theoretical and conceptual framework in research proposal

Theoretical vs Conceptual Framework

By: Derek Jansen (MBA) | Reviewed By: Eunice Rautenbach (DTech) | March 2023

Dissertation Coaching

Overview: Theoretical vs Conceptual

What is a theoretical framework, example of a theoretical framework, what is a conceptual framework, example of a conceptual framework.

  • Theoretical vs conceptual: which one should I use?

A theoretical framework (also sometimes referred to as a foundation of theory) is essentially a set of concepts, definitions, and propositions that together form a structured, comprehensive view of a specific phenomenon.

In other words, a theoretical framework is a collection of existing theories, models and frameworks that provides a foundation of core knowledge – a “lay of the land”, so to speak, from which you can build a research study. For this reason, it’s usually presented fairly early within the literature review section of a dissertation, thesis or research paper .

Private Coaching

Let’s look at an example to make the theoretical framework a little more tangible.

If your research aims involve understanding what factors contributed toward people trusting investment brokers, you’d need to first lay down some theory so that it’s crystal clear what exactly you mean by this. For example, you would need to define what you mean by “trust”, as there are many potential definitions of this concept. The same would be true for any other constructs or variables of interest.

You’d also need to identify what existing theories have to say in relation to your research aim. In this case, you could discuss some of the key literature in relation to organisational trust. A quick search on Google Scholar using some well-considered keywords generally provides a good starting point.

foundation of theory

Need a helping hand?

theoretical and conceptual framework in research proposal

A conceptual framework is typically a visual representation (although it can also be written out) of the expected relationships and connections between various concepts, constructs or variables. In other words, a conceptual framework visualises how the researcher views and organises the various concepts and variables within their study. This is typically based on aspects drawn from the theoretical framework, so there is a relationship between the two.

Quite commonly, conceptual frameworks are used to visualise the potential causal relationships and pathways that the researcher expects to find, based on their understanding of both the theoretical literature and the existing empirical research . Therefore, the conceptual framework is often used to develop research questions and hypotheses .

Let’s look at an example of a conceptual framework to make it a little more tangible. You’ll notice that in this specific conceptual framework, the hypotheses are integrated into the visual, helping to connect the rest of the document to the framework.

example of a conceptual framework

Theoretical framework vs conceptual framework

As you can see, the theoretical framework and the conceptual framework are closely related concepts, but they differ in terms of focus and purpose. The theoretical framework is used to lay down a foundation of theory on which your study will be built, whereas the conceptual framework visualises what you anticipate the relationships between concepts, constructs and variables may be, based on your understanding of the existing literature and the specific context and focus of your research. In other words, they’re different tools for different jobs , but they’re neighbours in the toolbox.

Naturally, the theoretical framework and the conceptual framework are not mutually exclusive . In fact, it’s quite likely that you’ll include both in your dissertation or thesis, especially if your research aims involve investigating relationships between variables. Of course, every research project is different and universities differ in terms of their expectations for dissertations and theses, so it’s always a good idea to have a look at past projects to get a feel for what the norms and expectations are at your specific institution.

Want to learn more about research terminology, methods and techniques? Be sure to check out the rest of the Grad Coach blog . Alternatively, if you’re looking for hands-on help, have a look at our private coaching service , where we hold your hand through the research process, step by step.

Research Bootcamps

You Might Also Like:

How To Review & Understand Academic Literature Quickly

How To Review & Understand Academic Literature Quickly

Learn how to fast-track your literature review by reading with intention and clarity. Dr E and Amy Murdock explain how.

Dissertation Writing Services: Far Worse Than You Think

Dissertation Writing Services: Far Worse Than You Think

Thinking about using a dissertation or thesis writing service? You might want to reconsider that move. Here’s what you need to know.

Triangulation: The Ultimate Credibility Enhancer

Triangulation: The Ultimate Credibility Enhancer

Triangulation is one of the best ways to enhance the credibility of your research. Learn about the different options here.

The Harsh Truths Of Academic Research

The Harsh Truths Of Academic Research

Dr. Ethar Al-Saraf and Dr. Amy Murdock dive into the darker truths of academic research, so that you’re well prepared for reality.

Dissertation Paralysis: How To Get Unstuck

Dissertation Paralysis: How To Get Unstuck

In this episode of the podcast, Dr. Ethar and Dr. Amy Murdock dive into how to get unstuck when you’re facing dissertation paralysis

📄 FREE TEMPLATES

Research Topic Ideation

Proposal Writing

Literature Review

Methodology & Analysis

Academic Writing

Referencing & Citing

Apps, Tools & Tricks

The Grad Coach Podcast

23 Comments

CIPTA PRAMANA

Thank you for giving a valuable lesson

Muhammed Ebrahim Feto

good thanks!

Elias

VERY INSIGHTFUL

olawale rasaq

thanks for given very interested understand about both theoritical and conceptual framework

Tracey

I am researching teacher beliefs about inclusive education but not using a theoretical framework just conceptual frame using teacher beliefs, inclusive education and inclusive practices as my concepts

joshua

good, fantastic

Melese Takele

great! thanks for the clarification. I am planning to use both for my implementation evaluation of EmONC service at primary health care facility level. its theoretical foundation rooted from the principles of implementation science.

Dorcas

This is a good one…now have a better understanding of Theoretical and Conceptual frameworks. Highly grateful

Ahmed Adumani

Very educating and fantastic,good to be part of you guys,I appreciate your enlightened concern.

Lorna

Thanks for shedding light on these two t opics. Much clearer in my head now.

Cor

Simple and clear!

Alemayehu Wolde Oljira

The differences between the two topics was well explained, thank you very much!

Ntoks

Thank you great insight

Maria Glenda O. De Lara

Superb. Thank you so much.

Sebona

Hello Gradcoach! I’m excited with your fantastic educational videos which mainly focused on all over research process. I’m a student, I kindly ask and need your support. So, if it’s possible please send me the PDF format of all topic provided here, I put my email below, thank you!

Pauline

I am really grateful I found this website. This is very helpful for an MPA student like myself.

Adams Yusif

I’m clear with these two terminologies now. Useful information. I appreciate it. Thank you

Ushenese Roger Egin

I’m well inform about these two concepts in research. Thanks

Omotola

I found this really helpful. It is well explained. Thank you.

olufolake olumogba

very clear and useful. information important at start of research!!

Chris Omira

Wow, great information, clear and concise review of the differences between theoretical and conceptual frameworks. Thank you! keep up the good work.

science

thank you so much. Educative and realistic.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

theoretical and conceptual framework in research proposal

  • Print Friendly

Educational resources and simple solutions for your research journey

theoretical framework

What is a Theoretical Framework? How to Write It (with Examples) 

What is a Theoretical Framework? How to Write It (with Examples)

Theoretical framework 1,2 is the structure that supports and describes a theory. A theory is a set of interrelated concepts and definitions that present a systematic view of phenomena by describing the relationship among the variables for explaining these phenomena. A theory is developed after a long research process and explains the existence of a research problem in a study. A theoretical framework guides the research process like a roadmap for the research study and helps researchers clearly interpret their findings by providing a structure for organizing data and developing conclusions.   

A theoretical framework in research is an important part of a manuscript and should be presented in the first section. It shows an understanding of the theories and concepts relevant to the research and helps limit the scope of the research.  

Table of Contents

What is a theoretical framework ?  

A theoretical framework in research can be defined as a set of concepts, theories, ideas, and assumptions that help you understand a specific phenomenon or problem. It can be considered a blueprint that is borrowed by researchers to develop their own research inquiry. A theoretical framework in research helps researchers design and conduct their research and analyze and interpret their findings. It explains the relationship between variables, identifies gaps in existing knowledge, and guides the development of research questions, hypotheses, and methodologies to address that gap.  

theoretical and conceptual framework in research proposal

Now that you know the answer to ‘ What is a theoretical framework? ’, check the following table that lists the different types of theoretical frameworks in research: 3

   
Conceptual  Defines key concepts and relationships 
Deductive  Starts with a general hypothesis and then uses data to test it; used in quantitative research 
Inductive  Starts with data and then develops a hypothesis; used in qualitative research 
Empirical  Focuses on the collection and analysis of empirical data; used in scientific research 
Normative  Defines a set of norms that guide behavior; used in ethics and social sciences 
Explanatory  Explains causes of particular behavior; used in psychology and social sciences 

Developing a theoretical framework in research can help in the following situations: 4

  • When conducting research on complex phenomena because a theoretical framework helps organize the research questions, hypotheses, and findings  
  • When the research problem requires a deeper understanding of the underlying concepts  
  • When conducting research that seeks to address a specific gap in knowledge  
  • When conducting research that involves the analysis of existing theories  

Summarizing existing literature for theoretical frameworks is easy. Get our Research Ideation pack  

Importance of a theoretical framework  

The purpose of theoretical framework s is to support you in the following ways during the research process: 2  

  • Provide a structure for the complete research process  
  • Assist researchers in incorporating formal theories into their study as a guide  
  • Provide a broad guideline to maintain the research focus  
  • Guide the selection of research methods, data collection, and data analysis  
  • Help understand the relationships between different concepts and develop hypotheses and research questions  
  • Address gaps in existing literature  
  • Analyze the data collected and draw meaningful conclusions and make the findings more generalizable  

Theoretical vs. Conceptual framework  

While a theoretical framework covers the theoretical aspect of your study, that is, the various theories that can guide your research, a conceptual framework defines the variables for your study and presents how they relate to each other. The conceptual framework is developed before collecting the data. However, both frameworks help in understanding the research problem and guide the development, collection, and analysis of the research.  

The following table lists some differences between conceptual and theoretical frameworks . 5

   
Based on existing theories that have been tested and validated by others  Based on concepts that are the main variables in the study 
Used to create a foundation of the theory on which your study will be developed  Visualizes the relationships between the concepts and variables based on the existing literature 
Used to test theories, to predict and control the situations within the context of a research inquiry  Helps the development of a theory that would be useful to practitioners 
Provides a general set of ideas within which a study belongs  Refers to specific ideas that researchers utilize in their study 
Offers a focal point for approaching unknown research in a specific field of inquiry  Shows logically how the research inquiry should be undertaken 
Works deductively  Works inductively 
Used in quantitative studies  Used in qualitative studies 

theoretical and conceptual framework in research proposal

How to write a theoretical framework  

The following general steps can help those wondering how to write a theoretical framework: 2

  • Identify and define the key concepts clearly and organize them into a suitable structure.  
  • Use appropriate terminology and define all key terms to ensure consistency.  
  • Identify the relationships between concepts and provide a logical and coherent structure.  
  • Develop hypotheses that can be tested through data collection and analysis.  
  • Keep it concise and focused with clear and specific aims.  

Write a theoretical framework 2x faster. Get our Manuscript Writing pack  

Examples of a theoretical framework  

Here are two examples of a theoretical framework. 6,7

Example 1 .   

An insurance company is facing a challenge cross-selling its products. The sales department indicates that most customers have just one policy, although the company offers over 10 unique policies. The company would want its customers to purchase more than one policy since most customers are purchasing policies from other companies.  

Objective : To sell more insurance products to existing customers.  

Problem : Many customers are purchasing additional policies from other companies.  

Research question : How can customer product awareness be improved to increase cross-selling of insurance products?  

Sub-questions: What is the relationship between product awareness and sales? Which factors determine product awareness?  

Since “product awareness” is the main focus in this study, the theoretical framework should analyze this concept and study previous literature on this subject and propose theories that discuss the relationship between product awareness and its improvement in sales of other products.  

Example 2 .

A company is facing a continued decline in its sales and profitability. The main reason for the decline in the profitability is poor services, which have resulted in a high level of dissatisfaction among customers and consequently a decline in customer loyalty. The management is planning to concentrate on clients’ satisfaction and customer loyalty.  

Objective: To provide better service to customers and increase customer loyalty and satisfaction.  

Problem: Continued decrease in sales and profitability.  

Research question: How can customer satisfaction help in increasing sales and profitability?  

Sub-questions: What is the relationship between customer loyalty and sales? Which factors influence the level of satisfaction gained by customers?  

Since customer satisfaction, loyalty, profitability, and sales are the important topics in this example, the theoretical framework should focus on these concepts.  

Benefits of a theoretical framework  

There are several benefits of a theoretical framework in research: 2  

  • Provides a structured approach allowing researchers to organize their thoughts in a coherent way.  
  • Helps to identify gaps in knowledge highlighting areas where further research is needed.  
  • Increases research efficiency by providing a clear direction for research and focusing efforts on relevant data.  
  • Improves the quality of research by providing a rigorous and systematic approach to research, which can increase the likelihood of producing valid and reliable results.  
  • Provides a basis for comparison by providing a common language and conceptual framework for researchers to compare their findings with other research in the field, facilitating the exchange of ideas and the development of new knowledge.  

theoretical and conceptual framework in research proposal

Frequently Asked Questions 

Q1. How do I develop a theoretical framework ? 7

A1. The following steps can be used for developing a theoretical framework :  

  • Identify the research problem and research questions by clearly defining the problem that the research aims to address and identifying the specific questions that the research aims to answer.
  • Review the existing literature to identify the key concepts that have been studied previously. These concepts should be clearly defined and organized into a structure.
  • Develop propositions that describe the relationships between the concepts. These propositions should be based on the existing literature and should be testable.
  • Develop hypotheses that can be tested through data collection and analysis.
  • Test the theoretical framework through data collection and analysis to determine whether the framework is valid and reliable.

Q2. How do I know if I have developed a good theoretical framework or not? 8

A2. The following checklist could help you answer this question:  

  • Is my theoretical framework clearly seen as emerging from my literature review?  
  • Is it the result of my analysis of the main theories previously studied in my same research field?  
  • Does it represent or is it relevant to the most current state of theoretical knowledge on my topic?  
  • Does the theoretical framework in research present a logical, coherent, and analytical structure that will support my data analysis?  
  • Do the different parts of the theory help analyze the relationships among the variables in my research?  
  • Does the theoretical framework target how I will answer my research questions or test the hypotheses?  
  • Have I documented every source I have used in developing this theoretical framework ?  
  • Is my theoretical framework a model, a table, a figure, or a description?  
  • Have I explained why this is the appropriate theoretical framework for my data analysis?  

Q3. Can I use multiple theoretical frameworks in a single study?  

A3. Using multiple theoretical frameworks in a single study is acceptable as long as each theory is clearly defined and related to the study. Each theory should also be discussed individually. This approach may, however, be tedious and effort intensive. Therefore, multiple theoretical frameworks should be used only if absolutely necessary for the study.  

Q4. Is it necessary to include a theoretical framework in every research study?  

A4. The theoretical framework connects researchers to existing knowledge. So, including a theoretical framework would help researchers get a clear idea about the research process and help structure their study effectively by clearly defining an objective, a research problem, and a research question.  

Q5. Can a theoretical framework be developed for qualitative research?  

A5. Yes, a theoretical framework can be developed for qualitative research. However, qualitative research methods may or may not involve a theory developed beforehand. In these studies, a theoretical framework can guide the study and help develop a theory during the data analysis phase. This resulting framework uses inductive reasoning. The outcome of this inductive approach can be referred to as an emergent theoretical framework . This method helps researchers develop a theory inductively, which explains a phenomenon without a guiding framework at the outset.  

theoretical and conceptual framework in research proposal

Q6. What is the main difference between a literature review and a theoretical framework ?  

A6. A literature review explores already existing studies about a specific topic in order to highlight a gap, which becomes the focus of the current research study. A theoretical framework can be considered the next step in the process, in which the researcher plans a specific conceptual and analytical approach to address the identified gap in the research.  

Theoretical frameworks are thus important components of the research process and researchers should therefore devote ample amount of time to develop a solid theoretical framework so that it can effectively guide their research in a suitable direction. We hope this article has provided a good insight into the concept of theoretical frameworks in research and their benefits.  

References  

  • Organizing academic research papers: Theoretical framework. Sacred Heart University library. Accessed August 4, 2023. https://library.sacredheart.edu/c.php?g=29803&p=185919#:~:text=The%20theoretical%20framework%20is%20the,research%20problem%20under%20study%20exists .  
  • Salomao A. Understanding what is theoretical framework. Mind the Graph website. Accessed August 5, 2023. https://mindthegraph.com/blog/what-is-theoretical-framework/  
  • Theoretical framework—Types, examples, and writing guide. Research Method website. Accessed August 6, 2023. https://researchmethod.net/theoretical-framework/  
  • Grant C., Osanloo A. Understanding, selecting, and integrating a theoretical framework in dissertation research: Creating the blueprint for your “house.” Administrative Issues Journal : Connecting Education, Practice, and Research; 4(2):12-26. 2014. Accessed August 7, 2023. https://files.eric.ed.gov/fulltext/EJ1058505.pdf  
  • Difference between conceptual framework and theoretical framework. MIM Learnovate website. Accessed August 7, 2023. https://mimlearnovate.com/difference-between-conceptual-framework-and-theoretical-framework/  
  • Example of a theoretical framework—Thesis & dissertation. BacherlorPrint website. Accessed August 6, 2023. https://www.bachelorprint.com/dissertation/example-of-a-theoretical-framework/  
  • Sample theoretical framework in dissertation and thesis—Overview and example. Students assignment help website. Accessed August 6, 2023. https://www.studentsassignmenthelp.co.uk/blogs/sample-dissertation-theoretical-framework/#Example_of_the_theoretical_framework  
  • Kivunja C. Distinguishing between theory, theoretical framework, and conceptual framework: A systematic review of lessons from the field. Accessed August 8, 2023. https://files.eric.ed.gov/fulltext/EJ1198682.pdf  

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

Peer Review Week 2024

Join Us for Peer Review Week 2024

Editage All Access Boosting Productivity for Academics in India

How Editage All Access is Boosting Productivity for Academics in India

theoretical and conceptual framework in research proposal

The Ultimate Guide to Qualitative Research - Part 1: The Basics

theoretical and conceptual framework in research proposal

  • Introduction and overview
  • What is qualitative research?
  • What is qualitative data?
  • Examples of qualitative data
  • Qualitative vs. quantitative research
  • Mixed methods
  • Qualitative research preparation
  • Theoretical perspective
  • Theoretical framework
  • Literature reviews
  • Research question
  • Conceptual framework
  • Introduction

Revisiting theoretical frameworks

Revisiting conceptual frameworks, differences between conceptual and theoretical frameworks, examples of theoretical and conceptual frameworks, developing frameworks for your study.

  • Data collection
  • Qualitative research methods
  • Focus groups
  • Observational research
  • Case studies
  • Ethnographical research
  • Ethical considerations
  • Confidentiality and privacy
  • Power dynamics
  • Reflexivity

Conceptual vs. theoretical framework

Theoretical and conceptual frameworks are both essential components of research, guiding and structuring the research. Although they are closely related, the conceptual and theoretical framework in any research project serve distinct purposes and have different characteristics. In this section, we provide an overview of the key differences between theoretical and conceptual frameworks.

theoretical and conceptual framework in research proposal

Theoretical and conceptual frameworks are foundational components of any research study. They each play a crucial role in guiding and structuring the research, from the formation of research questions to the interpretation of results .

While both the theoretical and conceptual framework provides a structure for a study, they serve different functions and can impact the research in distinct ways depending on how they are combined. These differences might seem subtle, but they can significantly impact your research design and outcomes, which is why it is important to think through each one of them.

theoretical and conceptual framework in research proposal

The theoretical framework describes the broader lens through which the researcher views the topic and guides their overall understanding and approach. It connects the theoretical perspective to the data collection and data analysis strategy and offers a structure for organizing and interpreting the collected data.

On the other hand, the conceptual framework describes in detail and connects specific concepts and variables to illustrate potential relationships between them. It serves as a guide for assessing which aspects of the data are relevant and specifying how the research question is being answered. While the theoretical framework outlines how more abstract-level theories shape the study, the conceptual framework operationalizes the empirical observations that can be connected to theory and broader understanding.

Understanding these differences is crucial when designing and conducting your research study. In this chapter, we will look deeper at the distinctions between these types of frameworks, and how they interplay in qualitative research . We aim to provide you with a solid understanding of both, allowing you to effectively utilize them in your own research.

Theoretical frameworks play a central role in research, serving as the bedrock of any investigation. This section offers a refresher on the essential elements and functions of theoretical frameworks in research.

A theoretical framework refers to existing theory, concepts, and definitions that you use to collect relevant data and offer meaningful empirical findings. Providing an overall orientation or lens, it guides your understanding of the research problem and directs your approach to data collection and analysis .

Your chosen theoretical framework directly influences your research questions and methodological choices . It contains specific theories or sets of assumptions drawn from relevant disciplines—such as sociology, psychology, or economics—that you apply to understand your research topic. These existing models and concepts are tools to help you organize and make sense of your data.

The theoretical framework also plays a key role in crafting your research questions and objectives. By determining the theories that are relevant to your research, the theoretical framework shapes the nature and direction of your study. It's essential to note, however, that the theoretical framework's role in qualitative research is not to predict outcomes. Instead, it offers a broader structure to understand and interpret your data, enabling you to situate your findings within the broader academic discourse in a way that makes your research findings meaningful to you and your research audience.

Conceptual frameworks , though related to theoretical frameworks , serve distinct functions within research. This section reexamines the characteristics and functions of conceptual frameworks to provide a better understanding of their roles in qualitative research .

A conceptual framework, in essence, is a system of concepts, assumptions, and beliefs that supports and informs your research. It outlines the specific variables or concepts you'll examine in your study and proposes relationships between them. It's more detailed and specific than a theoretical framework, acting as a contextualized guide for the collection and interpretation of empirical data.

The main role of a conceptual framework is to illustrate the presumed relationships between the variables or concepts you're investigating. These variables or concepts, which you derive from your theoretical framework, are integral to your research questions , objectives, and hypotheses . The conceptual framework shows how you theorize these concepts are related, providing a visual or narrative model of your research.

theoretical and conceptual framework in research proposal

A study's own conceptual framework plays a vital role in guiding the data collection process and the subsequent analysis . The conceptual framework specifies which data you need to collect and provides a structure for interpreting and making sense of the collected data. For instance, if your conceptual framework identifies a particular variable as impacting another, your data collection and analysis will be geared towards investigating this relationship.

theoretical and conceptual framework in research proposal

Rigorous research starts with ATLAS.ti

Turn your data into insights easily and efficiently with our intuitive software. Download a free trial of ATLAS.ti.

Though interconnected, theoretical and conceptual frameworks have distinct roles in research and contribute differently to the research. This section will contrast the two in terms of scope, purpose, their role in the research process, and their relationship to the data analysis strategy and research question .

Scope and purpose of theoretical and conceptual frameworks

Theoretical and conceptual frameworks differ fundamentally in their scope. Theoretical frameworks provide a broad and general view of the research problem, rooted in established theories. They explain phenomena by applying a particular theoretical lens. Conceptual frameworks, on the other hand, offer a more focused view of the specific research problem. They explicitly outline the concrete concepts and variables involved in the study and the relationships between them.

