• Alternatives đŸ”„

10 Methods of Data Presentation That Really Work in 2024

Leah Nguyen ‱ 20 August, 2024 ‱ 13 min read

Have you ever presented a data report to your boss/coworkers/teachers thinking it was super dope like you’re some cyber hacker living in the Matrix, but all they saw was a pile of static numbers that seemed pointless and didn't make sense to them?

Understanding digits is rigid . Making people from non-analytical backgrounds understand those digits is even more challenging.

How can you clear up those confusing numbers and make your presentation as clear as the day? Let's check out these best ways to present data. 💎

How many type of charts are available to present data?7
How many charts are there in statistics?4, including bar, line, histogram and pie.
How many types of charts are available in Excel?8
Who invented charts?William Playfair
When were the charts invented?18th Century

More Tips with AhaSlides

  • Marketing Presentation
  • Survey Result Presentation
  • Types of Presentation

Alternative Text

Start in seconds.

Get any of the above examples as templates. Sign up for free and take what you want from the template library!

Data Presentation - What Is It?

The term ’data presentation’ relates to the way you present data in a way that makes even the most clueless person in the room understand. 

Some say it’s witchcraft (you’re manipulating the numbers in some ways), but we’ll just say it’s the power of turning dry, hard numbers or digits into a visual showcase that is easy for people to digest.

Presenting data correctly can help your audience understand complicated processes, identify trends, and instantly pinpoint whatever is going on without exhausting their brains.

Good data presentation helps


  • Make informed decisions and arrive at positive outcomes . If you see the sales of your product steadily increase throughout the years, it’s best to keep milking it or start turning it into a bunch of spin-offs (shoutout to Star Wars👀).
  • Reduce the time spent processing data . Humans can digest information graphically 60,000 times faster than in the form of text. Grant them the power of skimming through a decade of data in minutes with some extra spicy graphs and charts.
  • Communicate the results clearly . Data does not lie. They’re based on factual evidence and therefore if anyone keeps whining that you might be wrong, slap them with some hard data to keep their mouths shut.
  • Add to or expand the current research . You can see what areas need improvement, as well as what details often go unnoticed while surfing through those little lines, dots or icons that appear on the data board.

Methods of Data Presentation and Examples

Imagine you have a delicious pepperoni, extra-cheese pizza. You can decide to cut it into the classic 8 triangle slices, the party style 12 square slices, or get creative and abstract on those slices. 

There are various ways to cut a pizza and you get the same variety with how you present your data. In this section, we will bring you the 10 ways to slice a pizza - we mean to present your data - that will make your company’s most important asset as clear as day. Let's dive into 10 ways to present data efficiently.

#1 - Tabular 

Among various types of data presentation, tabular is the most fundamental method, with data presented in rows and columns. Excel or Google Sheets would qualify for the job. Nothing fancy.

a table displaying the changes in revenue between the year 2017 and 2018 in the East, West, North, and South region

This is an example of a tabular presentation of data on Google Sheets. Each row and column has an attribute (year, region, revenue, etc.), and you can do a custom format to see the change in revenue throughout the year.

When presenting data as text, all you do is write your findings down in paragraphs and bullet points, and that’s it. A piece of cake to you, a tough nut to crack for whoever has to go through all of the reading to get to the point.

  • 65% of email users worldwide access their email via a mobile device.
  • Emails that are optimised for mobile generate 15% higher click-through rates.
  • 56% of brands using emojis in their email subject lines had a higher open rate.

(Source: CustomerThermometer )

All the above quotes present statistical information in textual form. Since not many people like going through a wall of texts, you’ll have to figure out another route when deciding to use this method, such as breaking the data down into short, clear statements, or even as catchy puns if you’ve got the time to think of them.

#3 - Pie chart

A pie chart (or a ‘donut chart’ if you stick a hole in the middle of it) is a circle divided into slices that show the relative sizes of data within a whole. If you’re using it to show percentages, make sure all the slices add up to 100%.

Methods of data presentation

The pie chart is a familiar face at every party and is usually recognised by most people. However, one setback of using this method is our eyes sometimes can’t identify the differences in slices of a circle, and it’s nearly impossible to compare similar slices from two different pie charts, making them the villains in the eyes of data analysts.

a half-eaten pie chart

#4 - Bar chart

The bar chart is a chart that presents a bunch of items from the same category, usually in the form of rectangular bars that are placed at an equal distance from each other. Their heights or lengths depict the values they represent.

They can be as simple as this:

a simple bar chart example

Or more complex and detailed like this example of data presentation. Contributing to an effective statistic presentation, this one is a grouped bar chart that not only allows you to compare categories but also the groups within them as well.

an example of a grouped bar chart

#5 - Histogram

Similar in appearance to the bar chart but the rectangular bars in histograms don’t often have the gap like their counterparts.

Instead of measuring categories like weather preferences or favourite films as a bar chart does, a histogram only measures things that can be put into numbers.

an example of a histogram chart showing the distribution of students' score for the IQ test

Teachers can use presentation graphs like a histogram to see which score group most of the students fall into, like in this example above.

