees or below. In this case, your research report would state that you accept or “failed to reject” your first hypothesis with your findings.

Experiment #2: The Cupcake Store (Forming a Simple Experiment)

Let’s say that you work at a bakery. You specialize in cupcakes, and you make only two colors of frosting: yellow and purple. You want to know what kind of customers are more likely to buy what kind of cupcake, so you set up an experiment. Your independent variable is the customer’s gender, and the dependent variable is the color of the frosting. What is an example of a hypothesis that might answer the question of this study?

Here’s what your hypotheses might look like: 

If-then: “If customers’ gender is female, then they will buy more yellow cupcakes than purple cupcakes.”

Null: “If customers’ gender is female, then they will be just as likely to buy purple cupcakes as yellow cupcakes.”

This is a pretty simple experiment! It passes the test of plausibility (there could easily be a difference), defined concepts (there’s nothing complicated about cupcakes!), observability (both color and gender can be easily observed), and general explanation ( this would potentially help you make better business decisions ).

body-bird-feeder

Experiment #3: Backyard Bird Feeders (Integrating Multiple Variables and Rejecting the If-Then Hypothesis)

While watching your backyard bird feeder, you realized that different birds come on the days when you change the types of seeds. You decide that you want to see more cardinals in your backyard, so you decide to see what type of food they like the best and set up an experiment. 

However, one morning, you notice that, while some cardinals are present, blue jays are eating out of your backyard feeder filled with millet. You decide that, of all of the other birds, you would like to see the blue jays the least. This means you'll have more than one variable in your hypothesis. Your new hypotheses might look like this: 

If-then: “If sunflower seeds are placed in the bird feeders, then more cardinals will come than blue jays. If millet is placed in the bird feeders, then more blue jays will come than cardinals.”

Null: “If either sunflower seeds or millet are placed in the bird, equal numbers of cardinals and blue jays will come.”

Through simple observation, you actually find that cardinals come as often as blue jays when sunflower seeds or millet is in the bird feeder. In this case, you would reject your “if-then” hypothesis and “fail to reject” your null hypothesis . You cannot accept your first hypothesis, because it’s clearly not true. Instead you found that there was actually no relation between your different variables. Consequently, you would need to run more experiments with different variables to see if the new variables impact the results.

Experiment #4: In-Class Survey (Including an Alternative Hypothesis)

You’re about to give a speech in one of your classes about the importance of paying attention. You want to take this opportunity to test a hypothesis you’ve had for a while: 

If-then: If students sit in the first two rows of the classroom, then they will listen better than students who do not.

Null: If students sit in the first two rows of the classroom, then they will not listen better or worse than students who do not.

You give your speech and then ask your teacher if you can hand out a short survey to the class. On the survey, you’ve included questions about some of the topics you talked about. When you get back the results, you’re surprised to see that not only do the students in the first two rows not pay better attention, but they also scored worse than students in other parts of the classroom! Here, both your if-then and your null hypotheses are not representative of your findings. What do you do?

This is when you reject both your if-then and null hypotheses and instead create an alternative hypothesis . This type of hypothesis is used in the rare circumstance that neither of your hypotheses is able to capture your findings . Now you can use what you’ve learned to draft new hypotheses and test again! 

Key Takeaways: Hypothesis Writing

The more comfortable you become with writing hypotheses, the better they will become. The structure of hypotheses is flexible and may need to be changed depending on what topic you are studying. The most important thing to remember is the purpose of your hypothesis and the difference between the if-then and the null . From there, in forming your hypothesis, you should constantly be asking questions, making observations, doing secondary research, and considering your variables. After you have written your hypothesis, be sure to edit it so that it is plausible, clearly defined, observable, and helpful in explaining a general phenomenon.

Writing a hypothesis is something that everyone, from elementary school children competing in a science fair to professional scientists in a lab, needs to know how to do. Hypotheses are vital in experiments and in properly executing the scientific method . When done correctly, hypotheses will set up your studies for success and help you to understand the world a little better, one experiment at a time.

body-whats-next-post-it-note

What’s Next?

If you’re studying for the science portion of the ACT, there’s definitely a lot you need to know. We’ve got the tools to help, though! Start by checking out our ultimate study guide for the ACT Science subject test. Once you read through that, be sure to download our recommended ACT Science practice tests , since they’re one of the most foolproof ways to improve your score. (And don’t forget to check out our expert guide book , too.)

If you love science and want to major in a scientific field, you should start preparing in high school . Here are the science classes you should take to set yourself up for success.

If you’re trying to think of science experiments you can do for class (or for a science fair!), here’s a list of 37 awesome science experiments you can do at home

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Ashley Sufflé Robinson has a Ph.D. in 19th Century English Literature. As a content writer for PrepScholar, Ashley is passionate about giving college-bound students the in-depth information they need to get into the school of their dreams.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

  • 2018/03/28/How-to-write-a-hypothesis

How to write a hypothesis

This is a sticking point for many students. We are used to using and writing questions and statements in day to day communications, as well as reading popular media. But hypotheses (the plural of hypothesis) only rarely float across our desks. So how do we write one, and how do we know if our hypothesis is good?

Although I’m going to write about what I think, there is already some good information out there on the web, and it’s worth looking at this too: (e.g. Wikihow , Wikipedia , etc.). There’s also some dodgy stuff, so read critically.

What is a hypothesis?

A hypothesis is a statement of your research intent. It tells the reader (because just like all of your other written work, it has an audience who reads it), what you planned to do in your research. But there’s a little more to it than this. The hypothesis becomes a part of the scientific method if it is testable, and informed from previous published work on the subject.