While both frameworks guide the research process, they do so in different ways. Theoretical frameworks guide the overall approach to understanding the research problem by indicating the broader conversation the researcher is contributing to and shaping the research questions.

Conceptual frameworks provide a map for the study, guiding the data collection and interpretation process, including what variables or concepts to explore and how to analyze them.

Study design and data analysis

The two types of frameworks relate differently to the research question and design. The theoretical framework often inspires the research question based on previous theories' predictions or understanding about the phenomena under investigation. A conceptual framework then emerges from the research question, providing a contextualized structure for what exactly the research will explore.

Theoretical and conceptual frameworks also play distinct roles in data analysis. Theoretical frameworks provide the lens for interpreting the data, informing what kinds of themes and patterns might be relevant. Conceptual frameworks, however, present the variables concepts and variables and the relationships among them that will be analyzed. Conceptual frameworks may illustrate concepts and relationships based on previous theory, but they can also include novel concepts or relationships that stem from the particular context being studied.

Finally, the two types of frameworks relate differently to the research question and design. The theoretical framework basically differs from the conceptual framework in that it often inspires the research question based on the theories' predictions about the phenomena under investigation. A conceptual framework, on the other hand, emerges from the research question, providing a structure for investigating it.

Using case studies , we can effectively demonstrate the differences between theoretical and conceptual frameworks. Let’s take a look at some real-world examples that highlight the unique role and function of each framework within a research context.

Consider a study exploring the impact of classroom environments on student learning outcomes. The theoretical framework might be grounded in Piaget's theory of cognitive development, which offers a broad lens for understanding how students learn and process information.

Within this theoretical framework, the researcher formulates the conceptual framework. The conceptual framework identifies specific variables to study such as classroom layout, teacher-student ratio, availability of learning materials, and student performance as the dependent variable. It then outlines the expected relationships between these variables, such as proposing that a lower teacher-student ratio and well-equipped classrooms positively impact student performance.

theoretical and conceptual framework in research proposal

Another study might aim to understand the factors influencing the job satisfaction of employees in a corporate setting. The theoretical framework could be based on Maslow's hierarchy of needs, interpreting job satisfaction in terms of fulfilling employees' physiological, safety, social, esteem, and self-actualization needs.

From this theoretical perspective, the researcher constructs the conceptual framework, identifying specific variables such as salary (physiological needs), job security (safety needs), teamwork (social needs), recognition (esteem needs), and career development opportunities (self-actualization needs). The conceptual framework proposes relationships among these variables and job satisfaction, such as higher salaries and more recognition being related to higher job satisfaction.

theoretical and conceptual framework in research proposal

After understanding the unique roles and functions of these types of frameworks, you might ask: How do I develop them for my study? It's essential to remember that it's not a question of choosing one over the other, as both frameworks can and often do coexist within the same research project.

The choice of a theoretical and a conceptual framework often depends on the nature of your research question . If your research question is more exploratory and requires a broad understanding of the problem, a theoretical framework can provide a useful lens for interpretation. However, your conceptual framework may end up looking rather different to previous theory as you collect data and discover new concepts or relationships.

Consider the nature of your research problem as well. If you are studying a well-researched problem and there are established theories about it, using a theoretical framework to interpret your findings in light of these theories might be beneficial. But if your study explores a novel problem or aims to understand specific processes or relationships, developing a conceptual framework that maps these specific elements could prove more effective.

theoretical and conceptual framework in research proposal

Your research methodology could also inform your choice. If your study is more interpretive and aims to understand people's experiences and perceptions, a theoretical framework can outline broader concepts that are relevant to approaching your study. Your conceptual framework can then shed light on the specific concepts that emerged in your data. By carefully thinking through your theoretical and conceptual frameworks, you can effectively utilize both types of frameworks in your research, ensuring a solid foundation for your study.

Turn data into theory with ATLAS.ti

Use our software for every stage of your research project. Trya free trial of ATLAS.ti today.

Library Homepage

Research Process Guide

  • Step 1 - Identifying and Developing a Topic
  • Step 2 - Narrowing Your Topic
  • Step 3 - Developing Research Questions
  • Step 4 - Conducting a Literature Review
  • Step 5 - Choosing a Conceptual or Theoretical Framework
  • Step 6 - Determining Research Methodology
  • Step 6a - Determining Research Methodology - Quantitative Research Methods
  • Step 6b - Determining Research Methodology - Qualitative Design
  • Step 7 - Considering Ethical Issues in Research with Human Subjects - Institutional Review Board (IRB)
  • Step 8 - Collecting Data
  • Step 9 - Analyzing Data
  • Step 10 - Interpreting Results
  • Step 11 - Writing Up Results

Step 5: Choosing a Conceptual or Theoretical Framework

For all empirical research, you must choose a conceptual or theoretical framework to “frame” or “ground” your study. Theoretical and/or conceptual frameworks are often difficult to understand and challenging to choose which is the right one (s) for your research objective (Hatch, 2002). Truthfully, it is difficult to get a real understanding of what these frameworks are and how you are supposed to find what works for your study. The discussion of your framework is addressed in your Chapter 1, the introduction and then is further explored through in-depth discussion in your Chapter 2 literature review.

“Theory is supposed to help researchers of any persuasion clarify what they are up to and to help them to explain to others what they are up to” (Walcott, 1995, p. 189, as cited in Fallon, 2016). It is important to discuss in the beginning to help researchers “clarify what they are up to” and important at the writing stage to “help explain to others what they are up to” (Fallon, 2016).  

What is the difference between the conceptual and the theoretical framework?

Often, the terms theoretical framework and conceptual framework are used interchangeably, which, in this author’s opinion, makes an already difficult to understand idea even more confusing. According to Imenda (2014) and Mensah et al. (2020), there is a very distinct difference between conceptual and theoretical frameworks, not only how they are defined but also, how and when they are used in empirical research.

Imenda (2014) contends that the framework “is the soul of every research project” (p.185). Essentially, it determines how the researcher formulates the research problem, goes about investigating the problem, and what meaning or significance the research lends to the data collected and analyzed investigating the problem.  

Very generally, you would use a theoretical framework if you were conducting deductive research as you test a theory or theories. “A theoretical framework comprises the theories expressed by experts in the field into which you plan to research, which you draw upon to provide a theoretical coat hanger for your data analysis and interpretation of results” (Kivunja, 2018, p.45 ).  Often this framework is based on established theories like, the Set Theory, evolution, the theory of matter or similar pre-existing generalizations like Newton’s law of motion (Imenda, 2014). A good theoretical framework should be linked to, and possibly emerge from your literature review.

Using a theoretical framework allows you to (Kivunja, 2018):

  • Increase the credibility and validity of your research
  • Interpret meaning found in data collection
  • Evaluate solutions for solving your research problem

According to Mensah et al.(2020) the theoretical framework for your research is not a summary of your own thoughts about your research. Rather, it is a compilation of the thoughts of giants in your field, as they relate to your proposed research, as you understand those theories, and how you will use those theories to understand the data collected.

Additionally, Jabareen (2009) defines a conceptual framework as interlinked concepts that together provide a comprehensive  understanding of a phenomenon. “A conceptual framework is the total, logical orientation and associations of anything and everything that forms the underlying thinking, structures, plans and practices and implementation of your entire research project” (Kivunja, 2018, p. 45). You would largely use a conceptual framework when conducting inductive research, as it helps the researcher answer questions that are core to qualitative research, such as the nature of reality, the way things are and how things really work in a real world (Guba & Lincoln, 1994).

Some consideration of the following questions can help define your conceptual framework (Kinvunja, 2018):

  • What do you want to do in your research? And why do you want to do it?
  • How do you plan to do it?
  • What meaning will you make of the data?
  • Which worldview will you situate your study in? (i.e. Positivist? Interpretist? Constructivist?)

Examples of conceptual frameworks include the definitions a sociologist uses to describe a culture and the types of data an economist considers when evaluating a country’s industry. The conceptual framework consists of the ideas that are used to define research and evaluate data. Conceptual frameworks are often laid out at the beginning of a paper or an experiment description for a reader to understand the methods used (Mensah et al., 2020).

You do not need to reinvent the wheel, so to speak. See what theoretical and conceptual frameworks are used in the really robust research in your field on your topic. Then, examine whether those frameworks would work for you. Keep searching for the framework(s) that work best for your study.

Writing it up

After choosing your framework is to articulate the theory or concept that grounds your study by defining it and demonstrating the rationale for this particular set of theories or concepts guiding your inquiry.  Write up your theoretical perspective sections for your research plan following your choice of worldview/ research paradigm. For a quantitative study you are particularly interested in theory using the procedures for a causal analysis. For qualitative research, you should locate qualitative journal articles that use a priori theory (knowledge that is acquired not through experience) that is modified during the process of research (Creswell & Creswell, 2018). Also, you should generate or develop a theory at the end of your study. For a mixed methods study which uses a transformative (critical theoretical lens) identify how the lens specifically shapes the research process.                                   

Creswell, J. W., & Creswell, J. D. (2 018). Research design: Qualitative, quantitative, and mixed methods approaches. Sage.

Fallon, M. (2016). Writing up quantitative research in the social and behavioral sciences. Sense. https://kean.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=cookie,ip,url,cpid&custid=keaninf&db=nlebk&AN=1288374&site=ehost-live&scope=site&ebv=EB&ppid=pp_C1

Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research. Handbook of Qualitative Research, 2 (163-194), 105.

Hatch, J. A. ( 2002). Doing qualitative research in education settings. SUNY Press.

Imenda, S. (2014). Is there a conceptual difference between theoretical and conceptual frameworks?  Journal of Social Sciences, 38 (2), 185-195.

Jabareen, Y. (2009). Building a conceptual framework: Philosophy, definitions, and procedure. International Journal of Qualitative Methods, 8 (4), 49-62.

Kivunja, C. ( 2018, December 3). Distinguishing between theory, theoretical framework, and conceptual framework. The International Journal of Higher Education, 7 (6), 44-53. https://files.eric.ed.gov/fulltext/EJ1198682.pdf  

Mensah, R. O., Agyemang, F., Acquah, A., Babah, P. A., & Dontoh, J. (2020). Discourses on conceptual and theoretical frameworks in research: Meaning and implications for researchers. Journal of African Interdisciplinary Studies, 4 (5), 53-64.

  • Last Updated: Jun 29, 2023 1:35 PM
  • URL: https://libguides.kean.edu/ResearchProcessGuide

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • CBE Life Sci Educ
  • v.21(3); Fall 2022

Literature Reviews, Theoretical Frameworks, and Conceptual Frameworks: An Introduction for New Biology Education Researchers

Julie a. luft.

† Department of Mathematics, Social Studies, and Science Education, Mary Frances Early College of Education, University of Georgia, Athens, GA 30602-7124

Sophia Jeong

‡ Department of Teaching & Learning, College of Education & Human Ecology, Ohio State University, Columbus, OH 43210

Robert Idsardi

§ Department of Biology, Eastern Washington University, Cheney, WA 99004

Grant Gardner

∥ Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132

Associated Data

To frame their work, biology education researchers need to consider the role of literature reviews, theoretical frameworks, and conceptual frameworks as critical elements of the research and writing process. However, these elements can be confusing for scholars new to education research. This Research Methods article is designed to provide an overview of each of these elements and delineate the purpose of each in the educational research process. We describe what biology education researchers should consider as they conduct literature reviews, identify theoretical frameworks, and construct conceptual frameworks. Clarifying these different components of educational research studies can be helpful to new biology education researchers and the biology education research community at large in situating their work in the broader scholarly literature.

INTRODUCTION

Discipline-based education research (DBER) involves the purposeful and situated study of teaching and learning in specific disciplinary areas ( Singer et al. , 2012 ). Studies in DBER are guided by research questions that reflect disciplines’ priorities and worldviews. Researchers can use quantitative data, qualitative data, or both to answer these research questions through a variety of methodological traditions. Across all methodologies, there are different methods associated with planning and conducting educational research studies that include the use of surveys, interviews, observations, artifacts, or instruments. Ensuring the coherence of these elements to the discipline’s perspective also involves situating the work in the broader scholarly literature. The tools for doing this include literature reviews, theoretical frameworks, and conceptual frameworks. However, the purpose and function of each of these elements is often confusing to new education researchers. The goal of this article is to introduce new biology education researchers to these three important elements important in DBER scholarship and the broader educational literature.

The first element we discuss is a review of research (literature reviews), which highlights the need for a specific research question, study problem, or topic of investigation. Literature reviews situate the relevance of the study within a topic and a field. The process may seem familiar to science researchers entering DBER fields, but new researchers may still struggle in conducting the review. Booth et al. (2016b) highlight some of the challenges novice education researchers face when conducting a review of literature. They point out that novice researchers struggle in deciding how to focus the review, determining the scope of articles needed in the review, and knowing how to be critical of the articles in the review. Overcoming these challenges (and others) can help novice researchers construct a sound literature review that can inform the design of the study and help ensure the work makes a contribution to the field.

The second and third highlighted elements are theoretical and conceptual frameworks. These guide biology education research (BER) studies, and may be less familiar to science researchers. These elements are important in shaping the construction of new knowledge. Theoretical frameworks offer a way to explain and interpret the studied phenomenon, while conceptual frameworks clarify assumptions about the studied phenomenon. Despite the importance of these constructs in educational research, biology educational researchers have noted the limited use of theoretical or conceptual frameworks in published work ( DeHaan, 2011 ; Dirks, 2011 ; Lo et al. , 2019 ). In reviewing articles published in CBE—Life Sciences Education ( LSE ) between 2015 and 2019, we found that fewer than 25% of the research articles had a theoretical or conceptual framework (see the Supplemental Information), and at times there was an inconsistent use of theoretical and conceptual frameworks. Clearly, these frameworks are challenging for published biology education researchers, which suggests the importance of providing some initial guidance to new biology education researchers.

Fortunately, educational researchers have increased their explicit use of these frameworks over time, and this is influencing educational research in science, technology, engineering, and mathematics (STEM) fields. For instance, a quick search for theoretical or conceptual frameworks in the abstracts of articles in Educational Research Complete (a common database for educational research) in STEM fields demonstrates a dramatic change over the last 20 years: from only 778 articles published between 2000 and 2010 to 5703 articles published between 2010 and 2020, a more than sevenfold increase. Greater recognition of the importance of these frameworks is contributing to DBER authors being more explicit about such frameworks in their studies.

Collectively, literature reviews, theoretical frameworks, and conceptual frameworks work to guide methodological decisions and the elucidation of important findings. Each offers a different perspective on the problem of study and is an essential element in all forms of educational research. As new researchers seek to learn about these elements, they will find different resources, a variety of perspectives, and many suggestions about the construction and use of these elements. The wide range of available information can overwhelm the new researcher who just wants to learn the distinction between these elements or how to craft them adequately.

Our goal in writing this paper is not to offer specific advice about how to write these sections in scholarly work. Instead, we wanted to introduce these elements to those who are new to BER and who are interested in better distinguishing one from the other. In this paper, we share the purpose of each element in BER scholarship, along with important points on its construction. We also provide references for additional resources that may be beneficial to better understanding each element. Table 1 summarizes the key distinctions among these elements.

Comparison of literature reviews, theoretical frameworks, and conceptual reviews

Literature reviewsTheoretical frameworksConceptual frameworks
PurposeTo point out the need for the study in BER and connection to the field.To state the assumptions and orientations of the researcher regarding the topic of studyTo describe the researcher’s understanding of the main concepts under investigation
AimsA literature review examines current and relevant research associated with the study question. It is comprehensive, critical, and purposeful.A theoretical framework illuminates the phenomenon of study and the corresponding assumptions adopted by the researcher. Frameworks can take on different orientations.The conceptual framework is created by the researcher(s), includes the presumed relationships among concepts, and addresses needed areas of study discovered in literature reviews.
Connection to the manuscriptA literature review should connect to the study question, guide the study methodology, and be central in the discussion by indicating how the analyzed data advances what is known in the field.  A theoretical framework drives the question, guides the types of methods for data collection and analysis, informs the discussion of the findings, and reveals the subjectivities of the researcher.The conceptual framework is informed by literature reviews, experiences, or experiments. It may include emergent ideas that are not yet grounded in the literature. It should be coherent with the paper’s theoretical framing.
Additional pointsA literature review may reach beyond BER and include other education research fields.A theoretical framework does not rationalize the need for the study, and a theoretical framework can come from different fields.A conceptual framework articulates the phenomenon under study through written descriptions and/or visual representations.

This article is written for the new biology education researcher who is just learning about these different elements or for scientists looking to become more involved in BER. It is a result of our own work as science education and biology education researchers, whether as graduate students and postdoctoral scholars or newly hired and established faculty members. This is the article we wish had been available as we started to learn about these elements or discussed them with new educational researchers in biology.

LITERATURE REVIEWS

Purpose of a literature review.

A literature review is foundational to any research study in education or science. In education, a well-conceptualized and well-executed review provides a summary of the research that has already been done on a specific topic and identifies questions that remain to be answered, thus illustrating the current research project’s potential contribution to the field and the reasoning behind the methodological approach selected for the study ( Maxwell, 2012 ). BER is an evolving disciplinary area that is redefining areas of conceptual emphasis as well as orientations toward teaching and learning (e.g., Labov et al. , 2010 ; American Association for the Advancement of Science, 2011 ; Nehm, 2019 ). As a result, building comprehensive, critical, purposeful, and concise literature reviews can be a challenge for new biology education researchers.

Building Literature Reviews

There are different ways to approach and construct a literature review. Booth et al. (2016a) provide an overview that includes, for example, scoping reviews, which are focused only on notable studies and use a basic method of analysis, and integrative reviews, which are the result of exhaustive literature searches across different genres. Underlying each of these different review processes are attention to the s earch process, a ppraisa l of articles, s ynthesis of the literature, and a nalysis: SALSA ( Booth et al. , 2016a ). This useful acronym can help the researcher focus on the process while building a specific type of review.

However, new educational researchers often have questions about literature reviews that are foundational to SALSA or other approaches. Common questions concern determining which literature pertains to the topic of study or the role of the literature review in the design of the study. This section addresses such questions broadly while providing general guidance for writing a narrative literature review that evaluates the most pertinent studies.

The literature review process should begin before the research is conducted. As Boote and Beile (2005 , p. 3) suggested, researchers should be “scholars before researchers.” They point out that having a good working knowledge of the proposed topic helps illuminate avenues of study. Some subject areas have a deep body of work to read and reflect upon, providing a strong foundation for developing the research question(s). For instance, the teaching and learning of evolution is an area of long-standing interest in the BER community, generating many studies (e.g., Perry et al. , 2008 ; Barnes and Brownell, 2016 ) and reviews of research (e.g., Sickel and Friedrichsen, 2013 ; Ziadie and Andrews, 2018 ). Emerging areas of BER include the affective domain, issues of transfer, and metacognition ( Singer et al. , 2012 ). Many studies in these areas are transdisciplinary and not always specific to biology education (e.g., Rodrigo-Peiris et al. , 2018 ; Kolpikova et al. , 2019 ). These newer areas may require reading outside BER; fortunately, summaries of some of these topics can be found in the Current Insights section of the LSE website.

In focusing on a specific problem within a broader research strand, a new researcher will likely need to examine research outside BER. Depending upon the area of study, the expanded reading list might involve a mix of BER, DBER, and educational research studies. Determining the scope of the reading is not always straightforward. A simple way to focus one’s reading is to create a “summary phrase” or “research nugget,” which is a very brief descriptive statement about the study. It should focus on the essence of the study, for example, “first-year nonmajor students’ understanding of evolution,” “metacognitive prompts to enhance learning during biochemistry,” or “instructors’ inquiry-based instructional practices after professional development programming.” This type of phrase should help a new researcher identify two or more areas to review that pertain to the study. Focusing on recent research in the last 5 years is a good first step. Additional studies can be identified by reading relevant works referenced in those articles. It is also important to read seminal studies that are more than 5 years old. Reading a range of studies should give the researcher the necessary command of the subject in order to suggest a research question.

Given that the research question(s) arise from the literature review, the review should also substantiate the selected methodological approach. The review and research question(s) guide the researcher in determining how to collect and analyze data. Often the methodological approach used in a study is selected to contribute knowledge that expands upon what has been published previously about the topic (see Institute of Education Sciences and National Science Foundation, 2013 ). An emerging topic of study may need an exploratory approach that allows for a description of the phenomenon and development of a potential theory. This could, but not necessarily, require a methodological approach that uses interviews, observations, surveys, or other instruments. An extensively studied topic may call for the additional understanding of specific factors or variables; this type of study would be well suited to a verification or a causal research design. These could entail a methodological approach that uses valid and reliable instruments, observations, or interviews to determine an effect in the studied event. In either of these examples, the researcher(s) may use a qualitative, quantitative, or mixed methods methodological approach.

Even with a good research question, there is still more reading to be done. The complexity and focus of the research question dictates the depth and breadth of the literature to be examined. Questions that connect multiple topics can require broad literature reviews. For instance, a study that explores the impact of a biology faculty learning community on the inquiry instruction of faculty could have the following review areas: learning communities among biology faculty, inquiry instruction among biology faculty, and inquiry instruction among biology faculty as a result of professional learning. Biology education researchers need to consider whether their literature review requires studies from different disciplines within or outside DBER. For the example given, it would be fruitful to look at research focused on learning communities with faculty in STEM fields or in general education fields that result in instructional change. It is important not to be too narrow or too broad when reading. When the conclusions of articles start to sound similar or no new insights are gained, the researcher likely has a good foundation for a literature review. This level of reading should allow the researcher to demonstrate a mastery in understanding the researched topic, explain the suitability of the proposed research approach, and point to the need for the refined research question(s).

The literature review should include the researcher’s evaluation and critique of the selected studies. A researcher may have a large collection of studies, but not all of the studies will follow standards important in the reporting of empirical work in the social sciences. The American Educational Research Association ( Duran et al. , 2006 ), for example, offers a general discussion about standards for such work: an adequate review of research informing the study, the existence of sound and appropriate data collection and analysis methods, and appropriate conclusions that do not overstep or underexplore the analyzed data. The Institute of Education Sciences and National Science Foundation (2013) also offer Common Guidelines for Education Research and Development that can be used to evaluate collected studies.

Because not all journals adhere to such standards, it is important that a researcher review each study to determine the quality of published research, per the guidelines suggested earlier. In some instances, the research may be fatally flawed. Examples of such flaws include data that do not pertain to the question, a lack of discussion about the data collection, poorly constructed instruments, or an inadequate analysis. These types of errors result in studies that are incomplete, error-laden, or inaccurate and should be excluded from the review. Most studies have limitations, and the author(s) often make them explicit. For instance, there may be an instructor effect, recognized bias in the analysis, or issues with the sample population. Limitations are usually addressed by the research team in some way to ensure a sound and acceptable research process. Occasionally, the limitations associated with the study can be significant and not addressed adequately, which leaves a consequential decision in the hands of the researcher. Providing critiques of studies in the literature review process gives the reader confidence that the researcher has carefully examined relevant work in preparation for the study and, ultimately, the manuscript.