#6 - Line graph

Recordings to ways of displaying data, we shouldn't overlook the effectiveness of line graphs. Line graphs are represented by a group of data points joined together by a straight line. There can be one or more lines to compare how several related things change over time. 

an example of the line graph showing the population of bears from 2017 to 2022

On a line chart’s horizontal axis, you usually have text labels, dates or years, while the vertical axis usually represents the quantity (e.g.: budget, temperature or percentage).

#7 - Pictogram graph

A pictogram graph uses pictures or icons relating to the main topic to visualise a small dataset. The fun combination of colours and illustrations makes it a frequent use at schools.

How to Create Pictographs and Icon Arrays in Visme-6 pictograph maker

Pictograms are a breath of fresh air if you want to stay away from the monotonous line chart or bar chart for a while. However, they can present a very limited amount of data and sometimes they are only there for displays and do not represent real statistics.

#8 - Radar chart

If presenting five or more variables in the form of a bar chart is too stuffy then you should try using a radar chart, which is one of the most creative ways to present data.

Radar charts show data in terms of how they compare to each other starting from the same point. Some also call them ‘spider charts’ because each aspect combined looks like a spider web.

a radar chart showing the text scores between two students

Radar charts can be a great use for parents who’d like to compare their child’s grades with their peers to lower their self-esteem. You can see that each angular represents a subject with a score value ranging from 0 to 100. Each student’s score across 5 subjects is highlighted in a different colour.

a radar chart showing the power distribution of a Pokemon

If you think that this method of data presentation somehow feels familiar, then you’ve probably encountered one while playing PokĂ©mon .

#9 - Heat map

A heat map represents data density in colours. The bigger the number, the more colour intensity that data will be represented.

voting chart

Most US citizens would be familiar with this data presentation method in geography. For elections, many news outlets assign a specific colour code to a state, with blue representing one candidate and red representing the other. The shade of either blue or red in each state shows the strength of the overall vote in that state.

a heatmap showing which parts the visitors click on in a website

Another great thing you can use a heat map for is to map what visitors to your site click on. The more a particular section is clicked the ‘hotter’ the colour will turn, from blue to bright yellow to red.

#10 - Scatter plot

If you present your data in dots instead of chunky bars, you’ll have a scatter plot. 

A scatter plot is a grid with several inputs showing the relationship between two variables. It’s good at collecting seemingly random data and revealing some telling trends.

a scatter plot example showing the relationship between beach visitors each day and the average daily temperature

For example, in this graph, each dot shows the average daily temperature versus the number of beach visitors across several days. You can see that the dots get higher as the temperature increases, so it’s likely that hotter weather leads to more visitors.

5 Data Presentation Mistakes to Avoid

#1 - assume your audience understands what the numbers represent.

You may know all the behind-the-scenes of your data since you’ve worked with them for weeks, but your audience doesn’t.

sales data board

Showing without telling only invites more and more questions from your audience, as they have to constantly make sense of your data, wasting the time of both sides as a result.

While showing your data presentations, you should tell them what the data are about before hitting them with waves of numbers first. You can use interactive activities such as polls , word clouds , online quizzes and Q&A sections , combined with icebreaker games , to assess their understanding of the data and address any confusion beforehand.

#2 - Use the wrong type of chart

Charts such as pie charts must have a total of 100% so if your numbers accumulate to 193% like this example below, you’re definitely doing it wrong.

bad example of data presentation

Before making a chart, ask yourself: what do I want to accomplish with my data? Do you want to see the relationship between the data sets, show the up and down trends of your data, or see how segments of one thing make up a whole?

Remember, clarity always comes first. Some data visualisations may look cool, but if they don’t fit your data, steer clear of them. 

#3 - Make it 3D

3D is a fascinating graphical presentation example. The third dimension is cool, but full of risks.

data presentation in research methods

Can you see what’s behind those red bars? Because we can’t either. You may think that 3D charts add more depth to the design, but they can create false perceptions as our eyes see 3D objects closer and bigger than they appear, not to mention they cannot be seen from multiple angles.

#4 - Use different types of charts to compare contents in the same category

data presentation in research methods

This is like comparing a fish to a monkey. Your audience won’t be able to identify the differences and make an appropriate correlation between the two data sets. 

Next time, stick to one type of data presentation only. Avoid the temptation of trying various data visualisation methods in one go and make your data as accessible as possible.

#5 - Bombard the audience with too much information

The goal of data presentation is to make complex topics much easier to understand, and if you’re bringing too much information to the table, you’re missing the point.

a very complicated data presentation with too much information on the screen

The more information you give, the more time it will take for your audience to process it all. If you want to make your data understandable and give your audience a chance to remember it, keep the information within it to an absolute minimum. You should end your session with open-ended questions to see what your participants really think.

What are the Best Methods of Data Presentation?

Finally, which is the best way to present data?

The answer is


There is none! Each type of presentation has its own strengths and weaknesses and the one you choose greatly depends on what you’re trying to do. 

For example:

  • Go for a scatter plot if you’re exploring the relationship between different data values, like seeing whether the sales of ice cream go up because of the temperature or because people are just getting more hungry and greedy each day?
  • Go for a line graph if you want to mark a trend over time. 
  • Go for a heat map if you like some fancy visualisation of the changes in a geographical location, or to see your visitors' behaviour on your website.
  • Go for a pie chart (especially in 3D) if you want to be shunned by others because it was never a good idea👇

example of how a bad pie chart represents the data in a complicated way

Frequently Asked Questions

What is a chart presentation.