Yes, your hypothesis must  be informed by the literature, which is why you spent so much time and effort crafting your introduction to inform your reader of the same. This is also why your hypothesis usually comes at the end of your introduction, because you spend all of the introduction telling your reader about it (see blog entry here ). There’s not much point in writing more after the hypothesis, because once your reader has read that, they are ready to learn about how you went about testing it (in the Materials & Methods). The other important point to make is that the literature should dictate how you write your hypothesis, and the variables that you include. If, for example, you know that temperature is the most important variable but all of the literature suggests that it is oxygen, you can’t ignore oxygen and you should also frame your hypothesis using this variable (you can have more than one hypothesis after all!). In this case, you will also need to provide a sufficient introduction to temperature as a variable to justify its inclusion in your hypothesis. Perversely, your aim is not to prove that your idea is right, but to show that the hypothesis is wrong.

We usually try to write a hypothesis that is falsifiable: i.e. you can prove (usually using statistical tests) that it is not correct (or at least show that the likelihood that it is correct is very low). That’s why it is conventional to provide the ‘Null hypothesis’ that is the falsified version of the statement, suggesting that there is no relationship between the variables you have proposed to measure. The convention is to label this H 0 , while the ‘alternative hypothesis’ (the one that says your variables are related as you suggested) is written as H 1 . You can write you alternative hypothesis to show the directionality of your tested variables, or simply that there is a relationship.

Most importantly, your hypothesis must come first, before you do the experiment or study! Setting the hypothesis after the work is already done is fraudulent, and goes against the scientific method. Obviously, it isn’t fair to pose the hypothesis once you already know the answer. This is why there is so much emphasis put on formulating your hypothesis during your research proposal. Getting it right will determine what you do and how you test it. If you think of an extra hypothesis that would be really useful to test once you’ve already done your study, you can conduct a post hoc test, but this should have more stringent levels of statistical assessment.

Writing a hypothesis isn’t easy, but it is essential and once you’ve understood what to do, most of the rest of what you are writing for should make sense.

What a hypothesis isn’t

It is not a question and so should never have a question mark after it.

It isn’t really a simple prediction: if this then that. You will see many times on the internet that hypotheses are explained in this simple predictive framework. I say that it isn't ' really ' a simple prediction because these are not good hypotheses. They lack the mechanistic and scholarly aspect of a good hypothesis, which is what we want to achieve.

A formulaic way to start writing your hypothesis: “ If… then… because… ”

Above, I emphasised that you must have introduced all the variables that you plan to use to test your hypothesis in your introduction. This usually comes in the second paragraph ( see blog entry here ), where you emphasise the utility of the dependent variable/s (what you are planning to measure) and your independent variable (what you will manipulate). Both of these variables should then feature in your hypothesis. Next, by paragraph four you will have identified the problem that you are interested in tackling. In addition, your introduction will provide all of the pertinent literature that has relevance to this hypothesis, giving the all important context.

A simple way to consider making your hypothesis is to adopt an “ If… then… because… ” construction where you add in your problem statement using your independent variable after ‘ if ’ and your prediction using your dependent variable after ‘ then ’, and finally the expected mechanism after ‘ because ’. Using our example above with the “If… then… because…” construction, we would say: “ If environmental temperatures in which tadpoles develop are increased then tadpole development rate is faster because they follow the classic metabolism of ectotherms”. Both independent variable (temperature) and dependent variable (tadpole development rate) are present in this hypothesis, and the predicted relationship between them is clear. In addition, the causal mechanism is stated. You can watch a video about using the “If… then… because…” construction here , or read more here . I say that this is a formulaic way to start writing your hypothesis, because it usually ends up as an inelegant statement, which can be better refined for a reader. A citation for your stated mechanism might also help clarify exactly where the justification for this comes from.

A good hypothesis will often take an existing hypothesis further, to try to better refine the knowledge on a subject. Hence, it is perfectly acceptable to state that you are building on existing hypotheses (and giving the appropriate statement) when making your own.

How to evaluate your hypothesis

Once you’ve written your hypothesis, how do you decide whether or not it is good? To do this, you might think that you need plenty of experience (and yes, that does help). But really, you just need to look for the elements that are discussed above. So once you’ve written your hypothesis, try to objectively answer the questions below (for more see Bartos 1992 and here ):

  • Is there a clear prediction (if… then… statement)?
  • Does the prediction use independent and dependent variables correctly?
  • Is the mechanism supported by the literature?
  • Is the hypothesis testable/falsifiable?
  • Does the hypothesis use concise wording and precise terminology?

If your hypothesis meets all of the criteria above, then you’ve done a good job!

Creative Commons Licence

Hypothesis Maker Online

Looking for a hypothesis maker? This online tool for students will help you formulate a beautiful hypothesis quickly, efficiently, and for free.

Are you looking for an effective hypothesis maker online? Worry no more; try our online tool for students and formulate your hypothesis within no time.

  • 🔎 How to Use the Tool?
  • ⚗️ What Is a Hypothesis in Science?

👍 What Does a Good Hypothesis Mean?

  • 🧭 Steps to Making a Good Hypothesis

🔗 References

📄 hypothesis maker: how to use it.

Our hypothesis maker is a simple and efficient tool you can access online for free.

If you want to create a research hypothesis quickly, you should fill out the research details in the given fields on the hypothesis generator.

Below are the fields you should complete to generate your hypothesis:

  • Who or what is your research based on? For instance, the subject can be research group 1.
  • What does the subject (research group 1) do?
  • What does the subject affect? - This shows the predicted outcome, which is the object.
  • Who or what will be compared with research group 1? (research group 2).

Once you fill the in the fields, you can click the ‘Make a hypothesis’ tab and get your results.

⚗️ What Is a Hypothesis in the Scientific Method?

A hypothesis is a statement describing an expectation or prediction of your research through observation.