A solid literature review clearly anchors the proposed study in the field and connects the research question(s), the methodological approach, and the discussion. Reviewing extant research leads to research questions that will contribute to what is known in the field. By summarizing what is known, the literature review points to what needs to be known, which in turn guides decisions about methodology. Finally, notable findings of the new study are discussed in reference to those described in the literature review.

Within published BER studies, literature reviews can be placed in different locations in an article. When included in the introductory section of the study, the first few paragraphs of the manuscript set the stage, with the literature review following the opening paragraphs. Cooper et al. (2019) illustrate this approach in their study of course-based undergraduate research experiences (CUREs). An introduction discussing the potential of CURES is followed by an analysis of the existing literature relevant to the design of CUREs that allows for novel student discoveries. Within this review, the authors point out contradictory findings among research on novel student discoveries. This clarifies the need for their study, which is described and highlighted through specific research aims.

A literature reviews can also make up a separate section in a paper. For example, the introduction to Todd et al. (2019) illustrates the need for their research topic by highlighting the potential of learning progressions (LPs) and suggesting that LPs may help mitigate learning loss in genetics. At the end of the introduction, the authors state their specific research questions. The review of literature following this opening section comprises two subsections. One focuses on learning loss in general and examines a variety of studies and meta-analyses from the disciplines of medical education, mathematics, and reading. The second section focuses specifically on LPs in genetics and highlights student learning in the midst of LPs. These separate reviews provide insights into the stated research question.

Suggestions and Advice

A well-conceptualized, comprehensive, and critical literature review reveals the understanding of the topic that the researcher brings to the study. Literature reviews should not be so big that there is no clear area of focus; nor should they be so narrow that no real research question arises. The task for a researcher is to craft an efficient literature review that offers a critical analysis of published work, articulates the need for the study, guides the methodological approach to the topic of study, and provides an adequate foundation for the discussion of the findings.

In our own writing of literature reviews, there are often many drafts. An early draft may seem well suited to the study because the need for and approach to the study are well described. However, as the results of the study are analyzed and findings begin to emerge, the existing literature review may be inadequate and need revision. The need for an expanded discussion about the research area can result in the inclusion of new studies that support the explanation of a potential finding. The literature review may also prove to be too broad. Refocusing on a specific area allows for more contemplation of a finding.

It should be noted that there are different types of literature reviews, and many books and articles have been written about the different ways to embark on these types of reviews. Among these different resources, the following may be helpful in considering how to refine the review process for scholarly journals:

  • Booth, A., Sutton, A., & Papaioannou, D. (2016a). Systemic approaches to a successful literature review (2nd ed.). Los Angeles, CA: Sage. This book addresses different types of literature reviews and offers important suggestions pertaining to defining the scope of the literature review and assessing extant studies.
  • Booth, W. C., Colomb, G. G., Williams, J. M., Bizup, J., & Fitzgerald, W. T. (2016b). The craft of research (4th ed.). Chicago: University of Chicago Press. This book can help the novice consider how to make the case for an area of study. While this book is not specifically about literature reviews, it offers suggestions about making the case for your study.
  • Galvan, J. L., & Galvan, M. C. (2017). Writing literature reviews: A guide for students of the social and behavioral sciences (7th ed.). Routledge. This book offers guidance on writing different types of literature reviews. For the novice researcher, there are useful suggestions for creating coherent literature reviews.

THEORETICAL FRAMEWORKS

Purpose of theoretical frameworks.

As new education researchers may be less familiar with theoretical frameworks than with literature reviews, this discussion begins with an analogy. Envision a biologist, chemist, and physicist examining together the dramatic effect of a fog tsunami over the ocean. A biologist gazing at this phenomenon may be concerned with the effect of fog on various species. A chemist may be interested in the chemical composition of the fog as water vapor condenses around bits of salt. A physicist may be focused on the refraction of light to make fog appear to be “sitting” above the ocean. While observing the same “objective event,” the scientists are operating under different theoretical frameworks that provide a particular perspective or “lens” for the interpretation of the phenomenon. Each of these scientists brings specialized knowledge, experiences, and values to this phenomenon, and these influence the interpretation of the phenomenon. The scientists’ theoretical frameworks influence how they design and carry out their studies and interpret their data.

Within an educational study, a theoretical framework helps to explain a phenomenon through a particular lens and challenges and extends existing knowledge within the limitations of that lens. Theoretical frameworks are explicitly stated by an educational researcher in the paper’s framework, theory, or relevant literature section. The framework shapes the types of questions asked, guides the method by which data are collected and analyzed, and informs the discussion of the results of the study. It also reveals the researcher’s subjectivities, for example, values, social experience, and viewpoint ( Allen, 2017 ). It is essential that a novice researcher learn to explicitly state a theoretical framework, because all research questions are being asked from the researcher’s implicit or explicit assumptions of a phenomenon of interest ( Schwandt, 2000 ).

Selecting Theoretical Frameworks

Theoretical frameworks are one of the most contemplated elements in our work in educational research. In this section, we share three important considerations for new scholars selecting a theoretical framework.

The first step in identifying a theoretical framework involves reflecting on the phenomenon within the study and the assumptions aligned with the phenomenon. The phenomenon involves the studied event. There are many possibilities, for example, student learning, instructional approach, or group organization. A researcher holds assumptions about how the phenomenon will be effected, influenced, changed, or portrayed. It is ultimately the researcher’s assumption(s) about the phenomenon that aligns with a theoretical framework. An example can help illustrate how a researcher’s reflection on the phenomenon and acknowledgment of assumptions can result in the identification of a theoretical framework.

In our example, a biology education researcher may be interested in exploring how students’ learning of difficult biological concepts can be supported by the interactions of group members. The phenomenon of interest is the interactions among the peers, and the researcher assumes that more knowledgeable students are important in supporting the learning of the group. As a result, the researcher may draw on Vygotsky’s (1978) sociocultural theory of learning and development that is focused on the phenomenon of student learning in a social setting. This theory posits the critical nature of interactions among students and between students and teachers in the process of building knowledge. A researcher drawing upon this framework holds the assumption that learning is a dynamic social process involving questions and explanations among students in the classroom and that more knowledgeable peers play an important part in the process of building conceptual knowledge.

It is important to state at this point that there are many different theoretical frameworks. Some frameworks focus on learning and knowing, while other theoretical frameworks focus on equity, empowerment, or discourse. Some frameworks are well articulated, and others are still being refined. For a new researcher, it can be challenging to find a theoretical framework. Two of the best ways to look for theoretical frameworks is through published works that highlight different frameworks.

When a theoretical framework is selected, it should clearly connect to all parts of the study. The framework should augment the study by adding a perspective that provides greater insights into the phenomenon. It should clearly align with the studies described in the literature review. For instance, a framework focused on learning would correspond to research that reported different learning outcomes for similar studies. The methods for data collection and analysis should also correspond to the framework. For instance, a study about instructional interventions could use a theoretical framework concerned with learning and could collect data about the effect of the intervention on what is learned. When the data are analyzed, the theoretical framework should provide added meaning to the findings, and the findings should align with the theoretical framework.

A study by Jensen and Lawson (2011) provides an example of how a theoretical framework connects different parts of the study. They compared undergraduate biology students in heterogeneous and homogeneous groups over the course of a semester. Jensen and Lawson (2011) assumed that learning involved collaboration and more knowledgeable peers, which made Vygotsky’s (1978) theory a good fit for their study. They predicted that students in heterogeneous groups would experience greater improvement in their reasoning abilities and science achievements with much of the learning guided by the more knowledgeable peers.

In the enactment of the study, they collected data about the instruction in traditional and inquiry-oriented classes, while the students worked in homogeneous or heterogeneous groups. To determine the effect of working in groups, the authors also measured students’ reasoning abilities and achievement. Each data-collection and analysis decision connected to understanding the influence of collaborative work.

Their findings highlighted aspects of Vygotsky’s (1978) theory of learning. One finding, for instance, posited that inquiry instruction, as a whole, resulted in reasoning and achievement gains. This links to Vygotsky (1978) , because inquiry instruction involves interactions among group members. A more nuanced finding was that group composition had a conditional effect. Heterogeneous groups performed better with more traditional and didactic instruction, regardless of the reasoning ability of the group members. Homogeneous groups worked better during interaction-rich activities for students with low reasoning ability. The authors attributed the variation to the different types of helping behaviors of students. High-performing students provided the answers, while students with low reasoning ability had to work collectively through the material. In terms of Vygotsky (1978) , this finding provided new insights into the learning context in which productive interactions can occur for students.

Another consideration in the selection and use of a theoretical framework pertains to its orientation to the study. This can result in the theoretical framework prioritizing individuals, institutions, and/or policies ( Anfara and Mertz, 2014 ). Frameworks that connect to individuals, for instance, could contribute to understanding their actions, learning, or knowledge. Institutional frameworks, on the other hand, offer insights into how institutions, organizations, or groups can influence individuals or materials. Policy theories provide ways to understand how national or local policies can dictate an emphasis on outcomes or instructional design. These different types of frameworks highlight different aspects in an educational setting, which influences the design of the study and the collection of data. In addition, these different frameworks offer a way to make sense of the data. Aligning the data collection and analysis with the framework ensures that a study is coherent and can contribute to the field.

New understandings emerge when different theoretical frameworks are used. For instance, Ebert-May et al. (2015) prioritized the individual level within conceptual change theory (see Posner et al. , 1982 ). In this theory, an individual’s knowledge changes when it no longer fits the phenomenon. Ebert-May et al. (2015) designed a professional development program challenging biology postdoctoral scholars’ existing conceptions of teaching. The authors reported that the biology postdoctoral scholars’ teaching practices became more student-centered as they were challenged to explain their instructional decision making. According to the theory, the biology postdoctoral scholars’ dissatisfaction in their descriptions of teaching and learning initiated change in their knowledge and instruction. These results reveal how conceptual change theory can explain the learning of participants and guide the design of professional development programming.

The communities of practice (CoP) theoretical framework ( Lave, 1988 ; Wenger, 1998 ) prioritizes the institutional level , suggesting that learning occurs when individuals learn from and contribute to the communities in which they reside. Grounded in the assumption of community learning, the literature on CoP suggests that, as individuals interact regularly with the other members of their group, they learn about the rules, roles, and goals of the community ( Allee, 2000 ). A study conducted by Gehrke and Kezar (2017) used the CoP framework to understand organizational change by examining the involvement of individual faculty engaged in a cross-institutional CoP focused on changing the instructional practice of faculty at each institution. In the CoP, faculty members were involved in enhancing instructional materials within their department, which aligned with an overarching goal of instituting instruction that embraced active learning. Not surprisingly, Gehrke and Kezar (2017) revealed that faculty who perceived the community culture as important in their work cultivated institutional change. Furthermore, they found that institutional change was sustained when key leaders served as mentors and provided support for faculty, and as faculty themselves developed into leaders. This study reveals the complexity of individual roles in a COP in order to support institutional instructional change.

It is important to explicitly state the theoretical framework used in a study, but elucidating a theoretical framework can be challenging for a new educational researcher. The literature review can help to identify an applicable theoretical framework. Focal areas of the review or central terms often connect to assumptions and assertions associated with the framework that pertain to the phenomenon of interest. Another way to identify a theoretical framework is self-reflection by the researcher on personal beliefs and understandings about the nature of knowledge the researcher brings to the study ( Lysaght, 2011 ). In stating one’s beliefs and understandings related to the study (e.g., students construct their knowledge, instructional materials support learning), an orientation becomes evident that will suggest a particular theoretical framework. Theoretical frameworks are not arbitrary , but purposefully selected.

With experience, a researcher may find expanded roles for theoretical frameworks. Researchers may revise an existing framework that has limited explanatory power, or they may decide there is a need to develop a new theoretical framework. These frameworks can emerge from a current study or the need to explain a phenomenon in a new way. Researchers may also find that multiple theoretical frameworks are necessary to frame and explore a problem, as different frameworks can provide different insights into a problem.

Finally, it is important to recognize that choosing “x” theoretical framework does not necessarily mean a researcher chooses “y” methodology and so on, nor is there a clear-cut, linear process in selecting a theoretical framework for one’s study. In part, the nonlinear process of identifying a theoretical framework is what makes understanding and using theoretical frameworks challenging. For the novice scholar, contemplating and understanding theoretical frameworks is essential. Fortunately, there are articles and books that can help:

  • Creswell, J. W. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). Los Angeles, CA: Sage. This book provides an overview of theoretical frameworks in general educational research.
  • Ding, L. (2019). Theoretical perspectives of quantitative physics education research. Physical Review Physics Education Research , 15 (2), 020101-1–020101-13. This paper illustrates how a DBER field can use theoretical frameworks.
  • Nehm, R. (2019). Biology education research: Building integrative frameworks for teaching and learning about living systems. Disciplinary and Interdisciplinary Science Education Research , 1 , ar15. https://doi.org/10.1186/s43031-019-0017-6 . This paper articulates the need for studies in BER to explicitly state theoretical frameworks and provides examples of potential studies.
  • Patton, M. Q. (2015). Qualitative research & evaluation methods: Integrating theory and practice . Sage. This book also provides an overview of theoretical frameworks, but for both research and evaluation.

CONCEPTUAL FRAMEWORKS

Purpose of a conceptual framework.

A conceptual framework is a description of the way a researcher understands the factors and/or variables that are involved in the study and their relationships to one another. The purpose of a conceptual framework is to articulate the concepts under study using relevant literature ( Rocco and Plakhotnik, 2009 ) and to clarify the presumed relationships among those concepts ( Rocco and Plakhotnik, 2009 ; Anfara and Mertz, 2014 ). Conceptual frameworks are different from theoretical frameworks in both their breadth and grounding in established findings. Whereas a theoretical framework articulates the lens through which a researcher views the work, the conceptual framework is often more mechanistic and malleable.

Conceptual frameworks are broader, encompassing both established theories (i.e., theoretical frameworks) and the researchers’ own emergent ideas. Emergent ideas, for example, may be rooted in informal and/or unpublished observations from experience. These emergent ideas would not be considered a “theory” if they are not yet tested, supported by systematically collected evidence, and peer reviewed. However, they do still play an important role in the way researchers approach their studies. The conceptual framework allows authors to clearly describe their emergent ideas so that connections among ideas in the study and the significance of the study are apparent to readers.

Constructing Conceptual Frameworks

Including a conceptual framework in a research study is important, but researchers often opt to include either a conceptual or a theoretical framework. Either may be adequate, but both provide greater insight into the research approach. For instance, a research team plans to test a novel component of an existing theory. In their study, they describe the existing theoretical framework that informs their work and then present their own conceptual framework. Within this conceptual framework, specific topics portray emergent ideas that are related to the theory. Describing both frameworks allows readers to better understand the researchers’ assumptions, orientations, and understanding of concepts being investigated. For example, Connolly et al. (2018) included a conceptual framework that described how they applied a theoretical framework of social cognitive career theory (SCCT) to their study on teaching programs for doctoral students. In their conceptual framework, the authors described SCCT, explained how it applied to the investigation, and drew upon results from previous studies to justify the proposed connections between the theory and their emergent ideas.

In some cases, authors may be able to sufficiently describe their conceptualization of the phenomenon under study in an introduction alone, without a separate conceptual framework section. However, incomplete descriptions of how the researchers conceptualize the components of the study may limit the significance of the study by making the research less intelligible to readers. This is especially problematic when studying topics in which researchers use the same terms for different constructs or different terms for similar and overlapping constructs (e.g., inquiry, teacher beliefs, pedagogical content knowledge, or active learning). Authors must describe their conceptualization of a construct if the research is to be understandable and useful.

There are some key areas to consider regarding the inclusion of a conceptual framework in a study. To begin with, it is important to recognize that conceptual frameworks are constructed by the researchers conducting the study ( Rocco and Plakhotnik, 2009 ; Maxwell, 2012 ). This is different from theoretical frameworks that are often taken from established literature. Researchers should bring together ideas from the literature, but they may be influenced by their own experiences as a student and/or instructor, the shared experiences of others, or thought experiments as they construct a description, model, or representation of their understanding of the phenomenon under study. This is an exercise in intellectual organization and clarity that often considers what is learned, known, and experienced. The conceptual framework makes these constructs explicitly visible to readers, who may have different understandings of the phenomenon based on their prior knowledge and experience. There is no single method to go about this intellectual work.

Reeves et al. (2016) is an example of an article that proposed a conceptual framework about graduate teaching assistant professional development evaluation and research. The authors used existing literature to create a novel framework that filled a gap in current research and practice related to the training of graduate teaching assistants. This conceptual framework can guide the systematic collection of data by other researchers because the framework describes the relationships among various factors that influence teaching and learning. The Reeves et al. (2016) conceptual framework may be modified as additional data are collected and analyzed by other researchers. This is not uncommon, as conceptual frameworks can serve as catalysts for concerted research efforts that systematically explore a phenomenon (e.g., Reynolds et al. , 2012 ; Brownell and Kloser, 2015 ).

Sabel et al. (2017) used a conceptual framework in their exploration of how scaffolds, an external factor, interact with internal factors to support student learning. Their conceptual framework integrated principles from two theoretical frameworks, self-regulated learning and metacognition, to illustrate how the research team conceptualized students’ use of scaffolds in their learning ( Figure 1 ). Sabel et al. (2017) created this model using their interpretations of these two frameworks in the context of their teaching.

An external file that holds a picture, illustration, etc.
Object name is cbe-21-rm33-g001.jpg

Conceptual framework from Sabel et al. (2017) .

A conceptual framework should describe the relationship among components of the investigation ( Anfara and Mertz, 2014 ). These relationships should guide the researcher’s methods of approaching the study ( Miles et al. , 2014 ) and inform both the data to be collected and how those data should be analyzed. Explicitly describing the connections among the ideas allows the researcher to justify the importance of the study and the rigor of the research design. Just as importantly, these frameworks help readers understand why certain components of a system were not explored in the study. This is a challenge in education research, which is rooted in complex environments with many variables that are difficult to control.

For example, Sabel et al. (2017) stated: “Scaffolds, such as enhanced answer keys and reflection questions, can help students and instructors bridge the external and internal factors and support learning” (p. 3). They connected the scaffolds in the study to the three dimensions of metacognition and the eventual transformation of existing ideas into new or revised ideas. Their framework provides a rationale for focusing on how students use two different scaffolds, and not on other factors that may influence a student’s success (self-efficacy, use of active learning, exam format, etc.).

In constructing conceptual frameworks, researchers should address needed areas of study and/or contradictions discovered in literature reviews. By attending to these areas, researchers can strengthen their arguments for the importance of a study. For instance, conceptual frameworks can address how the current study will fill gaps in the research, resolve contradictions in existing literature, or suggest a new area of study. While a literature review describes what is known and not known about the phenomenon, the conceptual framework leverages these gaps in describing the current study ( Maxwell, 2012 ). In the example of Sabel et al. (2017) , the authors indicated there was a gap in the literature regarding how scaffolds engage students in metacognition to promote learning in large classes. Their study helps fill that gap by describing how scaffolds can support students in the three dimensions of metacognition: intelligibility, plausibility, and wide applicability. In another example, Lane (2016) integrated research from science identity, the ethic of care, the sense of belonging, and an expertise model of student success to form a conceptual framework that addressed the critiques of other frameworks. In a more recent example, Sbeglia et al. (2021) illustrated how a conceptual framework influences the methodological choices and inferences in studies by educational researchers.

Sometimes researchers draw upon the conceptual frameworks of other researchers. When a researcher’s conceptual framework closely aligns with an existing framework, the discussion may be brief. For example, Ghee et al. (2016) referred to portions of SCCT as their conceptual framework to explain the significance of their work on students’ self-efficacy and career interests. Because the authors’ conceptualization of this phenomenon aligned with a previously described framework, they briefly mentioned the conceptual framework and provided additional citations that provided more detail for the readers.

Within both the BER and the broader DBER communities, conceptual frameworks have been used to describe different constructs. For example, some researchers have used the term “conceptual framework” to describe students’ conceptual understandings of a biological phenomenon. This is distinct from a researcher’s conceptual framework of the educational phenomenon under investigation, which may also need to be explicitly described in the article. Other studies have presented a research logic model or flowchart of the research design as a conceptual framework. These constructions can be quite valuable in helping readers understand the data-collection and analysis process. However, a model depicting the study design does not serve the same role as a conceptual framework. Researchers need to avoid conflating these constructs by differentiating the researchers’ conceptual framework that guides the study from the research design, when applicable.

Explicitly describing conceptual frameworks is essential in depicting the focus of the study. We have found that being explicit in a conceptual framework means using accepted terminology, referencing prior work, and clearly noting connections between terms. This description can also highlight gaps in the literature or suggest potential contributions to the field of study. A well-elucidated conceptual framework can suggest additional studies that may be warranted. This can also spur other researchers to consider how they would approach the examination of a phenomenon and could result in a revised conceptual framework.

It can be challenging to create conceptual frameworks, but they are important. Below are two resources that could be helpful in constructing and presenting conceptual frameworks in educational research:

  • Maxwell, J. A. (2012). Qualitative research design: An interactive approach (3rd ed.). Los Angeles, CA: Sage. Chapter 3 in this book describes how to construct conceptual frameworks.
  • Ravitch, S. M., & Riggan, M. (2016). Reason & rigor: How conceptual frameworks guide research . Los Angeles, CA: Sage. This book explains how conceptual frameworks guide the research questions, data collection, data analyses, and interpretation of results.

CONCLUDING THOUGHTS

Literature reviews, theoretical frameworks, and conceptual frameworks are all important in DBER and BER. Robust literature reviews reinforce the importance of a study. Theoretical frameworks connect the study to the base of knowledge in educational theory and specify the researcher’s assumptions. Conceptual frameworks allow researchers to explicitly describe their conceptualization of the relationships among the components of the phenomenon under study. Table 1 provides a general overview of these components in order to assist biology education researchers in thinking about these elements.

It is important to emphasize that these different elements are intertwined. When these elements are aligned and complement one another, the study is coherent, and the study findings contribute to knowledge in the field. When literature reviews, theoretical frameworks, and conceptual frameworks are disconnected from one another, the study suffers. The point of the study is lost, suggested findings are unsupported, or important conclusions are invisible to the researcher. In addition, this misalignment may be costly in terms of time and money.

Conducting a literature review, selecting a theoretical framework, and building a conceptual framework are some of the most difficult elements of a research study. It takes time to understand the relevant research, identify a theoretical framework that provides important insights into the study, and formulate a conceptual framework that organizes the finding. In the research process, there is often a constant back and forth among these elements as the study evolves. With an ongoing refinement of the review of literature, clarification of the theoretical framework, and articulation of a conceptual framework, a sound study can emerge that makes a contribution to the field. This is the goal of BER and education research.