A chart presentation is a way of presenting data or information using visual aids such as charts, graphs, and diagrams. The purpose of a chart presentation is to make complex information more accessible and understandable for the audience.

When can I use charts for the presentation?

Charts can be used to compare data, show trends over time, highlight patterns, and simplify complex information.

Why should you use charts for presentation?

You should use charts to ensure your contents and visuals look clean, as they are the visual representative, provide clarity, simplicity, comparison, contrast and super time-saving!

What are the 4 graphical methods of presenting data?

Histogram, Smoothed frequency graph, Pie diagram or Pie chart, Cumulative or ogive frequency graph, and Frequency Polygon.

Leah Nguyen

Leah Nguyen

Words that convert, stories that stick. I turn complex ideas into engaging narratives - helping audiences learn, remember, and take action.

Tips to Engage with Polls & Trivia

newsletter star

More from AhaSlides

Business Analyst Skills 101: A Roadmap To Success In The Data-Driven Era

Home Blog Design Understanding Data Presentations (Guide + Examples)

Understanding Data Presentations (Guide + Examples)

Cover for guide on data presentation by SlideModel

In this age of overwhelming information, the skill to effectively convey data has become extremely valuable. Initiating a discussion on data presentation types involves thoughtful consideration of the nature of your data and the message you aim to convey. Different types of visualizations serve distinct purposes. Whether you’re dealing with how to develop a report or simply trying to communicate complex information, how you present data influences how well your audience understands and engages with it. This extensive guide leads you through the different ways of data presentation.

Table of Contents

What is a Data Presentation?

What should a data presentation include, line graphs, treemap chart, scatter plot, how to choose a data presentation type, recommended data presentation templates, common mistakes done in data presentation.

A data presentation is a slide deck that aims to disclose quantitative information to an audience through the use of visual formats and narrative techniques derived from data analysis, making complex data understandable and actionable. This process requires a series of tools, such as charts, graphs, tables, infographics, dashboards, and so on, supported by concise textual explanations to improve understanding and boost retention rate.

Data presentations require us to cull data in a format that allows the presenter to highlight trends, patterns, and insights so that the audience can act upon the shared information. In a few words, the goal of data presentations is to enable viewers to grasp complicated concepts or trends quickly, facilitating informed decision-making or deeper analysis.

Data presentations go beyond the mere usage of graphical elements. Seasoned presenters encompass visuals with the art of data storytelling , so the speech skillfully connects the points through a narrative that resonates with the audience. Depending on the purpose – inspire, persuade, inform, support decision-making processes, etc. – is the data presentation format that is better suited to help us in this journey.

To nail your upcoming data presentation, ensure to count with the following elements:

  • Clear Objectives: Understand the intent of your presentation before selecting the graphical layout and metaphors to make content easier to grasp.
  • Engaging introduction: Use a powerful hook from the get-go. For instance, you can ask a big question or present a problem that your data will answer. Take a look at our guide on how to start a presentation for tips & insights.
  • Structured Narrative: Your data presentation must tell a coherent story. This means a beginning where you present the context, a middle section in which you present the data, and an ending that uses a call-to-action. Check our guide on presentation structure for further information.
  • Visual Elements: These are the charts, graphs, and other elements of visual communication we ought to use to present data. This article will cover one by one the different types of data representation methods we can use, and provide further guidance on choosing between them.
  • Insights and Analysis: This is not just showcasing a graph and letting people get an idea about it. A proper data presentation includes the interpretation of that data, the reason why it’s included, and why it matters to your research.
  • Conclusion & CTA: Ending your presentation with a call to action is necessary. Whether you intend to wow your audience into acquiring your services, inspire them to change the world, or whatever the purpose of your presentation, there must be a stage in which you convey all that you shared and show the path to staying in touch. Plan ahead whether you want to use a thank-you slide, a video presentation, or which method is apt and tailored to the kind of presentation you deliver.
  • Q&A Session: After your speech is concluded, allocate 3-5 minutes for the audience to raise any questions about the information you disclosed. This is an extra chance to establish your authority on the topic. Check our guide on questions and answer sessions in presentations here.

Bar charts are a graphical representation of data using rectangular bars to show quantities or frequencies in an established category. They make it easy for readers to spot patterns or trends. Bar charts can be horizontal or vertical, although the vertical format is commonly known as a column chart. They display categorical, discrete, or continuous variables grouped in class intervals [1] . They include an axis and a set of labeled bars horizontally or vertically. These bars represent the frequencies of variable values or the values themselves. Numbers on the y-axis of a vertical bar chart or the x-axis of a horizontal bar chart are called the scale.

Presentation of the data through bar charts

Real-Life Application of Bar Charts

Let’s say a sales manager is presenting sales to their audience. Using a bar chart, he follows these steps.

Step 1: Selecting Data

The first step is to identify the specific data you will present to your audience.

The sales manager has highlighted these products for the presentation.