It is similar to academic speculation and reasoning that discloses the outcome of your scientific test . An effective hypothesis, therefore, should be crafted carefully and with precision.

A good hypothesis should have dependent and independent variables . These variables are the elements you will test in your research method – it can be a concept, an event, or an object as long as it is observable.

You can observe the dependent variables while the independent variables keep changing during the experiment.

In a nutshell, a hypothesis directs and organizes the research methods you will use, forming a large section of research paper writing.

Hypothesis vs. Theory

A hypothesis is a realistic expectation that researchers make before any investigation. It is formulated and tested to prove whether the statement is true. A theory, on the other hand, is a factual principle supported by evidence. Thus, a theory is more fact-backed compared to a hypothesis.

Another difference is that a hypothesis is presented as a single statement , while a theory can be an assortment of things . Hypotheses are based on future possibilities toward a specific projection, but the results are uncertain. Theories are verified with undisputable results because of proper substantiation.

When it comes to data, a hypothesis relies on limited information , while a theory is established on an extensive data set tested on various conditions.

You should observe the stated assumption to prove its accuracy.

Since hypotheses have observable variables, their outcome is usually based on a specific occurrence. Conversely, theories are grounded on a general principle involving multiple experiments and research tests.

This general principle can apply to many specific cases.

The primary purpose of formulating a hypothesis is to present a tentative prediction for researchers to explore further through tests and observations. Theories, in their turn, aim to explain plausible occurrences in the form of a scientific study.

It would help to rely on several criteria to establish a good hypothesis. Below are the parameters you should use to analyze the quality of your hypothesis.

Testability You should be able to test the hypothesis to present a true or false outcome after the investigation. Apart from the logical hypothesis, ensure you can test your predictions with .
Variables It should have a dependent and independent variable. Identifying the appropriate variables will help readers comprehend your prediction and what to expect at the conclusion phase.
Cause and effect A good hypothesis should have a cause-and-effect connection. One variable should influence others in some way. It should be written as an “if-then” statement to allow the researcher to make accurate predictions of the investigation results. However, this rule does not apply to a .
Clear language Writing can get complex, especially when complex research terminology is involved. So, ensure your hypothesis has expressed as a brief statement. Avoid being vague because your readers might get confused. Your hypothesis has a direct impact on your entire research paper’s quality. Thus, use simple words that are easy to understand.
Ethics Hypothesis generation should comply with . Don’t formulate hypotheses that contravene taboos or are questionable. Besides, your hypothesis should have correlations to published academic works to look data-based and authoritative.

🧭 6 Steps to Making a Good Hypothesis

Writing a hypothesis becomes way simpler if you follow a tried-and-tested algorithm. Let’s explore how you can formulate a good hypothesis in a few steps:

Step #1: Ask Questions

The first step in hypothesis creation is asking real questions about the surrounding reality.

Why do things happen as they do? What are the causes of some occurrences?

Your curiosity will trigger great questions that you can use to formulate a stellar hypothesis. So, ensure you pick a research topic of interest to scrutinize the world’s phenomena, processes, and events.

Step #2: Do Initial Research

Carry out preliminary research and gather essential background information about your topic of choice.

The extent of the information you collect will depend on what you want to prove.

Your initial research can be complete with a few academic books or a simple Internet search for quick answers with relevant statistics.

Still, keep in mind that in this phase, it is too early to prove or disapprove of your hypothesis.

Step #3: Identify Your Variables

Now that you have a basic understanding of the topic, choose the dependent and independent variables.

Take note that independent variables are the ones you can’t control, so understand the limitations of your test before settling on a final hypothesis.

Step #4: Formulate Your Hypothesis

You can write your hypothesis as an ‘if – then’ expression . Presenting any hypothesis in this format is reliable since it describes the cause-and-effect you want to test.

For instance: If I study every day, then I will get good grades.

Step #5: Gather Relevant Data

Once you have identified your variables and formulated the hypothesis, you can start the experiment. Remember, the conclusion you make will be a proof or rebuttal of your initial assumption.

So, gather relevant information, whether for a simple or statistical hypothesis, because you need to back your statement.

Step #6: Record Your Findings

Finally, write down your conclusions in a research paper .

Outline in detail whether the test has proved or disproved your hypothesis.

Edit and proofread your work, using a plagiarism checker to ensure the authenticity of your text.

We hope that the above tips will be useful for you. Note that if you need to conduct business analysis, you can use the free templates we’ve prepared: SWOT , PESTLE , VRIO , SOAR , and Porter’s 5 Forces .

❓ Hypothesis Formulator FAQ

Updated: Jul 19th, 2024

  • How to Write a Hypothesis in 6 Steps - Grammarly
  • Forming a Good Hypothesis for Scientific Research
  • The Hypothesis in Science Writing
  • Scientific Method: Step 3: HYPOTHESIS - Subject Guides
  • Hypothesis Template & Examples - Video & Lesson Transcript
  • Free Essays
  • Writing Tools
  • Lit. Guides
  • Donate a Paper
  • Q&A by Experts
  • Referencing Guides
  • Free Textbooks
  • Tongue Twisters
  • Editorial Policy
  • Job Openings
  • Video Contest
  • Writing Scholarship
  • Discount Codes
  • Brand Guidelines
  • IvyPanda Shop
  • Online Courses
  • Terms and Conditions
  • Privacy Policy
  • Cookies Policy
  • Copyright Principles
  • DMCA Request
  • Service Notice

IvyPanda's free online hypothesis maker will help you formulate a hypothesis for your study. With this easy-to-use tool, you just need to provide basic info about the focus of your research, its variables, and predicted outcomes. The rest is on us. Get a perfect hypothesis fast!

What Are Examples of a Hypothesis?

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A hypothesis is an explanation for a set of observations. Hypothesis examples can help you understand how this scientific method works.