Supplementary Material

  • Allee, V. (2000). Knowledge networks and communities of learning . OD Practitioner , 32 ( 4 ), 4–13. [ Google Scholar ]
  • Allen, M. (2017). The Sage encyclopedia of communication research methods (Vols. 1–4 ). Los Angeles, CA: Sage. 10.4135/9781483381411 [ CrossRef ] [ Google Scholar ]
  • American Association for the Advancement of Science. (2011). Vision and change in undergraduate biology education: A call to action . Washington, DC. [ Google Scholar ]
  • Anfara, V. A., Mertz, N. T. (2014). Setting the stage . In Anfara, V. A., Mertz, N. T. (eds.), Theoretical frameworks in qualitative research (pp. 1–22). Sage. [ Google Scholar ]
  • Barnes, M. E., Brownell, S. E. (2016). Practices and perspectives of college instructors on addressing religious beliefs when teaching evolution . CBE—Life Sciences Education , 15 ( 2 ), ar18. https://doi.org/10.1187/cbe.15-11-0243 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Boote, D. N., Beile, P. (2005). Scholars before researchers: On the centrality of the dissertation literature review in research preparation . Educational Researcher , 34 ( 6 ), 3–15. 10.3102/0013189x034006003 [ CrossRef ] [ Google Scholar ]
  • Booth, A., Sutton, A., Papaioannou, D. (2016a). Systemic approaches to a successful literature review (2nd ed.). Los Angeles, CA: Sage. [ Google Scholar ]
  • Booth, W. C., Colomb, G. G., Williams, J. M., Bizup, J., Fitzgerald, W. T. (2016b). The craft of research (4th ed.). Chicago, IL: University of Chicago Press. [ Google Scholar ]
  • Brownell, S. E., Kloser, M. J. (2015). Toward a conceptual framework for measuring the effectiveness of course-based undergraduate research experiences in undergraduate biology . Studies in Higher Education , 40 ( 3 ), 525–544. https://doi.org/10.1080/03075079.2015.1004234 [ Google Scholar ]
  • Connolly, M. R., Lee, Y. G., Savoy, J. N. (2018). The effects of doctoral teaching development on early-career STEM scholars’ college teaching self-efficacy . CBE—Life Sciences Education , 17 ( 1 ), ar14. https://doi.org/10.1187/cbe.17-02-0039 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Cooper, K. M., Blattman, J. N., Hendrix, T., Brownell, S. E. (2019). The impact of broadly relevant novel discoveries on student project ownership in a traditional lab course turned CURE . CBE—Life Sciences Education , 18 ( 4 ), ar57. https://doi.org/10.1187/cbe.19-06-0113 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Creswell, J. W. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). Los Angeles, CA: Sage. [ Google Scholar ]
  • DeHaan, R. L. (2011). Education research in the biological sciences: A nine decade review (Paper commissioned by the NAS/NRC Committee on the Status, Contributions, and Future Directions of Discipline Based Education Research) . Washington, DC: National Academies Press. Retrieved May 20, 2022, from www7.nationalacademies.org/bose/DBER_Mee ting2_commissioned_papers_page.html [ Google Scholar ]
  • Ding, L. (2019). Theoretical perspectives of quantitative physics education research . Physical Review Physics Education Research , 15 ( 2 ), 020101. [ Google Scholar ]
  • Dirks, C. (2011). The current status and future direction of biology education research . Paper presented at: Second Committee Meeting on the Status, Contributions, and Future Directions of Discipline-Based Education Research, 18–19 October (Washington, DC). Retrieved May 20, 2022, from http://sites.nationalacademies.org/DBASSE/BOSE/DBASSE_071087 [ Google Scholar ]
  • Duran, R. P., Eisenhart, M. A., Erickson, F. D., Grant, C. A., Green, J. L., Hedges, L. V., Schneider, B. L. (2006). Standards for reporting on empirical social science research in AERA publications: American Educational Research Association . Educational Researcher , 35 ( 6 ), 33–40. [ Google Scholar ]
  • Ebert-May, D., Derting, T. L., Henkel, T. P., Middlemis Maher, J., Momsen, J. L., Arnold, B., Passmore, H. A. (2015). Breaking the cycle: Future faculty begin teaching with learner-centered strategies after professional development . CBE—Life Sciences Education , 14 ( 2 ), ar22. https://doi.org/10.1187/cbe.14-12-0222 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Galvan, J. L., Galvan, M. C. (2017). Writing literature reviews: A guide for students of the social and behavioral sciences (7th ed.). New York, NY: Routledge. https://doi.org/10.4324/9781315229386 [ Google Scholar ]
  • Gehrke, S., Kezar, A. (2017). The roles of STEM faculty communities of practice in institutional and departmental reform in higher education . American Educational Research Journal , 54 ( 5 ), 803–833. https://doi.org/10.3102/0002831217706736 [ Google Scholar ]
  • Ghee, M., Keels, M., Collins, D., Neal-Spence, C., Baker, E. (2016). Fine-tuning summer research programs to promote underrepresented students’ persistence in the STEM pathway . CBE—Life Sciences Education , 15 ( 3 ), ar28. https://doi.org/10.1187/cbe.16-01-0046 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Institute of Education Sciences & National Science Foundation. (2013). Common guidelines for education research and development . Retrieved May 20, 2022, from www.nsf.gov/pubs/2013/nsf13126/nsf13126.pdf
  • Jensen, J. L., Lawson, A. (2011). Effects of collaborative group composition and inquiry instruction on reasoning gains and achievement in undergraduate biology . CBE—Life Sciences Education , 10 ( 1 ), 64–73. https://doi.org/10.1187/cbe.19-05-0098 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Kolpikova, E. P., Chen, D. C., Doherty, J. H. (2019). Does the format of preclass reading quizzes matter? An evaluation of traditional and gamified, adaptive preclass reading quizzes . CBE—Life Sciences Education , 18 ( 4 ), ar52. https://doi.org/10.1187/cbe.19-05-0098 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Labov, J. B., Reid, A. H., Yamamoto, K. R. (2010). Integrated biology and undergraduate science education: A new biology education for the twenty-first century? CBE—Life Sciences Education , 9 ( 1 ), 10–16. https://doi.org/10.1187/cbe.09-12-0092 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Lane, T. B. (2016). Beyond academic and social integration: Understanding the impact of a STEM enrichment program on the retention and degree attainment of underrepresented students . CBE—Life Sciences Education , 15 ( 3 ), ar39. https://doi.org/10.1187/cbe.16-01-0070 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life . New York, NY: Cambridge University Press. [ Google Scholar ]
  • Lo, S. M., Gardner, G. E., Reid, J., Napoleon-Fanis, V., Carroll, P., Smith, E., Sato, B. K. (2019). Prevailing questions and methodologies in biology education research: A longitudinal analysis of research in CBE — Life Sciences Education and at the Society for the Advancement of Biology Education Research . CBE—Life Sciences Education , 18 ( 1 ), ar9. https://doi.org/10.1187/cbe.18-08-0164 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Lysaght, Z. (2011). Epistemological and paradigmatic ecumenism in “Pasteur’s quadrant:” Tales from doctoral research . In Official Conference Proceedings of the Third Asian Conference on Education in Osaka, Japan . Retrieved May 20, 2022, from http://iafor.org/ace2011_offprint/ACE2011_offprint_0254.pdf
  • Maxwell, J. A. (2012). Qualitative research design: An interactive approach (3rd ed.). Los Angeles, CA: Sage. [ Google Scholar ]
  • Miles, M. B., Huberman, A. M., Saldaña, J. (2014). Qualitative data analysis (3rd ed.). Los Angeles, CA: Sage. [ Google Scholar ]
  • Nehm, R. (2019). Biology education research: Building integrative frameworks for teaching and learning about living systems . Disciplinary and Interdisciplinary Science Education Research , 1 , ar15. https://doi.org/10.1186/s43031-019-0017-6 [ Google Scholar ]
  • Patton, M. Q. (2015). Qualitative research & evaluation methods: Integrating theory and practice . Los Angeles, CA: Sage. [ Google Scholar ]
  • Perry, J., Meir, E., Herron, J. C., Maruca, S., Stal, D. (2008). Evaluating two approaches to helping college students understand evolutionary trees through diagramming tasks . CBE—Life Sciences Education , 7 ( 2 ), 193–201. https://doi.org/10.1187/cbe.07-01-0007 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Posner, G. J., Strike, K. A., Hewson, P. W., Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change . Science Education , 66 ( 2 ), 211–227. [ Google Scholar ]
  • Ravitch, S. M., Riggan, M. (2016). Reason & rigor: How conceptual frameworks guide research . Los Angeles, CA: Sage. [ Google Scholar ]
  • Reeves, T. D., Marbach-Ad, G., Miller, K. R., Ridgway, J., Gardner, G. E., Schussler, E. E., Wischusen, E. W. (2016). A conceptual framework for graduate teaching assistant professional development evaluation and research . CBE—Life Sciences Education , 15 ( 2 ), es2. https://doi.org/10.1187/cbe.15-10-0225 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Reynolds, J. A., Thaiss, C., Katkin, W., Thompson, R. J. Jr. (2012). Writing-to-learn in undergraduate science education: A community-based, conceptually driven approach . CBE—Life Sciences Education , 11 ( 1 ), 17–25. https://doi.org/10.1187/cbe.11-08-0064 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Rocco, T. S., Plakhotnik, M. S. (2009). Literature reviews, conceptual frameworks, and theoretical frameworks: Terms, functions, and distinctions . Human Resource Development Review , 8 ( 1 ), 120–130. https://doi.org/10.1177/1534484309332617 [ Google Scholar ]
  • Rodrigo-Peiris, T., Xiang, L., Cassone, V. M. (2018). A low-intensity, hybrid design between a “traditional” and a “course-based” research experience yields positive outcomes for science undergraduate freshmen and shows potential for large-scale application . CBE—Life Sciences Education , 17 ( 4 ), ar53. https://doi.org/10.1187/cbe.17-11-0248 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Sabel, J. L., Dauer, J. T., Forbes, C. T. (2017). Introductory biology students’ use of enhanced answer keys and reflection questions to engage in metacognition and enhance understanding . CBE—Life Sciences Education , 16 ( 3 ), ar40. https://doi.org/10.1187/cbe.16-10-0298 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Sbeglia, G. C., Goodridge, J. A., Gordon, L. H., Nehm, R. H. (2021). Are faculty changing? How reform frameworks, sampling intensities, and instrument measures impact inferences about student-centered teaching practices . CBE—Life Sciences Education , 20 ( 3 ), ar39. https://doi.org/10.1187/cbe.20-11-0259 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Schwandt, T. A. (2000). Three epistemological stances for qualitative inquiry: Interpretivism, hermeneutics, and social constructionism . In Denzin, N. K., Lincoln, Y. S. (Eds.), Handbook of qualitative research (2nd ed., pp. 189–213). Los Angeles, CA: Sage. [ Google Scholar ]
  • Sickel, A. J., Friedrichsen, P. (2013). Examining the evolution education literature with a focus on teachers: Major findings, goals for teacher preparation, and directions for future research . Evolution: Education and Outreach , 6 ( 1 ), 23. https://doi.org/10.1186/1936-6434-6-23 [ Google Scholar ]
  • Singer, S. R., Nielsen, N. R., Schweingruber, H. A. (2012). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering . Washington, DC: National Academies Press. [ Google Scholar ]
  • Todd, A., Romine, W. L., Correa-Menendez, J. (2019). Modeling the transition from a phenotypic to genotypic conceptualization of genetics in a university-level introductory biology context . Research in Science Education , 49 ( 2 ), 569–589. https://doi.org/10.1007/s11165-017-9626-2 [ Google Scholar ]
  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes . Cambridge, MA: Harvard University Press. [ Google Scholar ]
  • Wenger, E. (1998). Communities of practice: Learning as a social system . Systems Thinker , 9 ( 5 ), 2–3. [ Google Scholar ]
  • Ziadie, M. A., Andrews, T. C. (2018). Moving evolution education forward: A systematic analysis of literature to identify gaps in collective knowledge for teaching . CBE—Life Sciences Education , 17 ( 1 ), ar11. https://doi.org/10.1187/cbe.17-08-0190 [ PMC free article ] [ PubMed ] [ Google Scholar ]

Literature Reviews, Conceptual Frameworks, and Theoretical Frameworks: Terms, Functions, and Distinctions

  • February 2009
  • Human Resource Development Review 8(1):120-130
  • 8(1):120-130

Tonette S Rocco at Florida International University

  • Florida International University

Maria S. Plakhotnik at National Research University Higher School of Economics

  • National Research University Higher School of Economics

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Rune Bjerke

  • Meilinda Meilinda
  • Ratih Puspa
  • Rawan Suleiman Majed Juma
  • Joseph Maina
  • Caroline Kinuu Kimathi

Hakan Taş

  • Antonio Duran

Zak Foste

  • Magdalena P. Koen
  • Molekodi J. Matsipane

Tonette S Rocco

  • Sharan B. Merriam
  • Edward F. McQuarrie
  • Catherine Marshall

Gretchen Rossman

  • J.W. Cresswell
  • Vicki L. Plano Clark
  • M.L. Gutmann
  • William E. Hanson
  • Stacey L. Hogan
  • Ronald M. Cervero
  • Arthur L. Wilson
  • ADULT EDUC QUART

Mary Alfred

  • D. Elaine Archie-Booker
  • Christine A. Langone
  • Elizabeth Watson
  • Kathryn S. O’Neill

Carol Hansen

  • Gary L. May
  • Richard J. Torraco
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

Frequently asked questions

What is the difference between a conceptual framework and a theoretical framework.

While a theoretical framework describes the theoretical underpinnings of your work based on existing research, a conceptual framework allows you to draw your own conclusions, mapping out the variables you may use in your study and the interplay between them.

Frequently asked questions: Dissertation

Dissertation word counts vary widely across different fields, institutions, and levels of education:

  • An undergraduate dissertation is typically 8,000–15,000 words
  • A master’s dissertation is typically 12,000–50,000 words
  • A PhD thesis is typically book-length: 70,000–100,000 words

However, none of these are strict guidelines – your word count may be lower or higher than the numbers stated here. Always check the guidelines provided by your university to determine how long your own dissertation should be.

A dissertation prospectus or proposal describes what or who you plan to research for your dissertation. It delves into why, when, where, and how you will do your research, as well as helps you choose a type of research to pursue. You should also determine whether you plan to pursue qualitative or quantitative methods and what your research design will look like.

It should outline all of the decisions you have taken about your project, from your dissertation topic to your hypotheses and research objectives , ready to be approved by your supervisor or committee.

Note that some departments require a defense component, where you present your prospectus to your committee orally.

A thesis is typically written by students finishing up a bachelor’s or Master’s degree. Some educational institutions, particularly in the liberal arts, have mandatory theses, but they are often not mandatory to graduate from bachelor’s degrees. It is more common for a thesis to be a graduation requirement from a Master’s degree.

Even if not mandatory, you may want to consider writing a thesis if you:

  • Plan to attend graduate school soon
  • Have a particular topic you’d like to study more in-depth
  • Are considering a career in research
  • Would like a capstone experience to tie up your academic experience

The conclusion of your thesis or dissertation should include the following:

  • A restatement of your research question
  • A summary of your key arguments and/or results
  • A short discussion of the implications of your research

The conclusion of your thesis or dissertation shouldn’t take up more than 5–7% of your overall word count.

For a stronger dissertation conclusion , avoid including:

  • Important evidence or analysis that wasn’t mentioned in the discussion section and results section
  • Generic concluding phrases (e.g. “In conclusion …”)
  • Weak statements that undermine your argument (e.g., “There are good points on both sides of this issue.”)

Your conclusion should leave the reader with a strong, decisive impression of your work.

While it may be tempting to present new arguments or evidence in your thesis or disseration conclusion , especially if you have a particularly striking argument you’d like to finish your analysis with, you shouldn’t. Theses and dissertations follow a more formal structure than this.

All your findings and arguments should be presented in the body of the text (more specifically in the discussion section and results section .) The conclusion is meant to summarize and reflect on the evidence and arguments you have already presented, not introduce new ones.

A theoretical framework can sometimes be integrated into a  literature review chapter , but it can also be included as its own chapter or section in your dissertation . As a rule of thumb, if your research involves dealing with a lot of complex theories, it’s a good idea to include a separate theoretical framework chapter.

A literature review and a theoretical framework are not the same thing and cannot be used interchangeably. While a theoretical framework describes the theoretical underpinnings of your work, a literature review critically evaluates existing research relating to your topic. You’ll likely need both in your dissertation .

A thesis or dissertation outline is one of the most critical first steps in your writing process. It helps you to lay out and organize your ideas and can provide you with a roadmap for deciding what kind of research you’d like to undertake.

Generally, an outline contains information on the different sections included in your thesis or dissertation , such as:

  • Your anticipated title
  • Your abstract
  • Your chapters (sometimes subdivided into further topics like literature review , research methods , avenues for future research, etc.)

When you mention different chapters within your text, it’s considered best to use Roman numerals for most citation styles. However, the most important thing here is to remain consistent whenever using numbers in your dissertation .

In most styles, the title page is used purely to provide information and doesn’t include any images. Ask your supervisor if you are allowed to include an image on the title page before doing so. If you do decide to include one, make sure to check whether you need permission from the creator of the image.

Include a note directly beneath the image acknowledging where it comes from, beginning with the word “ Note .” (italicized and followed by a period). Include a citation and copyright attribution . Don’t title, number, or label the image as a figure , since it doesn’t appear in your main text.

Definitional terms often fall into the category of common knowledge , meaning that they don’t necessarily have to be cited. This guidance can apply to your thesis or dissertation glossary as well.

However, if you’d prefer to cite your sources , you can follow guidance for citing dictionary entries in MLA or APA style for your glossary.

A glossary is a collection of words pertaining to a specific topic. In your thesis or dissertation, it’s a list of all terms you used that may not immediately be obvious to your reader. In contrast, an index is a list of the contents of your work organized by page number.

The title page of your thesis or dissertation goes first, before all other content or lists that you may choose to include.

The title page of your thesis or dissertation should include your name, department, institution, degree program, and submission date.

Glossaries are not mandatory, but if you use a lot of technical or field-specific terms, it may improve readability to add one to your thesis or dissertation. Your educational institution may also require them, so be sure to check their specific guidelines.

A glossary or “glossary of terms” is a collection of words pertaining to a specific topic. In your thesis or dissertation, it’s a list of all terms you used that may not immediately be obvious to your reader. Your glossary only needs to include terms that your reader may not be familiar with, and is intended to enhance their understanding of your work.

A glossary is a collection of words pertaining to a specific topic. In your thesis or dissertation, it’s a list of all terms you used that may not immediately be obvious to your reader. In contrast, dictionaries are more general collections of words.

An abbreviation is a shortened version of an existing word, such as Dr. for Doctor. In contrast, an acronym uses the first letter of each word to create a wholly new word, such as UNESCO (an acronym for the United Nations Educational, Scientific and Cultural Organization).

As a rule of thumb, write the explanation in full the first time you use an acronym or abbreviation. You can then proceed with the shortened version. However, if the abbreviation is very common (like PC, USA, or DNA), then you can use the abbreviated version from the get-go.

Be sure to add each abbreviation in your list of abbreviations !

If you only used a few abbreviations in your thesis or dissertation , you don’t necessarily need to include a list of abbreviations .

If your abbreviations are numerous, or if you think they won’t be known to your audience, it’s never a bad idea to add one. They can also improve readability, minimizing confusion about abbreviations unfamiliar to your reader.

A list of abbreviations is a list of all the abbreviations that you used in your thesis or dissertation. It should appear at the beginning of your document, with items in alphabetical order, just after your table of contents .

Your list of tables and figures should go directly after your table of contents in your thesis or dissertation.

Lists of figures and tables are often not required, and aren’t particularly common. They specifically aren’t required for APA-Style, though you should be careful to follow their other guidelines for figures and tables .

If you have many figures and tables in your thesis or dissertation, include one may help you stay organized. Your educational institution may require them, so be sure to check their guidelines.

A list of figures and tables compiles all of the figures and tables that you used in your thesis or dissertation and displays them with the page number where they can be found.

The table of contents in a thesis or dissertation always goes between your abstract and your introduction .

You may acknowledge God in your dissertation acknowledgements , but be sure to follow academic convention by also thanking the members of academia, as well as family, colleagues, and friends who helped you.

A literature review is a survey of credible sources on a topic, often used in dissertations , theses, and research papers . Literature reviews give an overview of knowledge on a subject, helping you identify relevant theories and methods, as well as gaps in existing research. Literature reviews are set up similarly to other  academic texts , with an introduction , a main body, and a conclusion .

An  annotated bibliography is a list of  source references that has a short description (called an annotation ) for each of the sources. It is often assigned as part of the research process for a  paper .  

In a thesis or dissertation, the discussion is an in-depth exploration of the results, going into detail about the meaning of your findings and citing relevant sources to put them in context.

The conclusion is more shorter and more general: it concisely answers your main research question and makes recommendations based on your overall findings.

In the discussion , you explore the meaning and relevance of your research results , explaining how they fit with existing research and theory. Discuss:

  • Your  interpretations : what do the results tell us?
  • The  implications : why do the results matter?
  • The  limitation s : what can’t the results tell us?

The results chapter or section simply and objectively reports what you found, without speculating on why you found these results. The discussion interprets the meaning of the results, puts them in context, and explains why they matter.

In qualitative research , results and discussion are sometimes combined. But in quantitative research , it’s considered important to separate the objective results from your interpretation of them.

Results are usually written in the past tense , because they are describing the outcome of completed actions.

The results chapter of a thesis or dissertation presents your research results concisely and objectively.

In quantitative research , for each question or hypothesis , state:

  • The type of analysis used
  • Relevant results in the form of descriptive and inferential statistics
  • Whether or not the alternative hypothesis was supported

In qualitative research , for each question or theme, describe:

  • Recurring patterns
  • Significant or representative individual responses
  • Relevant quotations from the data

Don’t interpret or speculate in the results chapter.

To automatically insert a table of contents in Microsoft Word, follow these steps:

  • Apply heading styles throughout the document.
  • In the references section in the ribbon, locate the Table of Contents group.
  • Click the arrow next to the Table of Contents icon and select Custom Table of Contents.
  • Select which levels of headings you would like to include in the table of contents.

Make sure to update your table of contents if you move text or change headings. To update, simply right click and select Update Field.

All level 1 and 2 headings should be included in your table of contents . That means the titles of your chapters and the main sections within them.

The contents should also include all appendices and the lists of tables and figures, if applicable, as well as your reference list .

Do not include the acknowledgements or abstract in the table of contents.

The abstract appears on its own page in the thesis or dissertation , after the title page and acknowledgements but before the table of contents .

An abstract for a thesis or dissertation is usually around 200–300 words. There’s often a strict word limit, so make sure to check your university’s requirements.

In a thesis or dissertation, the acknowledgements should usually be no longer than one page. There is no minimum length.

The acknowledgements are generally included at the very beginning of your thesis , directly after the title page and before the abstract .

Yes, it’s important to thank your supervisor(s) in the acknowledgements section of your thesis or dissertation .