  • Product A: Men’s Shoes
  • Product B: Women’s Apparel
  • Product C: Electronics
  • Product D: Home Decor

Step 2: Choosing Orientation

Opt for a vertical layout for simplicity. Vertical bar charts help compare different categories in case there are not too many categories [1] . They can also help show different trends. A vertical bar chart is used where each bar represents one of the four chosen products. After plotting the data, it is seen that the height of each bar directly represents the sales performance of the respective product.

It is visible that the tallest bar (Electronics – Product C) is showing the highest sales. However, the shorter bars (Women’s Apparel – Product B and Home Decor – Product D) need attention. It indicates areas that require further analysis or strategies for improvement.

Step 3: Colorful Insights

Different colors are used to differentiate each product. It is essential to show a color-coded chart where the audience can distinguish between products.

  • Men’s Shoes (Product A): Yellow
  • Women’s Apparel (Product B): Orange
  • Electronics (Product C): Violet
  • Home Decor (Product D): Blue

Accurate bar chart representation of data with a color coded legend

Bar charts are straightforward and easily understandable for presenting data. They are versatile when comparing products or any categorical data [2] . Bar charts adapt seamlessly to retail scenarios. Despite that, bar charts have a few shortcomings. They cannot illustrate data trends over time. Besides, overloading the chart with numerous products can lead to visual clutter, diminishing its effectiveness.

For more information, check our collection of bar chart templates for PowerPoint .

Line graphs help illustrate data trends, progressions, or fluctuations by connecting a series of data points called ‘markers’ with straight line segments. This provides a straightforward representation of how values change [5] . Their versatility makes them invaluable for scenarios requiring a visual understanding of continuous data. In addition, line graphs are also useful for comparing multiple datasets over the same timeline. Using multiple line graphs allows us to compare more than one data set. They simplify complex information so the audience can quickly grasp the ups and downs of values. From tracking stock prices to analyzing experimental results, you can use line graphs to show how data changes over a continuous timeline. They show trends with simplicity and clarity.

Real-life Application of Line Graphs

To understand line graphs thoroughly, we will use a real case. Imagine you’re a financial analyst presenting a tech company’s monthly sales for a licensed product over the past year. Investors want insights into sales behavior by month, how market trends may have influenced sales performance and reception to the new pricing strategy. To present data via a line graph, you will complete these steps.

First, you need to gather the data. In this case, your data will be the sales numbers. For example:

  • January: $45,000
  • February: $55,000
  • March: $45,000
  • April: $60,000
  • May: $ 70,000
  • June: $65,000
  • July: $62,000
  • August: $68,000
  • September: $81,000
  • October: $76,000
  • November: $87,000
  • December: $91,000

After choosing the data, the next step is to select the orientation. Like bar charts, you can use vertical or horizontal line graphs. However, we want to keep this simple, so we will keep the timeline (x-axis) horizontal while the sales numbers (y-axis) vertical.

Step 3: Connecting Trends

After adding the data to your preferred software, you will plot a line graph. In the graph, each month’s sales are represented by data points connected by a line.

Line graph in data presentation

Step 4: Adding Clarity with Color

If there are multiple lines, you can also add colors to highlight each one, making it easier to follow.

Line graphs excel at visually presenting trends over time. These presentation aids identify patterns, like upward or downward trends. However, too many data points can clutter the graph, making it harder to interpret. Line graphs work best with continuous data but are not suitable for categories.

For more information, check our collection of line chart templates for PowerPoint and our article about how to make a presentation graph .

A data dashboard is a visual tool for analyzing information. Different graphs, charts, and tables are consolidated in a layout to showcase the information required to achieve one or more objectives. Dashboards help quickly see Key Performance Indicators (KPIs). You don’t make new visuals in the dashboard; instead, you use it to display visuals you’ve already made in worksheets [3] .

Keeping the number of visuals on a dashboard to three or four is recommended. Adding too many can make it hard to see the main points [4]. Dashboards can be used for business analytics to analyze sales, revenue, and marketing metrics at a time. They are also used in the manufacturing industry, as they allow users to grasp the entire production scenario at the moment while tracking the core KPIs for each line.

Real-Life Application of a Dashboard

Consider a project manager presenting a software development project’s progress to a tech company’s leadership team. He follows the following steps.

Step 1: Defining Key Metrics

To effectively communicate the project’s status, identify key metrics such as completion status, budget, and bug resolution rates. Then, choose measurable metrics aligned with project objectives.

Step 2: Choosing Visualization Widgets

After finalizing the data, presentation aids that align with each metric are selected. For this project, the project manager chooses a progress bar for the completion status and uses bar charts for budget allocation. Likewise, he implements line charts for bug resolution rates.

Data analysis presentation example

Step 3: Dashboard Layout

Key metrics are prominently placed in the dashboard for easy visibility, and the manager ensures that it appears clean and organized.

Dashboards provide a comprehensive view of key project metrics. Users can interact with data, customize views, and drill down for detailed analysis. However, creating an effective dashboard requires careful planning to avoid clutter. Besides, dashboards rely on the availability and accuracy of underlying data sources.

For more information, check our article on how to design a dashboard presentation , and discover our collection of dashboard PowerPoint templates .

Treemap charts represent hierarchical data structured in a series of nested rectangles [6] . As each branch of the ‘tree’ is given a rectangle, smaller tiles can be seen representing sub-branches, meaning elements on a lower hierarchical level than the parent rectangle. Each one of those rectangular nodes is built by representing an area proportional to the specified data dimension.