Although you could state a scientific hypothesis in various ways, most hypotheses are either "If, then" statements or forms of the null hypothesis. The null hypothesis is sometimes called the "no difference" hypothesis. The null hypothesis is good for experimentation because it's simple to disprove. If you disprove a null hypothesis, that is evidence for a relationship between the variables you are examining.

Hypotheses Examples: Null

  • All daisies have the same number of petals.
  • Hyperactivity is unrelated to eating sugar.
  • The number of pets in a household is unrelated to the number of people living in it.
  • A person's preference for a shirt is unrelated to its color.

Hypotheses Examples: If, Then

  • If you get at least 6 hours of sleep, you will do better on tests than if you get less sleep.
  • If you drop a ball, it will fall toward the ground.
  • If you drink coffee before going to bed, then it will take longer to fall asleep.
  • If you cover a wound with a bandage, then it will heal with less scarring.

Improving a Hypothesis to Make It Testable

You may wish to revise your first hypothesis to make it easier to design an experiment to test. For example, let's say you have a bad breakout the morning after eating a lot of greasy food. You may wonder if there is a correlation between eating greasy food and getting pimples. You propose the hypothesis example:

Eating greasy food causes pimples.

Next, you need to design an experiment to test this hypothesis. Let's say you decide to eat greasy food every day for a week and record the effect on your face. Then, as a control, you'll avoid greasy food for the next week and see what happens. Now, this is not a good experiment because it does not take into account other factors such as hormone levels, stress, sun exposure, exercise, or any number of other variables that might conceivably affect your skin.

The problem is that you cannot assign cause to your effect . If you eat french fries for a week and suffer a breakout, can you definitely say it was the grease in the food that caused it? Maybe it was the salt. Maybe it was the potato. Maybe it was unrelated to diet. You can't prove your hypothesis. It's much easier to disprove a hypothesis.

So, let's restate the hypothesis to make it easier to evaluate the data:

Getting pimples is unaffected by eating greasy food.

So, if you eat fatty food every day for a week and suffer breakouts and then don't break out the week that you avoid greasy food, you can be pretty sure something is up. Can you disprove the hypothesis? Probably not, since it is so hard to assign cause and effect. However, you can make a strong case that there is some relationship between diet and acne.

If your skin stays clear for the entire test, you may decide to accept your hypothesis . Again, you didn't prove or disprove anything, which is fine

  • Null Hypothesis Examples
  • The Role of a Controlled Variable in an Experiment
  • Random Error vs. Systematic Error
  • What Is a Testable Hypothesis?
  • What Are the Elements of a Good Hypothesis?
  • Scientific Hypothesis Examples
  • What Is a Hypothesis? (Science)
  • Scientific Method Vocabulary Terms
  • Scientific Method Flow Chart
  • Understanding Simple vs Controlled Experiments
  • Six Steps of the Scientific Method
  • What Is an Experimental Constant?
  • What Is the Difference Between a Control Variable and Control Group?
  • Scientific Variable
  • What Is a Controlled Experiment?
  • DRY MIX Experiment Variables Acronym

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

experiments disproving spontaneous generation

  • When did science begin?
  • Where was science invented?

Blackboard inscribed with scientific formulas and calculations in physics and mathematics

scientific hypothesis

Our editors will review what you’ve submitted and determine whether to revise the article.

  • National Center for Biotechnology Information - PubMed Central - On the scope of scientific hypotheses
  • LiveScience - What is a scientific hypothesis?
  • The Royal Society - Open Science - On the scope of scientific hypotheses

experiments disproving spontaneous generation

scientific hypothesis , an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an “If…then” statement summarizing the idea and in the ability to be supported or refuted through observation and experimentation. The notion of the scientific hypothesis as both falsifiable and testable was advanced in the mid-20th century by Austrian-born British philosopher Karl Popper .

The formulation and testing of a hypothesis is part of the scientific method , the approach scientists use when attempting to understand and test ideas about natural phenomena. The generation of a hypothesis frequently is described as a creative process and is based on existing scientific knowledge, intuition , or experience. Therefore, although scientific hypotheses commonly are described as educated guesses, they actually are more informed than a guess. In addition, scientists generally strive to develop simple hypotheses, since these are easier to test relative to hypotheses that involve many different variables and potential outcomes. Such complex hypotheses may be developed as scientific models ( see scientific modeling ).

Depending on the results of scientific evaluation, a hypothesis typically is either rejected as false or accepted as true. However, because a hypothesis inherently is falsifiable, even hypotheses supported by scientific evidence and accepted as true are susceptible to rejection later, when new evidence has become available. In some instances, rather than rejecting a hypothesis because it has been falsified by new evidence, scientists simply adapt the existing idea to accommodate the new information. In this sense a hypothesis is never incorrect but only incomplete.

The investigation of scientific hypotheses is an important component in the development of scientific theory . Hence, hypotheses differ fundamentally from theories; whereas the former is a specific tentative explanation and serves as the main tool by which scientists gather data, the latter is a broad general explanation that incorporates data from many different scientific investigations undertaken to explore hypotheses.

Countless hypotheses have been developed and tested throughout the history of science . Several examples include the idea that living organisms develop from nonliving matter, which formed the basis of spontaneous generation , a hypothesis that ultimately was disproved (first in 1668, with the experiments of Italian physician Francesco Redi , and later in 1859, with the experiments of French chemist and microbiologist Louis Pasteur ); the concept proposed in the late 19th century that microorganisms cause certain diseases (now known as germ theory ); and the notion that oceanic crust forms along submarine mountain zones and spreads laterally away from them ( seafloor spreading hypothesis ).

  • No category

how to write a good hypothesis using “if… then… because…”

Related documents.