Even if you feel your supervisor did not contribute greatly to the final product, you must acknowledge them, if only for a very brief thank you. If you do not include your supervisor, it may be seen as a snub.

In the acknowledgements of your thesis or dissertation, you should first thank those who helped you academically or professionally, such as your supervisor, funders, and other academics.

Then you can include personal thanks to friends, family members, or anyone else who supported you during the process.

Ask our team

Want to contact us directly? No problem.  We  are always here for you.

Support team - Nina

Our team helps students graduate by offering:

  • A world-class citation generator
  • Plagiarism Checker software powered by Turnitin
  • Innovative Citation Checker software
  • Professional proofreading services
  • Over 300 helpful articles about academic writing, citing sources, plagiarism, and more

Scribbr specializes in editing study-related documents . We proofread:

  • PhD dissertations
  • Research proposals
  • Personal statements
  • Admission essays
  • Motivation letters
  • Reflection papers
  • Journal articles
  • Capstone projects

Scribbr’s Plagiarism Checker is powered by elements of Turnitin’s Similarity Checker , namely the plagiarism detection software and the Internet Archive and Premium Scholarly Publications content databases .

The add-on AI detector is powered by Scribbr’s proprietary software.

The Scribbr Citation Generator is developed using the open-source Citation Style Language (CSL) project and Frank Bennett’s citeproc-js . It’s the same technology used by dozens of other popular citation tools, including Mendeley and Zotero.

You can find all the citation styles and locales used in the Scribbr Citation Generator in our publicly accessible repository on Github .

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Dissertation

What is a Theoretical Framework? | A Step-by-Step Guide

Published on 14 February 2020 by Shona McCombes . Revised on 10 October 2022.

A theoretical framework is a foundational review of existing theories that serves as a roadmap for developing the arguments you will use in your own work.

Theories are developed by researchers to explain phenomena, draw connections, and make predictions. In a theoretical framework, you explain the existing theories that support your research, showing that your work is grounded in established ideas.

In other words, your theoretical framework justifies and contextualises your later research, and it’s a crucial first step for your research paper , thesis, or dissertation . A well-rounded theoretical framework sets you up for success later on in your research and writing process.

Instantly correct all language mistakes in your text

Be assured that you'll submit flawless writing. Upload your document to correct all your mistakes.

upload-your-document-ai-proofreader

Table of contents

Why do you need a theoretical framework, how to write a theoretical framework, structuring your theoretical framework, example of a theoretical framework, frequently asked questions about theoretical frameworks.

Before you start your own research, it’s crucial to familiarise yourself with the theories and models that other researchers have already developed. Your theoretical framework is your opportunity to present and explain what you’ve learned, situated within your future research topic.

There’s a good chance that many different theories about your topic already exist, especially if the topic is broad. In your theoretical framework, you will evaluate, compare, and select the most relevant ones.

By “framing” your research within a clearly defined field, you make the reader aware of the assumptions that inform your approach, showing the rationale behind your choices for later sections, like methodology and discussion . This part of your dissertation lays the foundations that will support your analysis, helping you interpret your results and make broader generalisations .

  • In literature , a scholar using postmodernist literary theory would analyse The Great Gatsby differently than a scholar using Marxist literary theory.
  • In psychology , a behaviourist approach to depression would involve different research methods and assumptions than a psychoanalytic approach.
  • In economics , wealth inequality would be explained and interpreted differently based on a classical economics approach than based on a Keynesian economics one.

Prevent plagiarism, run a free check.

To create your own theoretical framework, you can follow these three steps:

  • Identifying your key concepts
  • Evaluating and explaining relevant theories
  • Showing how your research fits into existing research

1. Identify your key concepts

The first step is to pick out the key terms from your problem statement and research questions . Concepts often have multiple definitions, so your theoretical framework should also clearly define what you mean by each term.

To investigate this problem, you have identified and plan to focus on the following problem statement, objective, and research questions:

Problem : Many online customers do not return to make subsequent purchases.

Objective : To increase the quantity of return customers.

Research question : How can the satisfaction of company X’s online customers be improved in order to increase the quantity of return customers?

2. Evaluate and explain relevant theories

By conducting a thorough literature review , you can determine how other researchers have defined these key concepts and drawn connections between them. As you write your theoretical framework, your aim is to compare and critically evaluate the approaches that different authors have taken.

After discussing different models and theories, you can establish the definitions that best fit your research and justify why. You can even combine theories from different fields to build your own unique framework if this better suits your topic.

Make sure to at least briefly mention each of the most important theories related to your key concepts. If there is a well-established theory that you don’t want to apply to your own research, explain why it isn’t suitable for your purposes.

3. Show how your research fits into existing research

Apart from summarising and discussing existing theories, your theoretical framework should show how your project will make use of these ideas and take them a step further.

You might aim to do one or more of the following:

  • Test whether a theory holds in a specific, previously unexamined context
  • Use an existing theory as a basis for interpreting your results
  • Critique or challenge a theory
  • Combine different theories in a new or unique way

A theoretical framework can sometimes be integrated into a literature review chapter , but it can also be included as its own chapter or section in your dissertation. As a rule of thumb, if your research involves dealing with a lot of complex theories, it’s a good idea to include a separate theoretical framework chapter.

There are no fixed rules for structuring your theoretical framework, but it’s best to double-check with your department or institution to make sure they don’t have any formatting guidelines. The most important thing is to create a clear, logical structure. There are a few ways to do this:

  • Draw on your research questions, structuring each section around a question or key concept
  • Organise by theory cluster
  • Organise by date

As in all other parts of your research paper , thesis, or dissertation , make sure to properly cite your sources to avoid plagiarism .

To get a sense of what this part of your thesis or dissertation might look like, take a look at our full example .

The only proofreading tool specialized in correcting academic writing

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

theoretical and conceptual framework in research proposal

Correct my document today

While a theoretical framework describes the theoretical underpinnings of your work based on existing research, a conceptual framework allows you to draw your own conclusions, mapping out the variables you may use in your study and the interplay between them.

A literature review and a theoretical framework are not the same thing and cannot be used interchangeably. While a theoretical framework describes the theoretical underpinnings of your work, a literature review critically evaluates existing research relating to your topic. You’ll likely need both in your dissertation .

A theoretical framework can sometimes be integrated into a  literature review chapter , but it can also be included as its own chapter or section in your dissertation . As a rule of thumb, if your research involves dealing with a lot of complex theories, it’s a good idea to include a separate theoretical framework chapter.

A literature review is a survey of scholarly sources (such as books, journal articles, and theses) related to a specific topic or research question .

It is often written as part of a dissertation , thesis, research paper , or proposal .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, October 10). What is a Theoretical Framework? | A Step-by-Step Guide. Scribbr. Retrieved 16 September 2024, from https://www.scribbr.co.uk/thesis-dissertation/the-theoretical-framework/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, what is a literature review | guide, template, & examples, how to write a results section | tips & examples, how to write a discussion section | tips & examples.

Understanding and solving intractable resource governance problems.

  • Conferences and Talks
  • Exploring models of electronic wastes governance in the United States and Mexico: Recycling, risk and environmental justice
  • The Collaborative Resource Governance Lab (CoReGovLab)
  • Water Conflicts in Mexico: A Multi-Method Approach
  • Past projects
  • Publications and scholarly output
  • Research Interests
  • Higher education and academia
  • Public administration, public policy and public management research
  • Research-oriented blog posts
  • Stuff about research methods
  • Research trajectory
  • Publications
  • Developing a Writing Practice
  • Outlining Papers
  • Publishing strategies
  • Writing a book manuscript
  • Writing a research paper, book chapter or dissertation/thesis chapter
  • Everything Notebook
  • Literature Reviews
  • Note-Taking Techniques
  • Organization and Time Management
  • Planning Methods and Approaches
  • Qualitative Methods, Qualitative Research, Qualitative Analysis
  • Reading Notes of Books
  • Reading Strategies
  • Teaching Public Policy, Public Administration and Public Management
  • My Reading Notes of Books on How to Write a Doctoral Dissertation/How to Conduct PhD Research
  • Writing a Thesis (Undergraduate or Masters) or a Dissertation (PhD)
  • Reading strategies for undergraduates
  • Social Media in Academia
  • Resources for Job Seekers in the Academic Market
  • Writing Groups and Retreats
  • Regional Development (Fall 2015)
  • State and Local Government (Fall 2015)
  • Public Policy Analysis (Fall 2016)
  • Regional Development (Fall 2016)
  • Public Policy Analysis (Fall 2018)
  • Public Policy Analysis (Fall 2019)
  • Public Policy Analysis (Spring 2016)
  • POLI 351 Environmental Policy and Politics (Summer Session 2011)
  • POLI 352 Comparative Politics of Public Policy (Term 2)
  • POLI 375A Global Environmental Politics (Term 2)
  • POLI 350A Public Policy (Term 2)
  • POLI 351 Environmental Policy and Politics (Term 1)
  • POLI 332 Latin American Environmental Politics (Term 2, Spring 2012)
  • POLI 350A Public Policy (Term 1, Sep-Dec 2011)
  • POLI 375A Global Environmental Politics (Term 1, Sep-Dec 2011)

Writing theoretical frameworks, analytical frameworks and conceptual frameworks

Three of the most challenging concepts for me to explain are the interrelated ideas of a theoretical framework, a conceptual framework, and an analytical framework. All three of these tend to be used interchangeably. While I find these concepts somewhat fuzzy and I struggle sometimes to explain the differences between them and clarify their usage for my students (and clearly I am not alone in this challenge), this blog post is an attempt to help discern these analytical categories more clearly.

A lot of people (my own students included) have asked me if the theoretical framework is their literature review. That’s actually not the case. A theoretical framework , the way I define it, is comprised of the different theories and theoretical constructs that help explain a phenomenon. A theoretical framework sets out the various expectations that a theory posits and how they would apply to a specific case under analysis, and how one would use theory to explain a particular phenomenon. I like how theoretical frameworks are defined in this blog post . Dr. Cyrus Samii offers an explanation of what a good theoretical framework does for students .

For example, you can use framing theory to help you explain how different actors perceive the world. Your theoretical framework may be based on theories of framing, but it can also include others. For example, in this paper, Zeitoun and Allan explain their theoretical framework, aptly named hydro-hegemony . In doing so, Zeitoun and Allan explain the role of each theoretical construct (Power, Hydro-Hegemony, Political Economy) and how they apply to transboundary water conflict. Another good example of a theoretical framework is that posited by Dr. Michael J. Bloomfield in his book Dirty Gold, as I mention in this tweet:

In Chapter 2, @mj_bloomfield nicely sets his theoretical framework borrowing from sociology, IR, and business-strategy scholarship pic.twitter.com/jTGF4PPymn — Dr Raul Pacheco-Vega (@raulpacheco) December 24, 2017

An analytical framework is, the way I see it, a model that helps explain how a certain type of analysis will be conducted. For example, in this paper, Franks and Cleaver develop an analytical framework that includes scholarship on poverty measurement to help us understand how water governance and poverty are interrelated . Other authors describe an analytical framework as a “conceptual framework that helps analyse particular phenomena”, as posited here , ungated version can be read here .

I think it’s easy to conflate analytical frameworks with theoretical and conceptual ones because of the way in which concepts, theories and ideas are harnessed to explain a phenomenon. But I believe the most important element of an analytical framework is instrumental : their purpose is to help undertake analyses. You use elements of an analytical framework to deconstruct a specific concept/set of concepts/phenomenon. For example, in this paper , Bodde et al develop an analytical framework to characterise sources of uncertainties in strategic environmental assessments.

A robust conceptual framework describes the different concepts one would need to know to understand a particular phenomenon, without pretending to create causal links across variables and outcomes. In my view, theoretical frameworks set expectations, because theories are constructs that help explain relationships between variables and specific outcomes and responses. Conceptual frameworks, the way I see them, are like lenses through which you can see a particular phenomenon.

A conceptual framework should serve to help illuminate and clarify fuzzy ideas, and fill lacunae. Viewed this way, a conceptual framework offers insight that would not be otherwise be gained without a more profound understanding of the concepts explained in the framework. For example, in this article, Beck offers social movement theory as a conceptual framework that can help understand terrorism . As I explained in my metaphor above, social movement theory is the lens through which you see terrorism, and you get a clearer understanding of how it operates precisely because you used this particular theory.

Dan Kaminsky offered a really interesting explanation connecting these topics to time, read his tweet below.

I think this maps to time. Theoretical frameworks talk about how we got here. Conceptual frameworks discuss what we have. Analytical frameworks discuss where we can go with this. See also legislative/executive/judicial. — Dan Kaminsky (@dakami) September 28, 2018

One of my CIDE students, Andres Ruiz, reminded me of this article on conceptual frameworks in the International Journal of Qualitative Methods. I’ll also be adding resources as I get them via Twitter or email. Hopefully this blog post will help clarify this idea!

You can share this blog post on the following social networks by clicking on their icon.

Posted in academia .

Tagged with analytical framework , conceptual framework , theoretical framework .

By Raul Pacheco-Vega – September 28, 2018

7 Responses

Stay in touch with the conversation, subscribe to the RSS feed for comments on this post .

' src=

Thanks, this had some useful clarifications for me!

' src=

I GOT CONFUSED AGAIN!

' src=

No need to be confused!

' src=

Thanks for the Clarification, Dr Raul. My cluttered mind is largely cleared, now.

' src=

Thanks,very helpful

' src=

I too was/am confused but this helps 🙂

' src=

Thank you very much, Dr.

Leave a Reply Cancel Some HTML is OK

Name (required)

Email (required, but never shared)

or, reply to this post via trackback .

About Raul Pacheco-Vega, PhD

Find me online.

My Research Output

  • Google Scholar Profile
  • Academia.Edu
  • ResearchGate

My Social Networks

  • Polycentricity Network

Recent Posts

  • The value and importance of the pre-writing stage of writing
  • My experience teaching residential academic writing workshops
  • “State-Sponsored Activism: Bureaucrats and Social Movements in Brazil” – Jessica Rich – my reading notes
  • Reading Like a Writer – Francine Prose – my reading notes
  • Using the Pacheco-Vega workflows and frameworks to write and/or revise a scholarly book

Recent Comments

  • Charlotte on The value and importance of the pre-writing stage of writing
  • Raul Pacheco-Vega on The value and importance of the pre-writing stage of writing
  • Noni on Developing a structured daily routine for writing and research
  • Alan Parker on Project management for academics I: Managing a research pipeline

Follow me on Twitter:

Proudly powered by WordPress and Carrington .

Carrington Theme by Crowd Favorite

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • Write for Us
  • BMJ Journals

You are here

  • Volume 22, Issue 2
  • Integration of a theoretical framework into your research study
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • Roberta Heale 1 ,
  • Helen Noble 2
  • 1 Laurentian University , School of Nursing , Sudbury , Ontario , Canada
  • 2 Queens University Belfast , School of Nursing and Midwifery , Belfast , UK
  • Correspondence to Dr Roberta Heale, School of Nursing, Laurentian University, Ramsey Lake Road, Sudbury, P3E2C6, Canada; rheale{at}laurentian.ca

https://doi.org/10.1136/ebnurs-2019-103077

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Often the most difficult part of a research study is preparing the proposal based around a theoretical or philosophical framework. Graduate students ‘…express confusion, a lack of knowledge, and frustration with the challenge of choosing a theoretical framework and understanding how to apply it’. 1 However, the importance in understanding and applying a theoretical framework in research cannot be overestimated.

The choice of a theoretical framework for a research study is often a reflection of the researcher’s ontological (nature of being) and epistemological (theory of knowledge) perspective. We will not delve into these concepts, or personal philosophy in this article. Rather we will focus on how a theoretical framework can be integrated into research.

The theoretical framework is a blueprint for your research project 1 and serves several purposes. It informs the problem you have identified, the purpose and significance of your research demonstrating how your research fits with what is already known (relationship to existing theory and research). This provides a basis for your research questions, the literature review and the methodology and analysis that you choose. 1 Evidence of your chosen theoretical framework should be visible in every aspect of your research and should demonstrate the contribution of this research to knowledge. 2

What is a theory?

A theory is an explanation of a concept or an abstract idea of a phenomenon. An example of a theory is Bandura’s middle range theory of self-efficacy, 3 or the level of confidence one has in achieving a goal. Self-efficacy determines the coping behaviours that a person will exhibit when facing obstacles. Those who have high self-efficacy are likely to apply adequate effort leading to successful outcomes, while those with low self-efficacy are more likely to give up earlier and ultimately fail. Any research that is exploring concepts related to self-efficacy or the ability to manage difficult life situations might apply Bandura’s theoretical framework to their study.

Using a theoretical framework in a research study

Example 1: the big five theoretical framework.

The first example includes research which integrates the ‘Big Five’, a theoretical framework that includes concepts related to teamwork. These include team leadership, mutual performance monitoring, backup behaviour, adaptability and team orientation. 4 In order to conduct research incorporating a theoretical framework, the concepts need to be defined according to a frame of reference. This provides a means to understand the theoretical framework as it relates to a specific context and provides a mechanism for measurement of the concepts.

In this example, the concepts of the Big Five were given a conceptual definition, that provided a broad meaning and then an operational definition, which was more concrete. 4 From here, a survey was developed that reflected the operational definitions related to teamwork in nursing: the Nursing Teamwork Survey (NTS). 5 In this case, the concepts used in the theoretical framework, the Big Five, were the used to develop a survey specific to teamwork in nursing.

The NTS was used in research of nurses at one hospital in northeastern Ontario. Survey questions were grouped into subscales for analysis, that reflected the concepts of the Big Five. 6 For example, one finding of this study was that the nurses from the surgical unit rated the items in the subscale of ’team leadership' (one of the concepts in the Big Five) significantly lower than in the other units. The researchers looked back to the definition of this concept in the Big Five in their interpretation of the findings. Since the definition included a person(s) who has the leadership skills to facilitate teamwork among the nurses on the unit, the conclusion in this study was that the surgical unit lacked a mentor, or facilitator for teamwork. In this way, the theory of teamwork was presented through a set of concepts in a theoretical framework. The Theoretical Framework (TF)was the foundation for development of a survey related to a specific context, used to measure each of the concepts within the TF. Then, the analysis and results circled back to the concepts within the TF and provided a guide for the discussion and conclusions arising from the research.

Example 2: the Health Decisions Model

In another study which explored adherence to intravenous chemotherapy in African-American and Caucasian Women with early stage breast cancer, an adapted version of the Health Decisions Model (HDM) was used as the theoretical basis for the study. 7 The HDM, a revised version of the Health Belief Model, incorporates some aspects of the Health Belief Model and factors relating to patient preferences. 8 The HDM consists of six interrelated constituents that might predict how well a person adheres to a health decision. These include sociodemographic, social interaction, experience, knowledge, general and specific health beliefs and patient preferences, and are clearly defined. The HDM model was used to explore factors which might influence adherence to chemotherapy in women with breast cancer. Sociodemographic, social interaction, knowledge, personal experience and specific health beliefs were used as predictors of adherence to chemotherapy.

The findings were reported using the theoretical framework to discuss results. The study found that delay to treatment, health insurance, depression and symptom severity were predictors to starting chemotherapy which could potentially be adapted with clinical interventions. The findings from the study contribute to the existing body of literature related to cancer nursing.

Example 3: the nursing role effectiveness model

In this final example, research was conducted to determine the nursing processes that were associated with unexpected intensive care unit admissions. 9 The framework was the Nursing Role Effectiveness Model. In this theoretical framework, the concepts within Donabedian’s Quality Framework of Structure, Process and Outcome were each defined according to nursing practice. 10 11  Processes defined in the Nursing Role Effectiveness Model were used to identify the nursing process variables that were measured in the study.

A theoretical framework should be logically presented and represent the concepts, variables and relationships related to your research study, in order to clearly identify what will be examined, described or measured. It involves reading the literature and identifying a research question(s) while clearly defining and identifying the existing relationship between concepts and theories (related to your research questions[s] in the literature). You must then identify what you will examine or explore in relation to the concepts of the theoretical framework. Once you present your findings using the theoretical framework you will be able to articulate how your study relates to and may potentially advance your chosen theory and add to knowledge.

  • Kalisch BJ ,
  • Parent M , et al
  • Strickland OL ,
  • Dalton JA , et al
  • Eraker SA ,
  • Kirscht JP ,
  • Lightfoot N , et al
  • Harrison MB ,
  • Laschinger H , et al

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Provenance and peer review Not commissioned; internally peer reviewed.

Patient and public involvement Not required.

Read the full text or download the PDF:

How to Write the Conceptual Framework in a Research Proposal

Many of the users of Simplyeducate.me post a lot of queries in the high traffic article I wrote titled:  Conceptual Framework: A Step-by-Step Guide on How to Make One . The article intends to provide useful tips on how to write the conceptual framework in a research proposal. 

Interest in the topic is quite high. At this writing, more than 2,500 (update on 2/23/20: 8,000) users read the article daily. Aside from grateful comments, readers keep on asking a lot of questions about how to go about their conceptual framework despite the illustrative example.

Detailed Questions on Conceptual Framework

Did you read it.

Many of those questions make sense, while others show the dilemma of a beginning researcher. Some users did not read the article at all. The material already discussed answers to their questions.

Among those common questions asked pertains to the determination of the independent and the dependent variables. Discernment of the difference between these types of variables appears to be difficult for many. 

Also, questions indicate a failure to relate one’s research topic in the article on how to write the conceptual framework in a research proposal. Nevertheless, I oblige by answering so fundamental questions giving detailed suggestions and examples.

Reviewing the Literature Takes Time

Although I enjoyed answering the questions, I cannot respond to all the specific queries on how to build one’s conceptual framework.

Writing in Simplyeducate.me is a hobby, a way to share my understanding of the research process. I admit that my ideas are subject to scrutiny, and I thankfully respond to readers who point out overlooked points or glaring errors.

E-book on How to Write the Conceptual Framework in a Research Proposal

I combined lecture materials in graduate school and personal experience in researching to enrich the discussion. Further, recognizing the effectiveness of examples to illustrate the concept, I added five concrete examples using actual  scientific papers  to the e-book. The task was tedious, but it seems the e-book has fulfilled its purpose. 

Thus, for those who find difficulty in writing the conceptual framework in a research proposal, the e-book detailing the steps on how to write the conceptual framework in a research proposal is a must-have. For those who have availed of this publication, the author will be happy to receive comments, suggestions, and healthy criticisms to further enrich this work— all for the sake of better research outputs and discovery.

If you are patient enough to browse in this site, chances are, you will find answers to your research-related questions. If not, then my e-book on How to Write a Thesis in the Information Age compiles all the research tips I wrote in this site and other websites with review questions as well as exercises.

Please message me about that specific topic you would like to know more about, and I will respond with an article related to your query.

Related Posts

Electromagnetic radiation effect on sleep, curiosity and patience lead to learning, discourse analysis of 20 newspaper advertisements, about the author, patrick regoniel.