Treemaps are useful for visualizing large datasets in compact space. It is easy to identify patterns, such as which categories are dominant. Common applications of the treemap chart are seen in the IT industry, such as resource allocation, disk space management, website analytics, etc. Also, they can be used in multiple industries like healthcare data analysis, market share across different product categories, or even in finance to visualize portfolios.

Real-Life Application of a Treemap Chart

Let’s consider a financial scenario where a financial team wants to represent the budget allocation of a company. There is a hierarchy in the process, so it is helpful to use a treemap chart. In the chart, the top-level rectangle could represent the total budget, and it would be subdivided into smaller rectangles, each denoting a specific department. Further subdivisions within these smaller rectangles might represent individual projects or cost categories.

Step 1: Define Your Data Hierarchy

While presenting data on the budget allocation, start by outlining the hierarchical structure. The sequence will be like the overall budget at the top, followed by departments, projects within each department, and finally, individual cost categories for each project.

  • Top-level rectangle: Total Budget
  • Second-level rectangles: Departments (Engineering, Marketing, Sales)
  • Third-level rectangles: Projects within each department
  • Fourth-level rectangles: Cost categories for each project (Personnel, Marketing Expenses, Equipment)

Step 2: Choose a Suitable Tool

It’s time to select a data visualization tool supporting Treemaps. Popular choices include Tableau, Microsoft Power BI, PowerPoint, or even coding with libraries like D3.js. It is vital to ensure that the chosen tool provides customization options for colors, labels, and hierarchical structures.

Here, the team uses PowerPoint for this guide because of its user-friendly interface and robust Treemap capabilities.

Step 3: Make a Treemap Chart with PowerPoint

After opening the PowerPoint presentation, they chose “SmartArt” to form the chart. The SmartArt Graphic window has a “Hierarchy” category on the left.  Here, you will see multiple options. You can choose any layout that resembles a Treemap. The “Table Hierarchy” or “Organization Chart” options can be adapted. The team selects the Table Hierarchy as it looks close to a Treemap.

Step 5: Input Your Data

After that, a new window will open with a basic structure. They add the data one by one by clicking on the text boxes. They start with the top-level rectangle, representing the total budget.  

Treemap used for presenting data

Step 6: Customize the Treemap

By clicking on each shape, they customize its color, size, and label. At the same time, they can adjust the font size, style, and color of labels by using the options in the “Format” tab in PowerPoint. Using different colors for each level enhances the visual difference.

Treemaps excel at illustrating hierarchical structures. These charts make it easy to understand relationships and dependencies. They efficiently use space, compactly displaying a large amount of data, reducing the need for excessive scrolling or navigation. Additionally, using colors enhances the understanding of data by representing different variables or categories.

In some cases, treemaps might become complex, especially with deep hierarchies.  It becomes challenging for some users to interpret the chart. At the same time, displaying detailed information within each rectangle might be constrained by space. It potentially limits the amount of data that can be shown clearly. Without proper labeling and color coding, there’s a risk of misinterpretation.

A heatmap is a data visualization tool that uses color coding to represent values across a two-dimensional surface. In these, colors replace numbers to indicate the magnitude of each cell. This color-shaded matrix display is valuable for summarizing and understanding data sets with a glance [7] . The intensity of the color corresponds to the value it represents, making it easy to identify patterns, trends, and variations in the data.

As a tool, heatmaps help businesses analyze website interactions, revealing user behavior patterns and preferences to enhance overall user experience. In addition, companies use heatmaps to assess content engagement, identifying popular sections and areas of improvement for more effective communication. They excel at highlighting patterns and trends in large datasets, making it easy to identify areas of interest.

We can implement heatmaps to express multiple data types, such as numerical values, percentages, or even categorical data. Heatmaps help us easily spot areas with lots of activity, making them helpful in figuring out clusters [8] . When making these maps, it is important to pick colors carefully. The colors need to show the differences between groups or levels of something. And it is good to use colors that people with colorblindness can easily see.

Check our detailed guide on how to create a heatmap here. Also discover our collection of heatmap PowerPoint templates .

Pie charts are circular statistical graphics divided into slices to illustrate numerical proportions. Each slice represents a proportionate part of the whole, making it easy to visualize the contribution of each component to the total.

The size of the pie charts is influenced by the value of data points within each pie. The total of all data points in a pie determines its size. The pie with the highest data points appears as the largest, whereas the others are proportionally smaller. However, you can present all pies of the same size if proportional representation is not required [9] . Sometimes, pie charts are difficult to read, or additional information is required. A variation of this tool can be used instead, known as the donut chart , which has the same structure but a blank center, creating a ring shape. Presenters can add extra information, and the ring shape helps to declutter the graph.

Pie charts are used in business to show percentage distribution, compare relative sizes of categories, or present straightforward data sets where visualizing ratios is essential.

Real-Life Application of Pie Charts

Consider a scenario where you want to represent the distribution of the data. Each slice of the pie chart would represent a different category, and the size of each slice would indicate the percentage of the total portion allocated to that category.

Step 1: Define Your Data Structure

Imagine you are presenting the distribution of a project budget among different expense categories.