Science Fair Project Template

Add this document to collection(s)

You can add this document to your study collection(s)

Add this document to saved

You can add this document to your saved list

Suggest us how to improve StudyLib

(For complaints, use another form )

Input it if you want to receive answer

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Prevent plagiarism. Run a free check.

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved September 8, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

What is a scientific hypothesis?

It's the initial building block in the scientific method.

A girl looks at plants in a test tube for a science experiment. What&#039;s her scientific hypothesis?

Hypothesis basics

What makes a hypothesis testable.

  • Types of hypotheses
  • Hypothesis versus theory

Additional resources

Bibliography.

A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method . Many describe it as an "educated guess" based on prior knowledge and observation. While this is true, a hypothesis is more informed than a guess. While an "educated guess" suggests a random prediction based on a person's expertise, developing a hypothesis requires active observation and background research. 

The basic idea of a hypothesis is that there is no predetermined outcome. For a solution to be termed a scientific hypothesis, it has to be an idea that can be supported or refuted through carefully crafted experimentation or observation. This concept, called falsifiability and testability, was advanced in the mid-20th century by Austrian-British philosopher Karl Popper in his famous book "The Logic of Scientific Discovery" (Routledge, 1959).

A key function of a hypothesis is to derive predictions about the results of future experiments and then perform those experiments to see whether they support the predictions.

A hypothesis is usually written in the form of an if-then statement, which gives a possibility (if) and explains what may happen because of the possibility (then). The statement could also include "may," according to California State University, Bakersfield .

Here are some examples of hypothesis statements:

  • If garlic repels fleas, then a dog that is given garlic every day will not get fleas.
  • If sugar causes cavities, then people who eat a lot of candy may be more prone to cavities.
  • If ultraviolet light can damage the eyes, then maybe this light can cause blindness.

A useful hypothesis should be testable and falsifiable. That means that it should be possible to prove it wrong. A theory that can't be proved wrong is nonscientific, according to Karl Popper's 1963 book " Conjectures and Refutations ."

An example of an untestable statement is, "Dogs are better than cats." That's because the definition of "better" is vague and subjective. However, an untestable statement can be reworded to make it testable. For example, the previous statement could be changed to this: "Owning a dog is associated with higher levels of physical fitness than owning a cat." With this statement, the researcher can take measures of physical fitness from dog and cat owners and compare the two.

Types of scientific hypotheses

Elementary-age students study alternative energy using homemade windmills during public school science class.

In an experiment, researchers generally state their hypotheses in two ways. The null hypothesis predicts that there will be no relationship between the variables tested, or no difference between the experimental groups. The alternative hypothesis predicts the opposite: that there will be a difference between the experimental groups. This is usually the hypothesis scientists are most interested in, according to the University of Miami .

For example, a null hypothesis might state, "There will be no difference in the rate of muscle growth between people who take a protein supplement and people who don't." The alternative hypothesis would state, "There will be a difference in the rate of muscle growth between people who take a protein supplement and people who don't."

If the results of the experiment show a relationship between the variables, then the null hypothesis has been rejected in favor of the alternative hypothesis, according to the book " Research Methods in Psychology " (​​BCcampus, 2015). 

There are other ways to describe an alternative hypothesis. The alternative hypothesis above does not specify a direction of the effect, only that there will be a difference between the two groups. That type of prediction is called a two-tailed hypothesis. If a hypothesis specifies a certain direction — for example, that people who take a protein supplement will gain more muscle than people who don't — it is called a one-tailed hypothesis, according to William M. K. Trochim , a professor of Policy Analysis and Management at Cornell University.

Sometimes, errors take place during an experiment. These errors can happen in one of two ways. A type I error is when the null hypothesis is rejected when it is true. This is also known as a false positive. A type II error occurs when the null hypothesis is not rejected when it is false. This is also known as a false negative, according to the University of California, Berkeley . 

A hypothesis can be rejected or modified, but it can never be proved correct 100% of the time. For example, a scientist can form a hypothesis stating that if a certain type of tomato has a gene for red pigment, that type of tomato will be red. During research, the scientist then finds that each tomato of this type is red. Though the findings confirm the hypothesis, there may be a tomato of that type somewhere in the world that isn't red. Thus, the hypothesis is true, but it may not be true 100% of the time.

Scientific theory vs. scientific hypothesis

The best hypotheses are simple. They deal with a relatively narrow set of phenomena. But theories are broader; they generally combine multiple hypotheses into a general explanation for a wide range of phenomena, according to the University of California, Berkeley . For example, a hypothesis might state, "If animals adapt to suit their environments, then birds that live on islands with lots of seeds to eat will have differently shaped beaks than birds that live on islands with lots of insects to eat." After testing many hypotheses like these, Charles Darwin formulated an overarching theory: the theory of evolution by natural selection.

"Theories are the ways that we make sense of what we observe in the natural world," Tanner said. "Theories are structures of ideas that explain and interpret facts." 

  • Read more about writing a hypothesis, from the American Medical Writers Association.
  • Find out why a hypothesis isn't always necessary in science, from The American Biology Teacher.
  • Learn about null and alternative hypotheses, from Prof. Essa on YouTube .

Encyclopedia Britannica. Scientific Hypothesis. Jan. 13, 2022. https://www.britannica.com/science/scientific-hypothesis

Karl Popper, "The Logic of Scientific Discovery," Routledge, 1959.

California State University, Bakersfield, "Formatting a testable hypothesis." https://www.csub.edu/~ddodenhoff/Bio100/Bio100sp04/formattingahypothesis.htm  

Karl Popper, "Conjectures and Refutations," Routledge, 1963.