Dr. Regoniel, a hobbyist writer, served as consultant to various environmental research and development projects covering issues and concerns on climate change, coral reef resources and management, economic valuation of environmental and natural resources, mining, and waste management and pollution. He has extensive experience on applied statistics, systems modelling and analysis, an avid practitioner of LaTeX, and a multidisciplinary web developer. He leverages pioneering AI-powered content creation tools to produce unique and comprehensive articles in this website.

Hi my name mutasse. Am phd studwnt at malaysia and suppose submit my entire work by 2 weeks so actually my prof ask me to redo the framework So i want to buy your items -the book but it saying need to 20 days for delivery so can o get it as pdf and im willing to pay by visa plz

SimplyEducate.Me Privacy Policy

  • Open access
  • Published: 13 September 2024

Understanding disciplinary perspectives: a framework to develop skills for interdisciplinary research collaborations of medical experts and engineers

  • Sophie van Baalen   ORCID: orcid.org/0000-0002-1592-3276 1 , 2 &
  • Mieke Boon   ORCID: orcid.org/0000-0003-2492-2854 1  

BMC Medical Education volume  24 , Article number:  1000 ( 2024 ) Cite this article

Metrics details

Health professionals need to be prepared for interdisciplinary research collaborations aimed at the development and implementation of medical technology. Expertise is highly domain-specific, and learned by being immersed in professional practice. Therefore, the approaches and results from one domain are not easily understood by experts from another domain. Interdisciplinary collaboration in medical research faces not only institutional, but also cognitive and epistemological barriers. This is one of the reasons why interdisciplinary and interprofessional research collaborations are so difficult. To explain the cognitive and epistemological barriers, we introduce the concept of disciplinary perspectives . Making explicit the disciplinary perspectives of experts participating in interdisciplinary collaborations helps to clarify the specific approach of each expert, thereby improving mutual understanding.

We developed a framework for making disciplinary perspectives of experts participating in an interdisciplinary research collaboration explicit. The applicability of the framework has been tested in an interdisciplinary medical research project aimed at the development and implementation of diffusion MRI for the diagnosis of kidney cancer, where the framework was applied to analyse and articulate the disciplinary perspectives of the experts involved.

We propose a general framework, in the form of a series of questions, based on new insights from the philosophy of science into the epistemology of interdisciplinary research. We explain these philosophical underpinnings in order to clarify the cognitive and epistemological barriers of interdisciplinary research collaborations. In addition, we present a detailed example of the use of the framework in a concrete interdisciplinary research project aimed at developing a diagnostic technology. This case study demonstrates the applicability of the framework in interdisciplinary research projects.

Interdisciplinary research collaborations can be facilitated by a better understanding of how an expert’s disciplinary perspectives enables and guides their specific approach to a problem. Implicit disciplinary perspectives can and should be made explicit in a systematic manner, for which we propose a framework that can be used by disciplinary experts participating in interdisciplinary research project. Furthermore, we suggest that educators can explore how the framework and philosophical underpinning can be implemented in HPE to support the development of students’ interdisciplinary expertise.

Peer Review reports

Expertise is highly domain-specific, and learned by being immersed in professional practice [ 1 ]. However, today’s rapidly evolving health care systems require clinicians who are capable of meeting complex challenges [ 2 ], which often requires interdisciplinary and interprofessional collaborations between experts from distinct disciplines. Footnote 1 With the increasingly central role of innovative medical technologies in many medical specialties [ 3 ], health professionals will presumable participate in interdisciplinary and interprofessional research collaborations. But interprofessional and interdisciplinary research collaborations are notoriously difficult (e.g., [ 4 , 5 , 6 , 7 ]). Boon et al. (2019) argue that the complexity of current medical practices requires interdisciplinary expertise , which is an extension of adaptive expertise [ 8 ]. Interdisciplinary expertise involves the ability to understand the role of disciplinary perspectives .

In this paper, we combine insights from the philosophy of science on disciplinary perspectives and practice experience from an interdisciplinary medical research project aimed at the development and implementation of diffusion MRI for the diagnosis of kidney cancer. Based on these insights and practice experience, we propose a framework for mitigating cognitive and epistemological barriers caused by different disciplinary perspectives. In addition, we present a detailed example of the use of the framework to analyse and explain the experts’ disciplinary perspectives in the aforementioned interdisciplinary research project aimed at developing a diagnostic technology. This case study demonstrates the use of the framework in interdisciplinary research projects. The framework can be used by health professionals to facilitate their interdisciplinary research projects, by analysing and explaining their disciplinary perspectives.

Interdisciplinary research

To address the barriers to interdisciplinary research, various authors have developed analytical frameworks to guide the research process and help disciplinary experts understand what it takes to execute projects together with experts from other disciplines [ 9 , 10 , 11 , 12 ]. Menken et al. (2016), for example, provide a method for interdisciplinary research that is much similar to the traditional empirical cycle, including steps such as “identify problem or topic,” “formulate preliminary research questions,” “data collection” and “draw conclusions” [ 11 ]. Other frameworks describe which steps need to be taken in the interdisciplinary research process . In the literature on team science , several authors also aim to provide a better understanding of the process of interdisciplinary research. For example, Hasan et al. (2023) focuses on the ‘micro’ layers of the team science ecosystem proposed by Stokols et al. (2019) – the layer of individual team members collaborating in interdisciplinary research projects [ 13 , 14 ]. From their analysis of an online collaborations between early academics from different fields, they provide insights into common issues in interdisciplinary research and methods for dealing with them. By applying their framework from the start of the interdisciplinary research process, they argue, interdisciplinary capture [ 15 ] can be avoided.

Although the aforementioned frameworks provide valuable guidance on the process of interdisciplinary collaboration, they do not address the deeper cognitive and epistemological challenges of interdisciplinary research collaboration [ 5 , 16 ], which is the objective of our contribution. A crucial assumption in current frameworks seems to be that interdisciplinary research collaboration is learned by doing, and that the integration of different disciplines will automatically follow. Footnote 2 In our view, however, the integration of different disciplines is both crucial and one of the most challenging aspects of interdisciplinary research collaboration. In previous work we have argued that the inherent cognitive and epistemological (knowledge-theoretical) challenges of integration have been neglected by most authors providing models for interdisciplinary research [ 8 ]. In this paper, our focus is therefore on challenges of using and producing knowledge in interdisciplinary research collaborations that aim at solving complex real-world problems. Examples are collaborations between distinct medical specialists in the diagnosis and treatment of a specific patient (e.g., an oncologist and radiologist), but also collaborations between medical experts and biomedical engineers aimed at innovative medical technology for clinical uses. In this paper, we focus on inter disciplinary research projects, in which two or more academic fields are integrated to solve real-world problems, and not on trans disciplinary projects in which one or more academic fields are integrated with expertise from outside of academia such as policy-making or practice. Footnote 3

The challenge of interdisciplinary research collaborations aimed at solving a shared problem is that each expert is guided by his/her own disciplinary perspective. However, the results produced by experts from different disciplines, although internally coherent, are not mutually coherent, so that they are not easily integrated. Furthermore, approaches and results understood within a contributing disciplinary perspective are not easily understood by experts specialised in other disciplinary perspectives, even though each expert aims to contribute to the same problem.

In short, the way in which experts use and produce knowledge is guided by the disciplinary perspective typical of their own practice. But experts are often unaware of having a disciplinary perspective. We argue that this is an obstacle to participating in interdisciplinary research collaborations focused on using and producing knowledge for complex problem-solving . Moreover, disciplinary perspectives are often considered impenetrable —as they are acquired by doing — which makes dealing with the disciplinary perspective of other experts a difficult learning objective. In this paper, we defend that disciplinary perspectives can be made explicit in a systematic manner, and that their role in ‘how experts in a specific discipline use and produce knowledge’ can thus be made understandable for experts and students in both their own and other disciplines.

To this end, we have developed a framework, based on new insights in the philosophy of science and on practice experience of interdisciplinary research collaboration aimed at the development of a medical technology, which can be used by experts in a particular discipline to analyse different elements of their discipline and, together with collaborators, to analyse the same elements from other disciplines. We believe that this systematic approach to understanding disciplinary perspectives will facilitate interdisciplinary research collaborations between experts from different fields. It will create awareness of one’s own disciplinary perspective and the ability to understand the disciplinary perspective of other experts at a sufficient level. Our framework thus aims to alleviate the challenge of integration in a collaborative research project by providing a tool for analysing disciplinary perspectives . We suggest that the concrete descriptions of disciplinary perspectives that result from the application of the framework, clarify the approaches of experts in a multi-disciplinary team. It thus enables effective communication through improved understanding of how each discipline contributes. Once researchers sufficiently understand each other’s discipline, they will be able to construct so-called conceptual models that integrate content relevant to the problems at hand. Footnote 4

Education in interdisciplinary research

In addition to professionals using our framework to facilitate collaboration in interdisciplinary research projects, we suggest that this framework can also be implemented in medical education. It can be used to teach students what it means to have a disciplinary perspective, and to explicate the role of disciplinary perspectives of disciplinary experts participating in an interdisciplinary research collaboration. We have implemented this framework in an innovative, challenge-based educational design that explicitly aims to support and promote the development of interdisciplinary research skills [ 22 ]. Research into the intended learning objectives has not yet been completed, but our initial findings indicate that the proposed framework effectively supports students in their ability to develop crucial skills for conducting interdisciplinary research projects. We suggest therefore that the framework can also be implemented in HPE as a scaffold for teaching and learning metacognitive skills needed in interdisciplinary research collaborations, for example between medical experts and engineers.

Research has shown that interprofessional education courses for healthcare students can have a positive effect on the knowledge, skills and attitudes required for interprofessional collaboration, but that organising such interventions is challenging [ 23 , 24 ]. In the HPE literature, it is generally assumed that the limitations of interprofessional and interdisciplinary teamwork are due to problems of communication, collaboration and cooperation [ 25 , 26 ], which are linked to barriers and enablers at institutional, organizational, infrastructural, professional and individual levels (e.g., [ 27 , 28 ]). Therefore, interprofessional and interdisciplinary collaborations are discussed extensively in the HPE literature – our focus is challenges of interdisciplinary research collaboration.

The ability to use and produce knowledge and methods in solving (novel) problems is covered in the HPE literature by the notion of adaptive expertise , which encompasses clinical reasoning, integrating basic and clinical sciences, and the transfer of previously learned knowledge, concepts and methods to solve new problems in another context (e.g., [ 1 , 29 , 30 , 31 , 32 , 33 , 34 ]). In previous work, we introduced the concept of interdisciplinary expertise, which expands on the notion of adaptive expertise by including the ability to understand, analyse and communicate disciplinary perspectives [ 8 ]. In this paper, we address the challenge posed by how this ability to understand, analyse and communicate disciplinary perspectives can be learned. The framework that we propose can be implemented in HPE to function as a tool to scaffold metacognitive skills of health professions students, facilitating the development of interdisciplinary expertise.

Aims and contributions of this paper

Our first objective is to show that interdisciplinary collaboration in (medical) research faces not only institutional, but also cognitive and epistemological barriers. Therefore, we first provide a theoretical explanation of the concept of ‘disciplinary perspective’ as developed in the philosophy of science, in order to make it plausible that the cognitive barriers experienced by experts in interdisciplinary collaboration are the result of different disciplinary perspectives on a problem and its solution.

Our second objective is to provide a systematic approach to improve interdisciplinary research, for which we propose a framework, in the form of a series of questions, based on new insights from the philosophy of science into the epistemology of interdisciplinary research. We provide a detailed explanation of the application of the proposed framework in an interdisciplinary medical research project to illustrate its applicability in a multidisciplinary research collaborations, by showing that the different disciplinary perspectives that inform researchers and technicians within a multidisciplinary research team can be made transparent in a systematic way.

In short, our intended contribution is (i) to explain cognitive and epistemological barriers by introducing the concept of disciplinary perspectives in medical research collaborations, (ii) to offer a framework that enables the mitigation of these barriers within interdisciplinary research projects that are caused by different disciplinary perspectives, and (iii) to illustrate the applicability of this framework by a concrete case of an interdisciplinary research collaboration in a medical-technical research setting.

We developed a framework for making disciplinary perspectives of experts participating in an interdisciplinary research collaboration explicit, by combining insights from the philosophy of science with practical experience from a medical research project. Philosophy of science provided the theoretical basis for our concept of disciplinary perspectives. Our detailed case-description stems from an interdisciplinary medical research project to develop and implement a new imaging tool for the diagnosis of kidney cancer, in which the first author participated. We then applied the framework to analyze and articulate the disciplinary perspectives of experts involved in this interdisciplinary medical research project.

The usefulness and applicability of the proposed framework was tested by the first author who, in her role as PI, was able to use it successfully in coordinating an interdisciplinary research project aimed at developing a biomedical technology for clinical practice [ 35 , 36 ]. Below, we illustrate how the framework was systematically applied to this specific case, providing initial evidence of its applicability. However, to test whether the proposed framework reduces the cognitive and epistemological barriers caused by different disciplinary perspectives, experts need to be trained in its use. We suggest that training in the use of this framework requires, among other things, some insight into the philosophical underpinnings of the concept of ‘disciplinary perspective’. Our explanation of the so-called epistemology of disciplinary perspectives in this paper aims to provide such insight.

Developing a framework for analysing and articulating a disciplinary perspective

The framework proposed here is based on insights about disciplinary perspectives in the philosophy of science. These insights concern an epistemology (a theory of knowledge) of scientific disciplines. In other words, the framework is based on an account of the knowledge-theoretical (epistemic) and pragmatic aspects that guide the production of knowledge and scientific understanding by a discipline [ 21 ].

The epistemology of scientific disciplines developed in our previous work is based on the philosophical work of Thomas Kuhn [ 37 ]. Building on his seminal ideas, we understand disciplinary perspectives as analysable in terms of a coherent set of epistemic and pragmatic aspects related to the way in which experts trained in the discipline (and who have thus, albeit implicitly, acquired the disciplinary perspective) apply and produce knowledge [ 38 ]. In our approach, the epistemic and pragmatic aspects that generally characterize a discipline, are made explicit through a set of questions that form the basis of the proposed framework (see Table 1 , and the first column of Table  2 ). The disciplinary perspective can thus be revealed through this framework. In turn, when used in educational settings, this framework can be used to foster interdisciplinary expertise by acting as a scaffold for teaching and learning metacognitive skills for interdisciplinary research collaborations. Footnote 5

The general aspects indicated by italics in each question in Table 1 are interdependent, so that analysis using this framework results in a coherent description of the disciplinary perspective in terms of these aspects. The framework can be used by experts in an interdisciplinary research project not only to make explicit their disciplinary perspective in a general sense, but to also to specify in a systematic way how these aspects relate to the interdisciplinary research problem from their disciplinary discipline (see Table  2 , which contains both the general and problem-specific descriptions for each aspect per discipline). In our view, this approach is productive in overcoming the cognitive and epistemological barriers. It thus contributes to productive interdisciplinary collaboration.

Applying the framework in an interdisciplinary medical research project

To test the applicability of this framework, we applied it to an interdisciplinary medical research project. The interdisciplinary medical research project aimed at developing a new clinical imaging tool, namely, diffusion magnetic resonance imaging (i.e., diffusion MRI) to characterize the micro-structural makeup of kidney tumours, running from early 2014 to mid-2018. The first author was involved in this project as a principle investigator (PI). As an interdisciplinary expert with a background in technical medicine , which combines medical training with technological expertise [ 41 ], she coordinated and integrated contributions from experts with medical and engineering backgrounds. In her role as PI, she applied the proposed framework to analyse and articulate the disciplinary perspectives of other experts involved in the medical research project.

The aim of the interdisciplinary medical research project was to develop a new imaging tool for the characterization of renal tumours, i.e., diffusion MRI. Diffusion MRI allows for visualization and quantification of water diffusion without administration of exogenous contrast materials and is, therefore, a promising technique for imaging kidney tumours. In earlier studies, several parameters derived from diffusion MRI studies were found to differentiate between different tumour types in the kidney [ 42 , 43 , 44 ]. Existing imaging methods in clinical practice can detect the size and location of kidney tumours, but the tumour type and malignancy can only be determined histologically after surgery. The purpose of the medical research project was to assess whether more advanced parameters that can be obtained from diffusion MRI [ 35 , 45 ] can differentiate between malignant and benign kidney tumours [ 36 ]. Being able to make this distinction could potentially prevent unnecessary surgery in patients with non-malignant tumours.

The interdisciplinary medical research project needed to bring together expertise (knowledge and skills) from different professionals, academic researchers as well as clinicians. Therefore, the research team consisted of a physicist, a biomedical engineer, a radiologist, a urologist and the principle investigator. The complex, interdisciplinary research object can be thought of as a system that encompasses several elements: the MRI-machine, the software necessary to produce images, the patient with a (suspected) kidney tumour, and the wider practice of care in which the clinical tool should function. In developing the clinical tool, these elements must be considered interrelated, whereas usually each expert focuses on one of these elements.

The PI utilized the framework to coordinate and integrate the contributions from different experts in the following manner. Throughout the project, she had meetings with each of the team members, where she probed them to explain their specific expertise in regard of the research object, as well as their expert contribution to the development of the imaging tool. Her approach in these meetings was guided by the general questions of the framework (Table 1 ). In this manner, she succeeded in getting a clear insight in aspects of each discipline relevant to the research object, and also in the specific contribution that needed to be made by each expert (as illustrated in Table  2 below). The level of understanding gained by this approach enabled her to, firstly, facilitate interdisciplinary team meetings in which disciplinary interpretations and questions from the experts about the target system could be aligned, and secondly, integrate their contributions towards the development of the new imaging tool [ 36 ].

In the presented approach, the framework was exclusively used by the PI, enabling her to acquire relevant information and understanding about the contributions of the disciplines involved. The other team members in the medical research project were not explicitly involved in applying the framework, nor in articulating their own disciplinary perspective or that of others. Hence, the resulting articulation of the disciplinary perspectives and of the contributions per discipline to the research object (in Table  2 ) is crafted by the PI. The level of understanding of the role of each discipline that the PI has acquired thereby appears to be sufficient to enable her coordinating task in this complex medical research project. Our suggestion for other research and educational practices, though, is that clinicians (as well as) other medical experts can develop this metacognitive skill by using the scaffold (in Table  1 ) in order to participate more effectively in these kinds of complex medical research projects.

In the results  section we will first present our explanation and justification of the idea that disciplinary perspectives determine the specific approaches of experts (who have been trained in a specific discipline in using and producing knowledge) when faced with a complex problem. In this explanation and justification, we will use insights from the philosophy of science. Next, we will explain and illustrate the systematic use of the proposed framework (Table 1 ) by showing the results of applying it to the interdisciplinary medical research project.

The insights from philosophy of science on which the proposed framework for the explication of disciplinary perspectives is rooted in insights of the philosophers Immanuel Kant (1794–1804) and Thomas Kuhn (1922–1996). Their important epistemological insight was that ‘objective’ knowledge of reality does not arise from some kind of imprint in the mind, such as on a photographic plate, but is partly formed by the concepts and theories that scientists hold. These concepts and theories therefore shape the way they perceive the world and produce knowledge about reality. This philosophical insight provides an important explanation for the cognitive and epistemological barriers between disciplines. After all, scientific experts learn these concepts and theories by being trained within a certain discipline. In this way, they develop a disciplinary perspective that determines their view and understanding of reality. Based on this philosophical insight, we can imagine how these barriers can be bridged, namely by developing the metacognitive ability to think about their own cognition and how their scientific view of reality is shaped by their specific disciplinary perspective. In order to facilitate this ability, we develop a framework that can be used as a metacognitive scaffold. Finally, we apply this framework to an example interdisciplinary medical-technical research project, to illustrate it’s use in practice.

Insights from the philosophy of science: disciplinary perspectives

Boon et al. (2019) refer to the notion of disciplinary perspectives and their indelible role in how experts approach problems —in particular, the ways in which experts use and produce knowledge in regard of the problem they aim to solve— and provide a philosophical account of this notion based on so-called constructivist (Kantian) epistemology (i.e., knowledge-theory, [ 38 , 46 ]). On a Kantian view, ‘the world does not speak for itself,’ i.e., knowledge of (aspects of) the external world is not acquired passively on the basis of impressions in the mind (physically) caused by the external world (e.g., similar to how pictures of the world are physically imprinted on a photographic plate). Instead, the way in which people produce and use knowledge results from an interaction between the external world, the human senses and the human cognitive system. Crucially, neither our concepts nor our perceptions stem from passive impressions. Instead, ‘pre-given’ concepts ‘in the mind’ are needed in order to be able to perceive something at all and thus to produce knowledge about reality. Conversely, according to Kant, the imaginative (i.e. creative) capacity of the mind is then able to generate new concepts and to draw new connections of which the adequacy and usability must be tested against our experiences of reality. When new concepts (invented by the creative capacity of the human mind) have been tested against experience, they allow us to see new things in the external world, which we would not see without those concepts. This theoretical insight by Kant is crucial to get past naïve conceptions of knowledge, in particular, by understanding the indelible role of concepts in generating knowledge from observations and experiences.

This philosophical insight already makes it clear, for instance, that ‘descriptions of facts’ in a research project involve discipline-specific concepts, making these descriptions not easy to understand for someone who is not trained in that discipline. After Kant, this role of concepts has been expanded to the role of perspectives . For, Kuhn [ 37 ] created awareness that the human mind plays ‘unconsciously’ and ‘unintentionally’ a much greater role in the way scientific knowledge is created than usually assumed in the view that scientific knowledge is objective . Kuhn has introduced the concept of scientific paradigm to indicate in what sense the mind contributes. His idea was revolutionary because the notion of true and objective knowledge, which is the aim of science, became deeply problematic, as knowledge is only true and objective within the scientific paradigm, whereas it may even be meaningless in another.

Our notion of disciplinary perspectives is in many respects comparable to Kuhn’s idea of scientific paradigm, and is certainly indebted to Kuhn’s invention, particularly, with regard to the idea that it is a more or less coherent, usually implicit ‘background picture’ or ‘conceptual framework,’ which constitutes an inherent part of the cognitive system of an expert, and which forms the basis from which an expert thinks, sees and investigates in a scientific or professional practice. Furthermore, the scientific paradigm is not ‘innate,’ nor individually acquired, but maintained and transferred in scientific or professional practices, usually by being immersed in it. The same can be said about disciplinary perspectives. Yet, there are also important differences.

First, Kuhn believed that the paradigm is so deeply rooted in the cognitive structure of individual scientists, and, moreover, is embedded in how the scientific community functions, that it takes a scientific revolution and a new generation of scientists to shift into another paradigm, which is called a paradigm-shift (sometimes explained as a Gestalt-switch ). Kuhn’s belief suggests that humans lack the capacity to reflect on their own paradigm. Footnote 6 Conversely, we argue that humans can develop the metacognitive ability to perform this kind of reflection by which the structure and content of the paradigm or disciplinary perspective is made explicit. We take this as an important part of interdisciplinary expertise . Our suggestion, however, should not be confused with the idea that we can think without any paradigm or disciplinary perspective – we can’t, but we can explicate its workings (and adapt it), which is what we will illustrate in the case-description below.