  • Column A: Expense Categories (Personnel, Equipment, Marketing, Miscellaneous)
  • Column B: Budget Amounts ($40,000, $30,000, $20,000, $10,000) Column B represents the values of your categories in Column A.

Step 2: Insert a Pie Chart

Using any of the accessible tools, you can create a pie chart. The most convenient tools for forming a pie chart in a presentation are presentation tools such as PowerPoint or Google Slides.  You will notice that the pie chart assigns each expense category a percentage of the total budget by dividing it by the total budget.

For instance:

  • Personnel: $40,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 40%
  • Equipment: $30,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 30%
  • Marketing: $20,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 20%
  • Miscellaneous: $10,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 10%

You can make a chart out of this or just pull out the pie chart from the data.

Pie chart template in data presentation

3D pie charts and 3D donut charts are quite popular among the audience. They stand out as visual elements in any presentation slide, so let’s take a look at how our pie chart example would look in 3D pie chart format.

3D pie chart in data presentation

Step 03: Results Interpretation

The pie chart visually illustrates the distribution of the project budget among different expense categories. Personnel constitutes the largest portion at 40%, followed by equipment at 30%, marketing at 20%, and miscellaneous at 10%. This breakdown provides a clear overview of where the project funds are allocated, which helps in informed decision-making and resource management. It is evident that personnel are a significant investment, emphasizing their importance in the overall project budget.

Pie charts provide a straightforward way to represent proportions and percentages. They are easy to understand, even for individuals with limited data analysis experience. These charts work well for small datasets with a limited number of categories.

However, a pie chart can become cluttered and less effective in situations with many categories. Accurate interpretation may be challenging, especially when dealing with slight differences in slice sizes. In addition, these charts are static and do not effectively convey trends over time.

For more information, check our collection of pie chart templates for PowerPoint .

Histograms present the distribution of numerical variables. Unlike a bar chart that records each unique response separately, histograms organize numeric responses into bins and show the frequency of reactions within each bin [10] . The x-axis of a histogram shows the range of values for a numeric variable. At the same time, the y-axis indicates the relative frequencies (percentage of the total counts) for that range of values.

Whenever you want to understand the distribution of your data, check which values are more common, or identify outliers, histograms are your go-to. Think of them as a spotlight on the story your data is telling. A histogram can provide a quick and insightful overview if you’re curious about exam scores, sales figures, or any numerical data distribution.

Real-Life Application of a Histogram

In the histogram data analysis presentation example, imagine an instructor analyzing a class’s grades to identify the most common score range. A histogram could effectively display the distribution. It will show whether most students scored in the average range or if there are significant outliers.

Step 1: Gather Data

He begins by gathering the data. The scores of each student in class are gathered to analyze exam scores.

NamesScore
Alice78
Bob85
Clara92
David65
Emma72
Frank88
Grace76
Henry95
Isabel81
Jack70
Kate60
Liam89
Mia75
Noah84
Olivia92

After arranging the scores in ascending order, bin ranges are set.

Step 2: Define Bins

Bins are like categories that group similar values. Think of them as buckets that organize your data. The presenter decides how wide each bin should be based on the range of the values. For instance, the instructor sets the bin ranges based on score intervals: 60-69, 70-79, 80-89, and 90-100.

Step 3: Count Frequency

Now, he counts how many data points fall into each bin. This step is crucial because it tells you how often specific ranges of values occur. The result is the frequency distribution, showing the occurrences of each group.

Here, the instructor counts the number of students in each category.

  • 60-69: 1 student (Kate)
  • 70-79: 4 students (David, Emma, Grace, Jack)
  • 80-89: 7 students (Alice, Bob, Frank, Isabel, Liam, Mia, Noah)
  • 90-100: 3 students (Clara, Henry, Olivia)

Step 4: Create the Histogram

It’s time to turn the data into a visual representation. Draw a bar for each bin on a graph. The width of the bar should correspond to the range of the bin, and the height should correspond to the frequency.  To make your histogram understandable, label the X and Y axes.

In this case, the X-axis should represent the bins (e.g., test score ranges), and the Y-axis represents the frequency.

Histogram in Data Presentation

The histogram of the class grades reveals insightful patterns in the distribution. Most students, with seven students, fall within the 80-89 score range. The histogram provides a clear visualization of the class’s performance. It showcases a concentration of grades in the upper-middle range with few outliers at both ends. This analysis helps in understanding the overall academic standing of the class. It also identifies the areas for potential improvement or recognition.

Thus, histograms provide a clear visual representation of data distribution. They are easy to interpret, even for those without a statistical background. They apply to various types of data, including continuous and discrete variables. One weak point is that histograms do not capture detailed patterns in students’ data, with seven compared to other visualization methods.

A scatter plot is a graphical representation of the relationship between two variables. It consists of individual data points on a two-dimensional plane. This plane plots one variable on the x-axis and the other on the y-axis. Each point represents a unique observation. It visualizes patterns, trends, or correlations between the two variables.

Scatter plots are also effective in revealing the strength and direction of relationships. They identify outliers and assess the overall distribution of data points. The points’ dispersion and clustering reflect the relationship’s nature, whether it is positive, negative, or lacks a discernible pattern. In business, scatter plots assess relationships between variables such as marketing cost and sales revenue. They help present data correlations and decision-making.