Price, P., Jhangiani, R., & Chiang, I., "Research Methods of Psychology — 2nd Canadian Edition," BCcampus, 2015.‌

University of Miami, "The Scientific Method" http://www.bio.miami.edu/dana/161/evolution/161app1_scimethod.pdf  

William M.K. Trochim, "Research Methods Knowledge Base," https://conjointly.com/kb/hypotheses-explained/  

University of California, Berkeley, "Multiple Hypothesis Testing and False Discovery Rate" https://www.stat.berkeley.edu/~hhuang/STAT141/Lecture-FDR.pdf  

University of California, Berkeley, "Science at multiple levels" https://undsci.berkeley.edu/article/0_0_0/howscienceworks_19

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

White Shark Café: The mysterious meeting spot for great whites in the middle of the Pacific Ocean

Massive helium reservoir in Minnesota could solve US shortage

'Sensational discovery' of 2,000-year-old Roman military camp found hidden in the Swiss Alps

Most Popular

  • 2 New tick-borne virus discovered in China can affect the brain, scientists report
  • 3 Watch Live: Boeing Starliner is about to return to Earth without its crew
  • 4 Anthrax has killed over 50 animals in Wyoming — what's the risk to people?
  • 5 Pollution harms men's fertility, but traffic noise affects women's

hypothesis with if then because

StatAnalytica

Step-by-step guide to hypothesis testing in statistics

hypothesis testing in statistics

Hypothesis testing in statistics helps us use data to make informed decisions. It starts with an assumption or guess about a group or population—something we believe might be true. We then collect sample data to check if there is enough evidence to support or reject that guess. This method is useful in many fields, like science, business, and healthcare, where decisions need to be based on facts.

Learning how to do hypothesis testing in statistics step-by-step can help you better understand data and make smarter choices, even when things are uncertain. This guide will take you through each step, from creating your hypothesis to making sense of the results, so you can see how it works in practical situations.

What is Hypothesis Testing?

Table of Contents

Hypothesis testing is a method for determining whether data supports a certain idea or assumption about a larger group. It starts by making a guess, like an average or a proportion, and then uses a small sample of data to see if that guess seems true or not.

For example, if a company wants to know if its new product is more popular than its old one, it can use hypothesis testing. They start with a statement like “The new product is not more popular than the old one” (this is the null hypothesis) and compare it with “The new product is more popular” (this is the alternative hypothesis). Then, they look at customer feedback to see if there’s enough evidence to reject the first statement and support the second one.

Simply put, hypothesis testing is a way to use data to help make decisions and understand what the data is really telling us, even when we don’t have all the answers.

Importance Of Hypothesis Testing In Decision-Making And Data Analysis

Hypothesis testing is important because it helps us make smart choices and understand data better. Here’s why it’s useful:

  • Reduces Guesswork : It helps us see if our guesses or ideas are likely correct, even when we don’t have all the details.
  • Uses Real Data : Instead of just guessing, it checks if our ideas match up with real data, which makes our decisions more reliable.
  • Avoids Errors : It helps us avoid mistakes by carefully checking if our ideas are right so we don’t make costly errors.
  • Shows What to Do Next : It tells us if our ideas work or not, helping us decide whether to keep, change, or drop something. For example, a company might test a new ad and decide what to do based on the results.
  • Confirms Research Findings : It makes sure that research results are accurate and not just random chance so that we can trust the findings.

Here’s a simple guide to understanding hypothesis testing, with an example:

1. Set Up Your Hypotheses

Explanation: Start by defining two statements:

  • Null Hypothesis (H0): This is the idea that there is no change or effect. It’s what you assume is true.
  • Alternative Hypothesis (H1): This is what you want to test. It suggests there is a change or effect.

Example: Suppose a company says their new batteries last an average of 500 hours. To check this:

  • Null Hypothesis (H0): The average battery life is 500 hours.
  • Alternative Hypothesis (H1): The average battery life is not 500 hours.

2. Choose the Test

Explanation: Pick a statistical test that fits your data and your hypotheses. Different tests are used for various kinds of data.

Example: Since you’re comparing the average battery life, you use a one-sample t-test .

3. Set the Significance Level

Explanation: Decide how much risk you’re willing to take if you make a wrong decision. This is called the significance level, often set at 0.05 or 5%.

Example: You choose a significance level of 0.05, meaning you’re okay with a 5% chance of being wrong.

4. Gather and Analyze Data

Explanation: Collect your data and perform the test. Calculate the test statistic to see how far your sample result is from what you assumed.

Example: You test 30 batteries and find they last an average of 485 hours. You then calculate how this average compares to the claimed 500 hours using the t-test.

5. Find the p-Value

Explanation: The p-value tells you the probability of getting a result as extreme as yours if the null hypothesis is true.

Example: You find a p-value of 0.0001. This means there’s a very small chance (0.01%) of getting an average battery life of 485 hours or less if the true average is 500 hours.

6. Make Your Decision

Explanation: Compare the p-value to your significance level. If the p-value is smaller, you reject the null hypothesis. If it’s larger, you do not reject it.

Example: Since 0.0001 is much less than 0.05, you reject the null hypothesis. This means the data suggests the average battery life is different from 500 hours.

7. Report Your Findings

Explanation: Summarize what the results mean. State whether you rejected the null hypothesis and what that implies.

Example: You conclude that the average battery life is likely different from 500 hours. This suggests the company’s claim might not be accurate.

Hypothesis testing is a way to use data to check if your guesses or assumptions are likely true. By following these steps—setting up your hypotheses, choosing the right test, deciding on a significance level, analyzing your data, finding the p-value, making a decision, and reporting results—you can determine if your data supports or challenges your initial idea.