Second, Kuhn’s focus was science , i.e., the production of objectively true scientific knowledge, in particular, theories. Instead, our focus is on experts trained in specific disciplines, who use and produce knowledge with regard to (practical) problems that have to be solved. Nonetheless, the Kuhnean insight explains why knowledge generated in distinct disciplines often cannot be combined in a straightforward manner (e.g., as in a jigsaw puzzle), which is due to the fact that knowledge is only fully meaningful and understandable relative to the disciplinary perspective in which it has been produced.

Our notion of disciplinary perspectives is similar to Kuhn’s idea of paradigm (which he specified later on as disciplinary matrices ) in the sense that a paradigm functions as a perspective or a conceptual framework , i.e., a background picture within which a scientific or professional practice of a specific discipline is embedded and which guides and enables this practice. But instead of considering them as replacing each other in a serial historical order as Kuhn did, we assume that disciplinary perspectives co-exist, that is, exist in parallel instead of serial. This view on disciplinary perspectives can be elaborated somewhat further by harking back to Ludwik Fleck [ 47 ], a microbiologist, who already in the 1930s developed a historical philosophy and sociology of science that is very similar to Kuhn’s (also see [ 48 ]). Footnote 7 Similar to and deeply affected by Kant, Fleck draws a close connection between human knowledge (e.g., facts) and cognition. Hence, Fleck disputes that facts are descriptions of things in reality discovered through properly passive observation of aspects in reality – which is why, according to Fleck, facts are invented , not discovered . Similar to Kuhn, Fleck expands on Kant by also including the role of the community in which scientists and experts are trained. Instead of paradigms , however, Fleck uses the terms thought styles and thought collectives to describe how experts in a certain professional or academic community adopt similar ways of perceiving and thinking that differ between disciplines: “The expert [trained in the discipline] is already a specially moulded individual who can no longer escape the bonds of tradition and of the collective; otherwise he would not be an expert” ([ 47 ], p. 54). But while Kuhn strove to explain radical changes in science, Fleck’s focus is on ‘normal science,’ that is, on communities ( thought collectives each having their own thought style ) that co-exist and gradually, rather than radically, change, which is closer to our take on disciplines. Importantly, according to Fleck, the community guides which problems members of that communities find relevant and how they approach these problems. Translated to our vocabulary, in scientific and professional practices, experts trained in different disciplines each have different disciplinary perspective, by means of which they recognize different aspects and problems of the same so-called research object , which they approach in accordance with their own discipline.

We propose that disciplinary perspectives can be analysed and made explicit, which we consider a crucial metacognitive skill of interdisciplinary experts. Our proposal for the framework to analyse disciplinary perspectives (in Table 1 ) takes its cue in Kuhn’s notion of disciplinary matrices. Kuhn’s original notion presents a matrix by which historians and philosophers can analyse the paradigm in hindsight, specifying aspects such as the metaphysical background beliefs and basic concepts, core theories, epistemic values, and methods, which all play a role in how knowledge is generated (also see [ 8 , 50 ]). Our framework includes some of these aspects, but also adds others, thereby generating a scaffold that facilitates interdisciplinary collaborations aimed at applying and producing knowledge for complex problem-solving in professional research practices aimed at ‘real-world’ practices, such as medical research practice. Below, we will illustrate the application of this framework in a concrete case.

Interdisciplinary research project: diffusion MRI for the diagnosis of kidney tumour

We will illustrate the applicability of the proposed framework (Table 1 ) for the analysis of disciplinary perspectives using the example of a research project that aims to develop a new clinical imaging tool, namely, diffusion MRI to characterize the microstructure of renal tumours. In our analysis, we focus on experts from four different disciplines: (I) clinical practice, (II) medical biology, (III) MRI physics, and (IV) signal and image processing. As indicated in the methods section, the complex, interdisciplinary research object that these experts have to deal with concerns a system consisting of the MRI-machine, the software necessary to produce images, and the patient with a (suspected) renal tumour, including the broader care practice in which the clinical tool should function.

In the following paragraphs we will first present a general explanation of the four disciplines involved in the project, and next, illustrate how the proposed framework can be applied to analyse and articulate each disciplinary perspective as well as the specific contribution of each discipline to the research object (in Table  2 ). It is not our intention to provide comprehensive descriptions of the fields that are involved, but rather to provide insight into how the fields differ from each other across the elements of our framework. In addition, we do not believe that all (disciplinary) experts only adhere to one disciplinary perspective. For example, clinicians usually combine both a clinical and biomedical perspective to fit together a complete picture of a patient for clinical decision-making concerning diagnosis and treatment [ 51 , 52 , 53 ]. Moreover, MRI engineers will usually need to combine insights from MRI physics and signal processing.

I. Clinical practice concerning patients with renal tumours

Clinical practice concerns the patient with a renal tumour. This practice differs from the other disciplines in our example, because it is not primarily a scientific discipline. Nonetheless, to develop a diagnostic tool, the disciplinary perspective of clinicians specialized in patients with kidney tumours is crucial, for example, to determine the conditions that the technology needs to meet in order to be useful for their clinical practice. The knowledge-base of clinical experts is rooted in biomedical sciences, which means that clinical experts often understand their patient’s signs and symptoms from a biomedical perspective (i.e., in terms of tumour formation of healthy renal physiology). Yet, clinicians will usually focus on their patient’s clinical presentation and possible diagnostic and clinical pathways. In clinical practice, several kidney tumour types are distinguished, each with its own histological presentation (visible under the microscope), tumour growth rate and chance of metastases. Unfortunately, all kidney tumour types, including non-malignant types, appear the same on standard imaging modalities, namely, as solid lesions. When the tumour is not metastasized, treatment consists of surgery removing the whole kidney or the part of the kidney that contains the tumour (i.e., ‘radical’ or ‘partial’ nephrectomy). If surgery is not possible, other treatments include chemotherapy or radiation. After surgery, a pathologist examines the tumour tissue to determine the tumour type. Occasionally, the pathologist concludes that the removed tumour was non-malignant, which is a situation that may be prevented if diffusion MRI can be used to distinguish between malignant and non-malignant tumours prior to surgery.

II. Medical biology

In biology, the structure and working of the body is studied at several levels, from the interaction of proteins and other macromolecules within cells to the functioning of organs. In the case at hand, the organ of interest is the kidney. Functions of the kidneys are excretion of waste materials, control of blood pressure via hormone excretion, balancing the body fluid, acid-base balance and balancing salts by excretion or resorption of ions. Understanding these functions requires insights into the anatomy, tissue architecture and physiology of the kidneys. The main functional structures of the kidney are: (1) the nephron, consisting of a tuft of capillaries (the glomerulus) surrounded by membranes that are shaped like a cup (Bowman’s capsule), responsible for the first filtration of water and small ions, and (2) the renal tubule that is responsible for more specific resorption and excretion of ions and water. The arrangement of small tubes that fan from the centre towards the outside (or cortex) of the kidneys allows maintaining variation in concentrations of ions, which helps to regulate resorption and excretion. The contribution of medical biology to the development of the diagnostic tool is important because knowledge about kidneys such as just sketched provides an understanding of the properties (i.e., microstructural of physiological properties) by which different tumour types can be distinguished from each other, which is crucial to interpreting the novel diagnostic imaging technology.

III. MRI physics & diffusion MRI

Magnetic resonance imaging is based on the physics of magnetism and the interaction of tissue components with radio magnetic fields. The main component of the human body that clinical MRI machines are sensitive to is (the amount of) water molecules or, more specifically, hydrogen nuclei (protons). These protons can be thought of as rotating or spinning , producing (tiny) magnetic fields. By placing tissue in a relatively strong magnetic field (usually 1.5 or 3 Tesla emitted by a large coil that surrounds the body), the tiny magnetic fields of protons (in the water-phase of the tissue) will align themselves with the direction of the strong magnetic field. By then applying a series of radiofrequency pulses, protons will be pushed out of balance and rotate back to their original state, causing a magnetic flux that causes a change in voltage which is picked up by receiver coils in the MRI machine. The rate with which protons return to their original state, the relaxation time, is influenced by the makeup of their environment, and will, therefore, differ for different tissues, resulting in image contrasts between tissues. To be able to form images of the signal, magnetic field gradients are applied, spatially varying the field which enables to differentiate between signals from different locations. Computer software using mathematical formulas ‘translate’ the signal into a series of images.

Diffusion MRI is a subfield of MR imaging, that is based on a contrast between ‘diffusion rates’ of water molecules in different tissues. Diffusion is based on the random (‘Brownian’) motion of water molecules in tissue. This motion is restricted by tissue components such as membranes and macromolecules and therefore water molecules move (or ‘diffuse’) at different rates in different tissues, depending on the microstructure of tissues. To measure this, additional magnetic field gradients are applied, which results in a signal attenuation proportional to the diffusion rate, as water molecules move (‘or diffuse’) out of their original voxel due to diffusion.

The method for acquiring diffusion-weighted images with an MRI machine (i.e., the ‘acquisition sequence’ of applying radiofrequency pulses and switching gradients on and off) is designed to gain sensitivity to the water molecules diffusing from their original location. The measured diffusion coefficient is considered to be related to microstructural properties of the tissue, namely the density of tissue structures such as macromolecules and membranes that restrict water diffusion. Together with other diffusion parameters that can be obtained by fitting the signal to other functions or ‘models’, the diffusion coefficient can be used to characterise and distinguish between different (tumour) tissue types, which is the aim of this new imaging tool.

IV. Signal and image processing

The signal acquired by MRI machines undergoes many processing steps before they appear as images on the screen. Some of these steps are performed automatically by the MRI system while others require standardized operations in the software package supplied by the manufacturer, and yet other, more advanced, manipulations are performed in custom-made programs or software packages developed for specific research purposes. In the field of diffusion MRI, software packages that perform the most common fitting procedures are available but often custom-made algorithms are required. The reason for this is that diffusion MRI is originally developed for brain imaging, while investigating its feasibility in other organs has started more recently and only makes up a small part of the field. New applications generate new challenges. For example, unlike the brain, kidneys (and other abdominal organs) move up and down as a consequence of breathing. Therefore, specific algorithms manipulating the scan to correct for this respiratory motion are required for diffusion MRI of the kidneys. Furthermore, as tissue structure and physiology in the kidneys differ from that in the brain, existing models need to be adjusted to that of the kidney.

In this paper, we have argued that interdisciplinary collaboration is difficult because of the role of experts’ disciplinary perspective, which shapes their view and approach to a problem and creates cognitive and epistemological barriers when collaborating with other disciplines. To overcome these barriers, disciplinary experts involved in interdisciplinary research projects need to be able to explicate their own disciplinary perspective. This ability is part of what is known as interdisciplinary expertise [ 8 ]. We defend that interdisciplinary expertise begins with creating awareness of the role of disciplinary perspectives in how experts view a problem, interpret it, formulate questions and develop solutions.

Analytical frameworks to guide interdisciplinary research processes previously developed by other authors typically focus on the process of interdisciplinary collaboration [ 9 , 10 , 11 , 12 , 13 , 14 , 15 ]. The approach we propose here contributes to this literature by addressing the deeper cognitive and epistemological challenges of interdisciplinary research collaboration on the role of the disciplinary perspective as an inherent part of one’s expertise [ 5 , 16 ]. Several authors have already used the concept of ‘disciplinary perspectives’ to point out the challenges of interdisciplinary research (e.g., [ 9 , 15 ]). Our contribution to this literature is the idea, based on philosophical insights into the epistemology of interdisciplinary research, that disciplinary perspectives can be made explicit, and next, to provide an analytical framework with which disciplinary perspectives within an interdisciplinary research context can be systematically described (as in Table 1 ) with the aim of facilitating interdisciplinary communication within such research projects.

Our further contribution is that we have applied this framework to a concrete case, thereby demonstrating that disciplinary perspectives within a concrete interdisciplinary research project can actually be analyzed and explicated in terms of a coherent set of elements that make up the proposed framework. The result of this analysis (in Table  2 ) shows a coherent description of the discipline in question per column, with an explanation per aspect of what this aspect means for the interdisciplinary research project. It can also be seen that the horizontal comparison (in Table  2 ) results in very different descriptions per aspect for each discipline. We believe that this example demonstrates that it is possible to explain the nature of a specific discipline in a way that is accessible to experts from other disciplines. We do not claim, therefore, that this table is an exhaustive description of the four disciplines involved. Instead, our aim is to show that the approach outlined in this table reduces cognitive and epistemological barriers in interdisciplinary research by enabling communication about the content and nature of the disciplines involved.

We suggest that educators can explore how the framework and philosophical underpinning can be implemented in HPE to support the development of students’ interdisciplinary expertise. Much has been written, especially in the engineering education literature, about the importance of interdisciplinarity and how to teach it. A recent systematic review article shows that the focus of education aimed at interdisciplinarity is on so-called soft skills such as communication and teamwork. Project-based learning is often used to teach the necessary skills, but without specific support to promote these skills [ 7 ]. In our literature review on education for interdisciplinarity [ 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 ], we did not find any authors who specifically address the cognitive and epistemological barriers to interdisciplinary collaboration as described in our article. One possible reason for this is that current epistemological views on the application of science in real-world problem-solving contexts, such as the research project presented here, do not recognise the inherent cognitive and epistemological barriers philosophically explained in this article [ 78 ]. The novelty of our approach is therefore our emphasis on the epistemological and cognitive barriers between disciplines that result from the ineradicable role of disciplinary perspectives in the discipline-bound way in which researchers frame and interpret the common problem. This makes interdisciplinary communication and integration particularly difficult. Specific scaffolds are needed to overcome these barriers. The framework proposed here, which systematically makes the disciplinary perspective explicit, aims to be such a scaffold. We therefore argue that much more attention should be paid to this specific challenge of interdisciplinary collaboration in academic HPE education. This requires both an in-depth philosophical explanation that offers a new view of scientific knowledge that makes clear why interdisciplinary research is difficult, and learning how to make disciplinary perspectives explicit, for which the proposed framework provides a metacognitive scaffold.

We have implemented this framework in a newly designed minor programme that uses challenge-based learning and aims to develop interdisciplinary research skills. In this minor, small groups of students from different disciplines work on the (interdisciplinary) analysis and solution of a complex real-world problem. A number of other scaffolds focused on the overarching learning objective have been included in the educational design, which means that the framework proposed here cannot be tested in isolation. Although our research into whether this new educational design achieves the intended learning goal is not yet complete, our initial experience of using the framework is positive. Students, guided by the teacher, are able to use the framework in their interdisciplinary communication - first in a general sense to get to know each other’s disciplines and then within their research project. This implies that the framework is useful in education aimed at learning to conduct interdisciplinary research.

This example, where the framework has been implemented in education aimed at developing interdisciplinary research skills, also shows that although it was developed in the context of a medical-technical research project, it is in fact very general and well suited for any interdisciplinary research.

A critical comment should be made regarding our preliminary evidence of the framework’s usefulness. The first author, who was PI of the interdisciplinary medical research project, in which she applied this framework in her role as coordinator, was also involved in the development of the framework [ 35 , 36 ]. She, therefore has a detailed insight into the theoretical underpinnings of the framework in relation to its intended application. The lack of such a theoretical background may make it more difficult to apply the framework in interdisciplinary research. Footnote 8 Which is why we have provided an extensive elaboration of these underpinnings in this paper.

Further research should address the question of whether this scaffold can facilitate interdisciplinary collaboration between disciplinary experts.

Further research is also needed to systematically analyse the value of this framework in HPE education. This starts with the question of what type of educational design it can be successfully implemented in. Other important questions are: Can interdisciplinary expertise be acquired without knowledge of the other discipline (e.g., biomedical engineering)? In other words, how much education in other disciplines should HPE provide to prepare experts to participate in specific interdisciplinary collaborations?

Furthermore, we emphasize that in addition to learning to use this framework as a metacognitive scaffold to gain a deeper understanding of the epistemological and cognitive barriers, students also need to develop other skills necessary for interdisciplinary research collaboration and working in interdisciplinary teams. The frameworks discussed in our introduction that analyse and guide the interdisciplinary research process provide insights into these skills (e.g. [ 9 , 10 , 11 , 12 ] and [ 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 ]).

We suggest that the article as a whole can be used in such educational settings to achieve several goals, provided that students are guided and coached by educators. First, to foster student’s understanding of the epistemological challenges of interdisciplinary collaboration and to recognize that these challenges are usually underestimated and not addressed in most approaches. Second, by providing insights into the epistemological challenges by outlining the philosophical underpinnings, students will be made aware of having a disciplinary perspective and how it guides their work. Finally, by providing a framework that can be used to analyse these disciplinary perspectives and by providing an example from the case description. When successful, this approach encourages students to developing transferrable skills that can be used in research projects beyond the initial educational project.

Conclusions

Interdisciplinary research collaborations can be facilitated by a better understanding of how an expert’s disciplinary perspectives enables and guides their specific approach to a problem. Implicit disciplinary perspectives can and should be made explicit in a systematic manner, for which we propose a framework that can be used by disciplinary experts participating in interdisciplinary research projects. With this framework, and its philosophical underpinning, we contribute to a fundamental aspect of interdisciplinary collaborations.

Availability of data and materials

All data generated or analysed during this study are included in this published.

In this article, we use ‘disciplines,’ ‘fields’ and ‘specialisms’ interchangeably.

Bridle (2013), Klein (1990), Newell (2007) and Szostak (2002) provide activities that are important for interdisciplinary collaborations, such as communication, negotiation and evaluating assumptions. In order to be able to perform such activities, students need to develop the appropriate skills [ 9 , 17 , 18 , 19 ].

Roux et al. (2017) provide a clear characterization of transdisciplinary research: “A key aim of transdisciplinary research is for actors from science, policy and practice to co-evolve their understanding of a social–ecological issue, reconcile their diverse perspectives and co-produce appropriate knowledge to serve a common purpose.” ([ 20 ], p. 1).

Boon (2020, 2023) explains the notion of conceptual modelling in application oriented research [ 21 , 22 ].

i.e., a framework that enables us to think analytically and systematically about our cognitive processes when we use and produce knowledge [ 39 , 40 ].

Yet, we recognize that this belief was plausible in Kuhn’s era, where the idea that humans (including scientists) are inevitably and indelibly guided by paradigms and perspectives was revolutionary and devastating with regard to the rational view of man. But nowadays we have become familiar with this idea, which offers an opening for the metacognitive abilities that we suggest.

To scholars in HPE, we recommend the entry on Ludwik Fleck in the Stanford Encyclopedia of Philosophy [ 49 ].

The point made here touches on a more fundamental issue that is beyond the scope of this article. Namely, that resistance of students, but also of teachers, to the described approach may have to do with more traditional epistemological beliefs about science that do not fit well with the way scientific research works in practice [ 78 , 79 ]. The philosophical underpinnings of the proposed framework explained in this article suggest alternative epistemological beliefs that are more appropriate for interdisciplinary research aimed at (complex) ‘real-world’ problems.

Abbreviations

Health professions education

Magnetic Resonance Imaging

Principle investigator

Mylopoulos M, Regehr G. Cognitive metaphors of expertise and knowledge: prospects and limitations for medical education. Med Educ. 2007. https://doi.org/10.1111/j.1365-2923.2007.02912.x .

Mylopoulos M, Kulasegaram K, Woods NN. Developing the experts we need: fostering adaptive expertise through education. J Eval Clin Pract. 2018. https://doi.org/10.1111/jep.12905 .

World Health Organization (WHO). Medical devices: managing the Mismatch. An outcome of the Priority Medical devices project. WHO; 2010. https://www.who.int/publications/i/item/9789241564045 .

Gilbert JH, Yan J, Hoffman SJ. A WHO report: framework for action on interprofessional education and collaborative practice. J Allied Health. 2010;39(Suppl 1):196–7.

Google Scholar  

MacLeod M. What makes interdisciplinarity difficult? Some consequences of domain specificity in interdisciplinary practice. Synthese. 2016. https://doi.org/10.1007/s11229-016-1236-4 .

Hudson JN, Croker A. Educating for collaborative practice: an interpretation of current achievements and thoughts for future directions. Med Educ. 2018. https://doi.org/10.1111/medu.13455 .

Van der Beemt A, MacLeod M, van der Veen JT, van de Ven A, van Baalen S, Klaassen RG, Boon M. Interdisciplinary engineering education: a review of vision, teaching and support. J Eng Educ. 2020;109(1). https://doi.org/10.1002/jee.20347 .

Boon M, Van Baalen SJ, Groenier M. Interdisciplinary expertise in medical practice: challenges of using and producing knowledge in complex problem-solving. Med Teach. 2019. https://doi.org/10.1080/0142159X.2018.1544417 .

Klein J. Interdisciplinarity: history, theory and practice. Detroit, MI: Wayne State University; 1990.

Repko A, Navakas F, Fiscella J. Integrating interdisciplinarity: how the theories of common ground and Cognitive_Interdisciplinarity are informing the debate on interdisciplinary integration. Issues Interdisciplinary Stud. 2007;25:1–31.

Menken S, Keestra M, Rutting L, Post G, de Roo M, Blad S, de Greef L. An introduction to interdisciplinary research: theory and practice. Amsterdam: Amsterdam University; 2016.

Book   Google Scholar  

Repko AF, Szostak R. Interdisciplinary research. Process and theory. 3rd ed. Los Angeles: Sage; 2017.

Hasan MN, Koksal C, Montel L, Le Gouais A, Barnfield A, Bates G, Kwon HR. Developing shared understanding through online interdisciplinary collaboration: reflections from a research project on better integration of health outcomes in future urban. Futures. 2023. https://doi.org/10.1016/j.futures.2023.103176 .

Stokols D, Olson JS, Salazar M, Olson GM. Strengthening the ecosystem for effective team science: a case study from University of California, Irvine, USA. 2019. https://i2insights.org/2019/02/19/team-science-ecosystem/ . Accessed 2 Feb 2024 .

Brister E. Disciplinary capture and epistemological obstacles to interdisciplinary research: lessons from Central African conservation disputes. Stud History Philos Sci part C: Stud History Philos Biol Biomedical Sci. 2016. https://doi.org/10.1016/j.shpsc.2015.11.001 .

Boon M, Orozco M, Sivakumar K. Epistemological and educational issues in teaching practice-oriented scientific research: roles for philosophers of science. Eur J Philos Sci. 2022;12(1):16. https://doi.org/10.1007/s13194-022-00447-z .

Article   Google Scholar  

Bridle H, Vrieling A, Cardillo M, Araya Y, Hinojosa L. Preparing for an interdisciplinary future: a perspective from early-career researchers. Futures. 2013. https://doi.org/10.1016/j.futures.2013.09.003 .

Newell WH. Decision-making in Interdisciplinary studies. In: Morcol G, editor. Handbook of decision making. New York: CRC Press/Taylor & Francis Group; 2007. p. 245–65.