Real-Life Application of Scatter Plot

A group of scientists is conducting a study on the relationship between daily hours of screen time and sleep quality. After reviewing the data, they managed to create this table to help them build a scatter plot graph:

Participant IDDaily Hours of Screen TimeSleep Quality Rating
193
228
319
4010
519
637
747
856
956
1073
11101
1265
1373
1482
1592
1647
1756
1847
1992
2064
2137
22101
2328
2456
2537
2619
2782
2846
2973
3028
3174
3292
33101
34101
35101

In the provided example, the x-axis represents Daily Hours of Screen Time, and the y-axis represents the Sleep Quality Rating.

Scatter plot in data presentation

The scientists observe a negative correlation between the amount of screen time and the quality of sleep. This is consistent with their hypothesis that blue light, especially before bedtime, has a significant impact on sleep quality and metabolic processes.

There are a few things to remember when using a scatter plot. Even when a scatter diagram indicates a relationship, it doesn’t mean one variable affects the other. A third factor can influence both variables. The more the plot resembles a straight line, the stronger the relationship is perceived [11] . If it suggests no ties, the observed pattern might be due to random fluctuations in data. When the scatter diagram depicts no correlation, whether the data might be stratified is worth considering.

Choosing the appropriate data presentation type is crucial when making a presentation . Understanding the nature of your data and the message you intend to convey will guide this selection process. For instance, when showcasing quantitative relationships, scatter plots become instrumental in revealing correlations between variables. If the focus is on emphasizing parts of a whole, pie charts offer a concise display of proportions. Histograms, on the other hand, prove valuable for illustrating distributions and frequency patterns. 

Bar charts provide a clear visual comparison of different categories. Likewise, line charts excel in showcasing trends over time, while tables are ideal for detailed data examination. Starting a presentation on data presentation types involves evaluating the specific information you want to communicate and selecting the format that aligns with your message. This ensures clarity and resonance with your audience from the beginning of your presentation.

1. Fact Sheet Dashboard for Data Presentation

data presentation in research methods

Convey all the data you need to present in this one-pager format, an ideal solution tailored for users looking for presentation aids. Global maps, donut chats, column graphs, and text neatly arranged in a clean layout presented in light and dark themes.

Use This Template

2. 3D Column Chart Infographic PPT Template

data presentation in research methods

Represent column charts in a highly visual 3D format with this PPT template. A creative way to present data, this template is entirely editable, and we can craft either a one-page infographic or a series of slides explaining what we intend to disclose point by point.

3. Data Circles Infographic PowerPoint Template

data presentation in research methods

An alternative to the pie chart and donut chart diagrams, this template features a series of curved shapes with bubble callouts as ways of presenting data. Expand the information for each arch in the text placeholder areas.

4. Colorful Metrics Dashboard for Data Presentation

data presentation in research methods

This versatile dashboard template helps us in the presentation of the data by offering several graphs and methods to convert numbers into graphics. Implement it for e-commerce projects, financial projections, project development, and more.

5. Animated Data Presentation Tools for PowerPoint & Google Slides

Canvas Shape Tree Diagram Template

A slide deck filled with most of the tools mentioned in this article, from bar charts, column charts, treemap graphs, pie charts, histogram, etc. Animated effects make each slide look dynamic when sharing data with stakeholders.

6. Statistics Waffle Charts PPT Template for Data Presentations

data presentation in research methods

This PPT template helps us how to present data beyond the typical pie chart representation. It is widely used for demographics, so it’s a great fit for marketing teams, data science professionals, HR personnel, and more.

7. Data Presentation Dashboard Template for Google Slides

data presentation in research methods

A compendium of tools in dashboard format featuring line graphs, bar charts, column charts, and neatly arranged placeholder text areas. 

8. Weather Dashboard for Data Presentation

data presentation in research methods

Share weather data for agricultural presentation topics, environmental studies, or any kind of presentation that requires a highly visual layout for weather forecasting on a single day. Two color themes are available.

9. Social Media Marketing Dashboard Data Presentation Template

data presentation in research methods

Intended for marketing professionals, this dashboard template for data presentation is a tool for presenting data analytics from social media channels. Two slide layouts featuring line graphs and column charts.

10. Project Management Summary Dashboard Template

data presentation in research methods

A tool crafted for project managers to deliver highly visual reports on a project’s completion, the profits it delivered for the company, and expenses/time required to execute it. 4 different color layouts are available.

11. Profit & Loss Dashboard for PowerPoint and Google Slides

data presentation in research methods

A must-have for finance professionals. This typical profit & loss dashboard includes progress bars, donut charts, column charts, line graphs, and everything that’s required to deliver a comprehensive report about a company’s financial situation.

Overwhelming visuals

One of the mistakes related to using data-presenting methods is including too much data or using overly complex visualizations. They can confuse the audience and dilute the key message.

Inappropriate chart types

Choosing the wrong type of chart for the data at hand can lead to misinterpretation. For example, using a pie chart for data that doesn’t represent parts of a whole is not right.

Lack of context

Failing to provide context or sufficient labeling can make it challenging for the audience to understand the significance of the presented data.