Understanding Hypothesis Testing: A Simple Explanation

Hypothesis testing is a way to use data to make decisions. Here’s a straightforward guide:

1. What is the Null and Alternative Hypotheses?

  • Null Hypothesis (H0): This is your starting assumption. It says that nothing has changed or that there is no effect. It’s what you assume to be true until your data shows otherwise. Example: If a company says their batteries last 500 hours, the null hypothesis is: “The average battery life is 500 hours.” This means you think the claim is correct unless you find evidence to prove otherwise.
  • Alternative Hypothesis (H1): This is what you want to find out. It suggests that there is an effect or a difference. It’s what you are testing to see if it might be true. Example: To test the company’s claim, you might say: “The average battery life is not 500 hours.” This means you think the average battery life might be different from what the company says.

2. One-Tailed vs. Two-Tailed Tests

  • One-Tailed Test: This test checks for an effect in only one direction. You use it when you’re only interested in finding out if something is either more or less than a specific value. Example: If you think the battery lasts longer than 500 hours, you would use a one-tailed test to see if the battery life is significantly more than 500 hours.
  • Two-Tailed Test: This test checks for an effect in both directions. Use this when you want to see if something is different from a specific value, whether it’s more or less. Example: If you want to see if the battery life is different from 500 hours, whether it’s more or less, you would use a two-tailed test. This checks for any significant difference, regardless of the direction.

3. Common Misunderstandings

  • Clarification: Hypothesis testing doesn’t prove that the null hypothesis is true. It just helps you decide if you should reject it. If there isn’t enough evidence against it, you don’t reject it, but that doesn’t mean it’s definitely true.
  • Clarification: A small p-value shows that your data is unlikely if the null hypothesis is true. It suggests that the alternative hypothesis might be right, but it doesn’t prove the null hypothesis is false.
  • Clarification: The significance level (alpha) is a set threshold, like 0.05, that helps you decide how much risk you’re willing to take for making a wrong decision. It should be chosen carefully, not randomly.
  • Clarification: Hypothesis testing helps you make decisions based on data, but it doesn’t guarantee your results are correct. The quality of your data and the right choice of test affect how reliable your results are.

Benefits and Limitations of Hypothesis Testing

  • Clear Decisions: Hypothesis testing helps you make clear decisions based on data. It shows whether the evidence supports or goes against your initial idea.
  • Objective Analysis: It relies on data rather than personal opinions, so your decisions are based on facts rather than feelings.
  • Concrete Numbers: You get specific numbers, like p-values, to understand how strong the evidence is against your idea.
  • Control Risk: You can set a risk level (alpha level) to manage the chance of making an error, which helps avoid incorrect conclusions.
  • Widely Used: It can be used in many areas, from science and business to social studies and engineering, making it a versatile tool.

Limitations

  • Sample Size Matters: The results can be affected by the size of the sample. Small samples might give unreliable results, while large samples might find differences that aren’t meaningful in real life.
  • Risk of Misinterpretation: A small p-value means the results are unlikely if the null hypothesis is true, but it doesn’t show how important the effect is.
  • Needs Assumptions: Hypothesis testing requires certain conditions, like data being normally distributed . If these aren’t met, the results might not be accurate.
  • Simple Decisions: It often results in a basic yes or no decision without giving detailed information about the size or impact of the effect.
  • Can Be Misused: Sometimes, people misuse hypothesis testing, tweaking data to get a desired result or focusing only on whether the result is statistically significant.
  • No Absolute Proof: Hypothesis testing doesn’t prove that your hypothesis is true. It only helps you decide if there’s enough evidence to reject the null hypothesis, so the conclusions are based on likelihood, not certainty.

Final Thoughts 

Hypothesis testing helps you make decisions based on data. It involves setting up your initial idea, picking a significance level, doing the test, and looking at the results. By following these steps, you can make sure your conclusions are based on solid information, not just guesses.

This approach lets you see if the evidence supports or contradicts your initial idea, helping you make better decisions. But remember that hypothesis testing isn’t perfect. Things like sample size and assumptions can affect the results, so it’s important to be aware of these limitations.

In simple terms, using a step-by-step guide for hypothesis testing is a great way to better understand your data. Follow the steps carefully and keep in mind the method’s limits.

What is the difference between one-tailed and two-tailed tests?

 A one-tailed test assesses the probability of the observed data in one direction (either greater than or less than a certain value). In contrast, a two-tailed test looks at both directions (greater than and less than) to detect any significant deviation from the null hypothesis.

How do you choose the appropriate test for hypothesis testing?

The choice of test depends on the type of data you have and the hypotheses you are testing. Common tests include t-tests, chi-square tests, and ANOVA. You get more details about ANOVA, you may read Complete Details on What is ANOVA in Statistics ?  It’s important to match the test to the data characteristics and the research question.

What is the role of sample size in hypothesis testing?  

Sample size affects the reliability of hypothesis testing. Larger samples provide more reliable estimates and can detect smaller effects, while smaller samples may lead to less accurate results and reduced power.

Can hypothesis testing prove that a hypothesis is true?  

Hypothesis testing cannot prove that a hypothesis is true. It can only provide evidence to support or reject the null hypothesis. A result can indicate whether the data is consistent with the null hypothesis or not, but it does not prove the alternative hypothesis with certainty.

Related Posts

how-to-find-the=best-online-statistics-homework-help

How to Find the Best Online Statistics Homework Help

why-spss-homework-help-is-an-important-aspects-for-students

Why SPSS Homework Help Is An Important aspect for Students?