Szostak R. How to do interdisciplinarity. Integrating the debate. Issues Integr Stud. 2002;20:103–22.

Roux DJ, Nel JL, Cundill G, O’farrell P, Fabricius C. Transdisciplinary research for systemic change: who to learn with, what to learn about and how to learn. Sustain Sci. 2017. https://doi.org/10.1007/s11625-017-0446-0 .

Boon M. The role of disciplinary perspectives in an epistemology of models. Eur J Philos Sci. 2020. https://doi.org/10.1007/s13194-020-00295-9 .

Boon M, Conceptual modelling as an overarching research skill in engineering education. SEFI2023 2023;  https://doi.org/10.21427/ZDX4-VV41 accessed through https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1074&context=sefi2023_prapap .

Guraya SY, Barr H. The effectiveness of interprofessional education in healthcare: a systematic review and meta-analysis. Kaohsiung J Med Sci. 2018. https://doi.org/10.1016/j.kjms.2017.12.009 .

Darlow B, Brown M, McKinlay E, Gray L, Purdie G, Pullen S. Longitudinal impact of preregistration interprofessional education on the attitudes and skills of health professionals during their early careers: a non-randomised trial with 4-year outcomes. BMJ Open. 2022;12(7):e060066. https://doi.org/10.1136/bmjopen-2021-060066 .

Clark G. Institutionalizing interdisciplinary health professions programs in higher education: the implications of one story and two laws. J Interprof Care. 2004. https://doi.org/10.1080/13561820410001731296 .

O’Keefe M, Henderson A, Chick R. Defining a set of common interprofessional learning competencies for health profession students. Med Teach. 2017. https://doi.org/10.1080/0142159X.2017.1300246 .

Choi BC, Pak AW. Multidisciplinarity, interdisciplinarity, and transdisciplinarity in health research, services, education and policy: 2. Promotors, barriers, and strategies of enhancement. Clin Invest Med. 2007. https://doi.org/10.25011/cim.v30i6.2950 .

Lawlis TR, Anson J, Greenfield D. Barriers and enablers that influence sustainable interprofessional education: a literature review. J Interprof Care. 2014. https://doi.org/10.3109/13561820.2014.895977 .

Schwartz DL, Bransford JD, Sears D. Efficiency and innovation in transfer. In transfer of learning from a modern multidisciplinary perspective . Charlotte, NC: Information age publishing. 2005; 3:1–51. Edited by JP Mestre JP.

Mylopoulos M, Regehr G. Putting the expert together again. Med Educ. 2011. https://doi.org/10.1111/j.1365-2923.2011.04032.x .

Carbonell KB, Stalmeijer RE, Könings KD, Segers M, van Merriënboer JJ. How experts deal with novel situations: a review of adaptive expertise. Educ Res Rev. 2014. https://doi.org/10.1016/j.edurev.2014.03.001 .

Kulasegaram K, Min C, Howey E, Neville A, Woods N, Dore K, et al. The mediating effect of context variation in mixed practice for transfer of basic science. Adv Health Sci Educ. 2015. https://doi.org/10.1007/s10459-014-9574-9 .

Castillo JM, Park YS, Harris I, Cheung JJH, Sood L, Clark MD, et al. A critical narrative review of transfer of basic science knowledge in health professions education. Med Educ. 2018. https://doi.org/10.1111/medu.13519 .

Dyre L, Tolsgaard MG. The gap in transfer research. Med Educ. 2018. https://doi.org/10.1111/medu.13591 .

Van Baalen S, Leemans A, Dik P, Lilien MR, Ten Haken B, Froeling M. Intravoxel incoherent motion modeling in the kidneys: comparison of mono-, bi-, and triexponential fit. J Magn Reson Imaging. 2017. https://doi.org/10.1002/jmri.25519 .

Van Baalen S, Froeling M, Asselman M, Klazen C, Jeltes C, Van Dijk L, et al. Mono, bi-and tri-exponential diffusion MRI modelling for renal solid masses and comparison with histopathological findings. Cancer Imaging. 2018. https://doi.org/10.1186/s40644-018-0178-0 .

Kuhn TS. The Structure of Scientific Revolutions. 2nd ed. Chicago: The University of Chicago Press; 1970.

Boon M, Van Baalen S. Epistemology for interdisciplinary research–shifting philosophical paradigms of science. Eur J Philos Sci. 2019. https://doi.org/10.1007/s13194-018-0242-4 .

Flavell JH. Metacognition and cognitive monitoring: a new area of cognitive–developmental inquiry. Am Psychol. 1979. https://doi.org/10.1037/0003-066X.34.10.906 .

Pintrich P P.R. The role of metacognitive knowledge in learning, teaching, and assessing. Theory into Pract. 2002. https://doi.org/10.1207/s15430421tip4104_3 .

Groenier M, Pieters JM, Miedema HAT. Technical medicine: designing medical technological solutions for improved health care. Med Sci Educ 2017, https://doi.org/10.1007/s40670-017-0443-z

Chandarana H, Kang SK, Wong S, Rusinek H, Zhang JL, Arizono S et al. Diffusion-Weighted Intravoxel Incoherent Motion Imaging of Renal Tumors with Histopathologic Correlation. Invest Radiol 2012. https://doi.org/10.1097/RLI.0b013e31826a0a49 .

Feng Q, Ma Z, Zhang S, Wu J. Usefulness of diffusion tensor imaging for the differentiation between low-fat angiomyolipoma and clear cell carcinoma of the kidney. SpringerPlus. 2016. https://doi.org/10.1186/s40064-015-1628-x .

Rheinheimer S, Stieltjes B, Schneider F, Simon D, Pahernik S, Kauczor HU, et al. Investigation of renal lesions by diffusion-weighted magnetic resonance imaging applying intravoxel incoherent motion-derived parameters–initial experience. Eur J Radiol. 2012. https://doi.org/10.1016/j.ejrad.2011.10.016 .

Van der Bel R, Gurney-Champion OJ, Froeling M, Stroues ESG, Nederveen AJ, Krediet CTP. A tri-exponential model for intravoxel incoherent motion analysis of the human kidney: in silico and during pharmacological renal perfusion modulation. Eur J Radiol. 2017. https://doi.org/10.1016/j.ejrad.2017.03.008 .

Boon M: Philosophy of science in practice: a proposal for epistemological constructivism. 2015; Helsinki (Finland). Edited by Leitgeb H, Niiniluoto I, Seppälä P, Sober E. Helsinki (Finland): College publications. 2017a:289–310. 2017a.

Fleck L. Genesis and development of a scientific fact. Chicago: University of Chicago Press; 1935/1979.

Mößner N. Thought styles and paradigms—a comparative study of Ludwik Fleck and Thomas S. Kuhn. Stud Hist Philos Sci Part A. 2011. https://doi.org/10.1016/j.shpsa.2010.12.002 .

Sady W. Ludwik Fleck. In: the stanford encyclopedia of philosophy. Zalta EN, editor. 2017. https://plato.stanford.edu/archives/fall2017/entries/fleck/ . Accessed 30 Jul 2020.

Boon M. An engineering paradigm in the biomedical sciences: knowledge as epistemic tool. Prog Biophys Mol Biol. 2017b. doi:j.pbiomolbio.2017.04.001.

Van Baalen S, Boon M. An epistemological shift: from evidence-based medicine to epistemological responsibility. J Eval Clin Pract. 2015. https://doi.org/10.1111/jep.12282 .

Woods NN, Brooks LR, Norman GR. The role of biomedical knowledge in diagnosis of difficult clinical cases. Adv Health Sci Educ. 2007;12:417–26.

Schmidt HG, Rikers RMJP. How expertise develops in medicine: knowledge encapsulation and illness script formation. Med Educ. 2007. https://doi.org/10.1111/j.1365-2923.2007.02915.x .

Newell WH. A theory of interdisciplinary studies. Issues Integr Stud. 2001;19:1–25.

Ivanitskaya L, Clark D, Montgomery G, Primeau R. Interdisciplinary learning: process and outcomes. Innov High Educ. 2002. https://doi.org/10.1023/A:1021105309984 .

Nikitina S. Three strategies for interdisciplinary teaching: contextualizing, conceptualizing, and problem-centring. J Curric stud. 2006. https://doi.org/10.1080/00220270500422632 .

Aram JD. Concepts of interdisciplinarity: configurations of knowledge and action. Hum Relat. 2004. https://doi.org/10.1177/0018726704043893 .

Aboelela SW, Larson E, Bakken S, Carrasquillo O, Formicola A, Glied SA, et al. Defining interdisciplinary research: conclusions from a critical review of the literature. Health Serv Res. 2007. https://doi.org/10.1111/j.1475-6773.2006.00621.x .

Mansilla VB, Duraisingh ED, Wolfe CR, Haynes C. Targeted assessment rubric: an empirically grounded rubric for interdisciplinary writing. J High Educ. 2009;80(3):334–53.

Spelt EJ, Biemans HJ, Tobi H, Luning PA, Mulder M. Teaching and learning in interdisciplinary higher education: a systematic review. Educ Psychol Rev. 2009. https://doi.org/10.1007/s10648-009-9113-z .

Klein JA. A Taxonomy of interdisciplinarity. In: Frodeman R, editor. In the oxford handbook of interdisciplinarity. Oxford: Oxford University press; 2010. p. 15–30.

Terpstra JL, Best A, Abrams DB, Moor G. Health sciences and health services. In: Frodeman R, editor. The Oxford Handbook of Interdisciplinarity. Oxford: Oxford University Press; 2010.

DeZure D. Interdisciplinary pedagogies in higher education. In: Frodeman R, editor. In the oxford handbook of interdisciplinarity. Oxford: Oxford University press; 2010. p. 372–87.

Frenk J, Chen L, Bhutta ZA, Cohen J, Crisp N, Evans T. Health professionals for a new century: transforming education to strengthen health systems in an interdependent world. Lancet. 2010. https://doi.org/10.1016/S0140-6736(10)61854-5 .

Haynes C, Brown-Leonard J. From surprise parties to mapmaking: undergraduate journeys toward interdisciplinary understanding. J High Educ. 2010. https://doi.org/10.1080/00221546.2010.11779070 .

Hirsch-Hadorn G, Pohl C, Bammer G. Solving problems through transdisciplinary research. In: Frodeman R, editor. In the oxford handbook of interdisciplinarity. Oxford: Oxford University press; 2010. p. 431–52.

Szostak R. The interdisciplinary research process. In: Repko AF, Newell WH, Szostak R, editors. In Interdisciplinary research: case studies of integrative understandings of complex problems. Thousand Oaks, CA: Sage; 2011. p. 3–19.

McNair LD, Newswander C, Boden D, Borrego M. Student and faculty interdisciplinary identities in self-managed teams. J Eng Educ. 2011. https://doi.org/10.1002/j.2168-9830.2011.tb00018.x .

Liu SY, Lin CS, Tsai CC. College Students’ scientific epistemological views and thinking patterns in Socioscientific decision making. Sci Educ. 2011. https://doi.org/10.1002/sce.20422 .

Abu-Rish E, Kim S, Choe L, Varpio L, Malik E, White AA, et al. Current trends in interprofessional education of health sciences students: a literature review. J Interprof Care. 2012. https://doi.org/10.3109/13561820.2012.715604 .

Bammer G. Disciplining interdisciplinarity - integration and implementation sciences for researching Complex real-world problems. Canberra: Australian National University E-Press; 2013.

Holbrook JB. What is interdisciplinary communication? Reflections on the very idea of disciplinary integration. Synthese. 2013. https://doi.org/10.1007/s11229-012-0179-7 .

Andersen H. The second essential tension: on tradition and innovation in interdisciplinary research. Topoi. 2013. https://doi.org/10.1007/s11245-012-9133-z .

Andersen H. Collaboration, interdisciplinarity, and the epistemology of contemporary science. Stud Hist Philos Sci Part A. 2016. https://doi.org/10.1016/j.shpsa.2015.10.006 .

Lattuca LR, Knight DB, Bergom IM. Developing a measure of interdisciplinary competence for engineers. Paper presented at the American Society for Engineering Education 2012 Annual Conference & Exposition, San Antonio, Texas, USA; 2013.

Acquavita SP, Lewis MA, Aparicio E, Pecukonis E. Student perspectives on interprofessional education and experiences. J Allied Health. 2014;43(2):e31–6.

Pharo E, Davison A, McGregor H, Warr K, Brown P. Using communities of practice to enhance interdisciplinary teaching: lessons from four Australian institutions. High Educ Res Dev. 2014. https://doi.org/10.1080/07294360.2013.832168 .

Boon M. How philosophical beliefs about science affect science education in academic engineering programs: the context of construction. Eng Stud. 2022. https://doi.org/10.1080/19378629.2022.2125398 .

Bromme R, Pieschl S, Stahl E. Epistemological beliefs are standards for adaptive learning: a functional theory about epistemological beliefs and metacognition. Metacognition Learn. 2010. https://doi.org/10.1007/s11409-009-9053-5 .

Download references

Acknowledgements

We are very grateful to three anonymous reviewers who have provided valuable feedback and suggestions that have helped us improve the paper.

This work is financed by an Aspasia grant (409.40216) of the Dutch National Science Foundation (NWO) for the project Philosophy of Science for the Engineering Sciences , and by the work package Interdisciplinary Engineering Education at the 4TU-CEE (Centre Engineering Education https://www.4tu.nl/cee/en/ ) in The Netherlands.

Author information

Authors and affiliations.

Department of Philosophy, University of Twente, Enschede, The Netherlands

Sophie van Baalen & Mieke Boon

Rathenau Instituut, Den Haag, The Netherlands

Sophie van Baalen

You can also search for this author in PubMed   Google Scholar

Contributions

SvB and MB have co-authored the manuscript and have contributed equally to the article.

Authors' information

Mieke Boon (PhD) graduated in chemical engineering (cum laude) and is a full professor in philosophy of science in practice . Her research aims at a philosophy of science for the engineering sciences , addressing topics such as methodology, technological instruments, scientific modeling, paradigms of science, interdisciplinarity, and science teaching. Sophie van Baalen (PhD) graduated in technical medicine and in philosophy of science technology and society , both cum laude. She recently finished her PhD project in which she aimed to understand epistemological aspects of technical medicine from a philosophy of science perspective, such as evidence-based medicine, expertise, interdisciplinarity and technological instruments.

Corresponding author

Correspondence to Mieke Boon .

Ethics declarations

Ethics approval and consent to participate.

No human participants were involved in this research, so ethical approval and/or consent to participate is not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

van Baalen, S., Boon, M. Understanding disciplinary perspectives: a framework to develop skills for interdisciplinary research collaborations of medical experts and engineers. BMC Med Educ 24 , 1000 (2024). https://doi.org/10.1186/s12909-024-05913-1

Download citation

Received : 14 July 2023

Accepted : 14 August 2024

Published : 13 September 2024

DOI : https://doi.org/10.1186/s12909-024-05913-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Adaptive expertise
  • Interdisciplinary expertise
  • Metacognitive skills
  • Higher-order cognitive abilities
  • Epistemology
  • Problem-solving
  • Disciplinary perspectives
  • Medical technology

BMC Medical Education

ISSN: 1472-6920

theoretical and conceptual framework in research proposal

IMAGES

  1. Conceptual Theoretical Framework Research Papers

    theoretical and conceptual framework in research proposal

  2. How to Pick a Theoretical / Conceptual Framework For Your Dissertation

    theoretical and conceptual framework in research proposal

  3. sample research proposal with conceptual framework

    theoretical and conceptual framework in research proposal

  4. Theoretical vs Conceptual Framework (+ Examples)

    theoretical and conceptual framework in research proposal

  5. Thesis Theoretical Framework Sample

    theoretical and conceptual framework in research proposal

  6. PPT

    theoretical and conceptual framework in research proposal

VIDEO

  1. 3 Theoretical framework vs Conceptual framework

  2. Theoretical Framework กับ Conceptual Framework #วิจัย #research

  3. Choosing a Theoretical and Conceptual Framework

  4. What is a Theoretical Framework really? simple explanation

  5. Theoretical Framework

  6. THEORETICAL FRAMEWORK CHECKLISTS l PART 2

COMMENTS

  1. Theoretical vs Conceptual Framework (+ Examples)

    If you're new to academic research, sooner or later you're bound to run into the terms theoretical framework and conceptual framework.These are closely related but distinctly different things (despite some people using them interchangeably) and it's important to understand what each means. In this post, we'll unpack both theoretical and conceptual frameworks in plain language along ...

  2. (Pdf) Theoretical and Conceptual Frameworks in Research: Conceptual

    conceptual and theoretical frameworks. As conceptual defines the key co ncepts, variables, and. relationships in a research study as a roadmap that outlines the researcher's understanding of how ...

  3. What is a Theoretical Framework? How to Write It (with Examples)

    A theoretical framework guides the research process like a roadmap for the study, so you need to get this right. Theoretical framework 1,2 is the structure that supports and describes a theory. A theory is a set of interrelated concepts and definitions that present a systematic view of phenomena by describing the relationship among the variables for explaining these phenomena.

  4. Conceptual vs Theoretical Frameworks

    Theoretical and conceptual frameworks are foundational components of any research study. They each play a crucial role in guiding and structuring the research, from the formation of research questions to the interpretation of results.. While both the theoretical and conceptual framework provides a structure for a study, they serve different functions and can impact the research in distinct ...

  5. Step 5

    Often, the terms theoretical framework and conceptual framework are used interchangeably, which, in this author's opinion, makes an already difficult to understand idea even more confusing. According to Imenda (2014) and Mensah et al. (2020), there is a very distinct difference between conceptual and theoretical frameworks, not only how they ...

  6. PDF Conceptual and Theoretical Frameworks in Research

    this may also be called the 'theoretical framework' or 'idea context' for the study." (p. 39) Marshall and Rossman (2016) "The first major section of the proposal—the conceptual framework—demands a solid rationale. In examining a specific setting or set of individuals, the writer should show

  7. Literature Reviews, Theoretical Frameworks, and Conceptual Frameworks

    Including a conceptual framework in a research study is important, but researchers often opt to include either a conceptual or a theoretical framework. Either may be adequate, but both provide greater insight into the research approach. For instance, a research team plans to test a novel component of an existing theory.

  8. What Is a Conceptual Framework?

    Developing a conceptual framework in research. Step 1: Choose your research question. Step 2: Select your independent and dependent variables. Step 3: Visualize your cause-and-effect relationship. Step 4: Identify other influencing variables. Frequently asked questions about conceptual models.

  9. What Is a Theoretical Framework?

    A theoretical framework is a foundational review of existing theories that serves as a roadmap for developing the arguments you will use in your own work. Theories are developed by researchers to explain phenomena, draw connections, and make predictions. In a theoretical framework, you explain the existing theories that support your research ...

  10. Theoretical Framework Example for a Thesis or Dissertation

    Theoretical Framework Example for a Thesis or Dissertation. Published on October 14, 2015 by Sarah Vinz. Revised on July 18, 2023 by Tegan George. Your theoretical framework defines the key concepts in your research, suggests relationships between them, and discusses relevant theories based on your literature review.

  11. Theoretical and Conceptual Framework: Mandatory Ingredients of A

    Introduction. The theoretical and conceptual framework explains the path of a. research and grounds it firmly in theoretical constructs. The overall. aim of the two frameworks is to make research ...

  12. What Is a Conceptual Framework?

    Developing a conceptual framework in research. A conceptual framework is a representation of the relationship you expect to see between your variables, or the characteristics or properties that you want to study. Conceptual frameworks can be written or visual and are generally developed based on a literature review of existing studies about ...

  13. Theoretical Framework vs Conceptual Framework In Research: Simple

    Learn about the difference between a theoretical framework and a conceptual framework. We explain what each of these frameworks is, how they differ and how t...

  14. Theoretical Framework

    The theoretical framework is the structure that can hold or support a theory of a research study. The theoretical framework encompasses not just the theory, but the narrative explanation about how the researcher engages in using the theory and its underlying assumptions to investigate the research problem.

  15. PDF CHAPTER CONCEPTUAL FRAMEWORKS IN RESEARCH distribute

    A conceptual framework enables you to make an argument for the value and significance of your research in ways that reflect the intentionality of the process of uncovering the ways in which studies emerge from and contribute to the corpus of research in your substantive area (Maxwell, 2013; Ravitch & Riggan, 2016).

  16. PDF Distinguishing between Theory, Theoretical Framework, and Conceptual

    Keywords: theory, theoretical framework, conceptual framework, research proposal, thesis 1. Introduction Either from marking assessment tasks of my Higher Degree Research (HDR) students that have to complete Research Methods to be allowed to apply for admission into a higher degree, or from evaluating research proposals

  17. (PDF) Literature Reviews, Conceptual Frameworks, and Theoretical

    This essay starts with a discussion of the literature review, theoretical framework, and conceptual framework as components of a manuscript. This discussion includes similarities and distinctions ...

  18. What is the difference between a conceptual framework and a theoretical

    A literature review and a theoretical framework are not the same thing and cannot be used interchangeably. While a theoretical framework describes the theoretical underpinnings of your work, a literature review critically evaluates existing research relating to your topic. You'll likely need both in your dissertation.

  19. What is a Theoretical Framework?

    A theoretical framework is a foundational review of existing theories that serves as a roadmap for developing the arguments you will use in your own work. Theories are developed by researchers to explain phenomena, draw connections, and make predictions. In a theoretical framework, you explain the existing theories that support your research ...

  20. Writing theoretical frameworks, analytical frameworks and conceptual

    A robust conceptual framework describes the different concepts one would need to know to understand a particular phenomenon, without pretending to create causal links across variables and outcomes. In my view, theoretical frameworks set expectations, because theories are constructs that help explain relationships between variables and specific ...

  21. Integration of a theoretical framework into your research study

    Often the most difficult part of a research study is preparing the proposal based around a theoretical or philosophical framework. Graduate students '…express confusion, a lack of knowledge, and frustration with the challenge of choosing a theoretical framework and understanding how to apply it'.1 However, the importance in understanding and applying a theoretical framework in research ...

  22. Building a Conceptual Framework: Philosophy, Definitions, and Procedure

    Abstract. In this paper the author proposes a new qualitative method for building conceptual frameworks for phenomena that are linked to multidisciplinary bodies of knowledge. First, he redefines the key terms of concept, conceptual framework, and conceptual framework analysis. Concept has some components that define it.

  23. How to Write the Conceptual Framework in a Research Proposal

    E-book on How to Write the Conceptual Framework in a Research Proposal. To be more effective in addressing the readers' queries, I wrote the e-book titled " Conceptual Framework Development Handbook: A Step-by-Step Guide with Five Practical Examples.". The e-book is a compilation of all conceptual framework related articles that I ...

  24. Understanding disciplinary perspectives: a framework to develop skills

    The general aspects indicated by italics in each question in Table 1 are interdependent, so that analysis using this framework results in a coherent description of the disciplinary perspective in terms of these aspects. The framework can be used by experts in an interdisciplinary research project not only to make explicit their disciplinary perspective in a general sense, but to also to ...