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

IMAGES

  1. PPT

    hypothesis with if then because

  2. If Then Hypothesis Examples

    hypothesis with if then because

  3. Step-by-Step Guide to Formulating a Hypothesis for A/B Testing

    hypothesis with if then because

  4. If Then Hypothesis Examples

    hypothesis with if then because

  5. How to write an If...Then...Because hypothesis statement

    hypothesis with if then because

  6. PPT

    hypothesis with if then because

VIDEO

  1. Lesson 33 : Hypothesis Testing Procedure for One Population Mean

  2. CONDITIONAL STATEMENTS (IDENTIFYING HYPOTHESIS AND CONCLUSION)

  3. 8 The "IF...THEN..." Connection and the Scientific Hypothesis

  4. Part 3 Hypothesis Testing Type 1 Error and Rejection Zone

  5. 27 Consistent Hypothesis and Inconsistent Hypothesis Example

  6. STA630 Short Lecture 7_Hypothesis_Testing_Roles of Hypothesis_Characteristics_Sta630 Lec 7_Midterm

COMMENTS

  1. PDF How to Write a Good Hypothesis Using "If… Then… Because…"

    If 7th graders and 8th graders complete the same math problems, then the 8th graders will have more answers correct, because they have studied math for one year longer than the 7th graders. If dry bread and moist bread are left in bags for two weeks, then the moist bread will grow mold more quickly than the dry bread, because mold is a living

  2. Hypothesis If Then

    An "if-then-because" hypothesis is a structured statement that predicts the outcome of an experiment based on a proposed cause and effect scenario. The structure usually goes as follows: "If [I do this specific action], then [this particular result will occur] because [of this scientific reason]." ...

  3. How to Write a Hypothesis in 6 Steps, With Examples

    How to Write a Hypothesis in 6 Steps, With Examples

  4. Developing a Hypothesis

    Hypothesis is a statement that correctly follows the format: "If _____ then _____ because _____ Hypothesis relates to the Testable Question. Hypothesis makes sense (based on observations and/or research) Hypothesis can be falsified. Hypothesis includes a cause and effect relationship. Hypothesis could be tested with measurements

  5. Subject Guides: Scientific Method: Step 3: HYPOTHESIS

    Scientific Method: Step 3: HYPOTHESIS - Subject Guides

  6. How to Write a Strong Hypothesis

    How to Write a Strong Hypothesis | Steps & Examples

  7. Writing a Hypothesis for Your Science Fair Project

    Writing a Hypothesis for Your Science Fair Project

  8. Hypothesis Examples

    Research Hypothesis Examples. A research hypothesis (H 1) is a type of hypothesis used to design an experiment. This type of hypothesis is often written as an if-then statement because it's easy identifying the independent and dependent variables and seeing how one affects the other. If-then statements explore cause and effect.

  9. How To Write A Hypothesis That Will Benefit Your Thesis

    The best way to do this is to write a brief summary of your hypothesis in the form: "If X happens, then Y will happen.". Here's a sample hypothesis: "If I add 15 minutes to my sitting time everyday, then my body mass index (BMI) will reduce by 5 points in three months.".

  10. 8 The "IF...THEN..." Connection and the Scientific Hypothesis

    Sometimes you'll that you should formulate a hypothesis by using an "if...then..." statement, or even that an "if...then..." is the same thing as a hypothesi...

  11. Formatting a testable hypothesis

    A hypothesis is a tentative statement that proposes a possible explanation to some phenomenon or event. A useful hypothesis is a testable statement, which may include a prediction. A hypothesis should not be confused with a theory. Theories are general explanations based on a large amount of data. For example, the theory of evolution applies to ...

  12. How to write an If...Then...Because hypothesis statement

    About Press Copyright Contact us Creators Advertise Developers Terms Privacy Policy & Safety How YouTube works Test new features NFL Sunday Ticket Press Copyright ...

  13. What Is a Hypothesis and How Do I Write One? · PrepScholar

    Merriam Webster defines a hypothesis as "an assumption or concession made for the sake of argument.". In other words, a hypothesis is an educated guess. Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it's true or not.

  14. How to write a hypothesis

    The convention is to label this H 0, while the 'alternative hypothesis' (the one that says your variables are related as you suggested) is written as H 1. You can write you alternative hypothesis to show the directionality of your tested variables, or simply that there is a relationship. Most importantly, your hypothesis must come first ...

  15. Hypothesis Maker

    Hypothesis Maker - Online Tool for Students

  16. What Is a Hypothesis? The Scientific Method

    What Is a Hypothesis? (Science) - Scientific Method

  17. 2.11: If Then Statements

    The conclusion is the result of a hypothesis. Figure 2.11.1 2.11. 1. If-then statements might not always be written in the "if-then" form. Here are some examples of conditional statements: Statement 1: If you work overtime, then you'll be paid time-and-a-half. Statement 2: I'll wash the car if the weather is nice.

  18. What Are Effective Hypothesis Examples?

    What Are Examples of a Hypothesis?

  19. Scientific hypothesis

    Scientific hypothesis | Definition, Formulation, & Example

  20. how to write a good hypothesis using "if… then… because…"

    Examples: If 7th graders and 8th graders complete the same math problems, then the 8th graders will have more answers correct, because they have studied math for one year longer than the 7th graders. If dry bread and moist bread are left in bags for two weeks, then the moist bread will grow mold more quickly than the dry bread, because mold is ...

  21. Hypothesis Testing

    Hypothesis Testing | A Step-by-Step Guide with Easy ...

  22. Hypotheses

    How to Write a Hypothesis. A hypothesis is a statement. Avoid conditional terms like should, might or could. A hypothesis can be phrased in an if/then format, Ex. if you use Topical Treatment A for male pattern baldness, then you will see a 50% increase in hair grown within 3 months. Another workable structure is when x, then y.

  23. What is a scientific hypothesis?

    What is a scientific hypothesis?

  24. Khan Academy

    The scientific method (article)

  25. Step-by-step guide to hypothesis testing in statistics

    Simply put, hypothesis testing is a way to use data to help make decisions and understand what the data is really telling us, even when we don't have all the answers. Importance Of Hypothesis Testing In Decision-Making And Data Analysis. Hypothesis testing is important because it helps us make smart choices and understand data better.