Inconsistency in design

Using inconsistent design elements and color schemes across different visualizations can create confusion and visual disarray.

Failure to provide details

Simply presenting raw data without offering clear insights or takeaways can leave the audience without a meaningful conclusion.

Lack of focus

Not having a clear focus on the key message or main takeaway can result in a presentation that lacks a central theme.

Visual accessibility issues

Overlooking the visual accessibility of charts and graphs can exclude certain audience members who may have difficulty interpreting visual information.

In order to avoid these mistakes in data presentation, presenters can benefit from using presentation templates . These templates provide a structured framework. They ensure consistency, clarity, and an aesthetically pleasing design, enhancing data communication’s overall impact.

Understanding and choosing data presentation types are pivotal in effective communication. Each method serves a unique purpose, so selecting the appropriate one depends on the nature of the data and the message to be conveyed. The diverse array of presentation types offers versatility in visually representing information, from bar charts showing values to pie charts illustrating proportions. 

Using the proper method enhances clarity, engages the audience, and ensures that data sets are not just presented but comprehensively understood. By appreciating the strengths and limitations of different presentation types, communicators can tailor their approach to convey information accurately, developing a deeper connection between data and audience understanding.

[1] Government of Canada, S.C. (2021) 5 Data Visualization 5.2 Bar Chart , 5.2 Bar chart .  https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch9/bargraph-diagrammeabarres/5214818-eng.htm

[2] Kosslyn, S.M., 1989. Understanding charts and graphs. Applied cognitive psychology, 3(3), pp.185-225. https://apps.dtic.mil/sti/pdfs/ADA183409.pdf

[3] Creating a Dashboard . https://it.tufts.edu/book/export/html/1870

[4] https://www.goldenwestcollege.edu/research/data-and-more/data-dashboards/index.html

[5] https://www.mit.edu/course/21/21.guide/grf-line.htm

[6] Jadeja, M. and Shah, K., 2015, January. Tree-Map: A Visualization Tool for Large Data. In GSB@ SIGIR (pp. 9-13). https://ceur-ws.org/Vol-1393/gsb15proceedings.pdf#page=15

[7] Heat Maps and Quilt Plots. https://www.publichealth.columbia.edu/research/population-health-methods/heat-maps-and-quilt-plots

[8] EIU QGIS WORKSHOP. https://www.eiu.edu/qgisworkshop/heatmaps.php

[9] About Pie Charts.  https://www.mit.edu/~mbarker/formula1/f1help/11-ch-c8.htm

[10] Histograms. https://sites.utexas.edu/sos/guided/descriptive/numericaldd/descriptiven2/histogram/ [11] https://asq.org/quality-resources/scatter-diagram

Like this article? Please share

Data Analysis, Data Science, Data Visualization Filed under Design

Related Articles

How To Make a Graph on Google Slides

Filed under Google Slides Tutorials • June 3rd, 2024

How To Make a Graph on Google Slides

Creating quality graphics is an essential aspect of designing data presentations. Learn how to make a graph in Google Slides with this guide.

How to Make a Presentation Graph

Filed under Design • March 27th, 2024

How to Make a Presentation Graph

Detailed step-by-step instructions to master the art of how to make a presentation graph in PowerPoint and Google Slides. Check it out!

Turning Your Data into Eye-opening Stories

Filed under Presentation Ideas • February 12th, 2024

Turning Your Data into Eye-opening Stories

What is Data Storytelling is a question that people are constantly asking now. If you seek to understand how to create a data storytelling ppt that will complete the information for your audience, you should read this blog post.

Leave a Reply

data presentation in research methods

Call Us Today! +91 99907 48956 | [email protected]

data presentation in research methods

It is the simplest form of data Presentation often used in schools or universities to provide a clearer picture to students, who are better able to capture the concepts effectively through a pictorial Presentation of simple data.

2. Column chart

data presentation in research methods

It is a simplified version of the pictorial Presentation which involves the management of a larger amount of data being shared during the presentations and providing suitable clarity to the insights of the data.

3. Pie Charts

pie-chart

Pie charts provide a very descriptive & a 2D depiction of the data pertaining to comparisons or resemblance of data in two separate fields.

4. Bar charts

Bar-Charts

A bar chart that shows the accumulation of data with cuboid bars with different dimensions & lengths which are directly proportionate to the values they represent. The bars can be placed either vertically or horizontally depending on the data being represented.

5. Histograms

data presentation in research methods

It is a perfect Presentation of the spread of numerical data. The main differentiation that separates data graphs and histograms are the gaps in the data graphs.

6. Box plots

box-plot

Box plot or Box-plot is a way of representing groups of numerical data through quartiles. Data Presentation is easier with this style of graph dealing with the extraction of data to the minutes of difference.

data presentation in research methods

Map Data graphs help you with data Presentation over an area to display the areas of concern. Map graphs are useful to make an exact depiction of data over a vast case scenario.

All these visual presentations share a common goal of creating meaningful insights and a platform to understand and manage the data in relation to the growth and expansion of one’s in-depth understanding of data & details to plan or execute future decisions or actions.

Importance of Data Presentation

Data Presentation could be both can be a deal maker or deal breaker based on the delivery of the content in the context of visual depiction.

Data Presentation tools are powerful communication tools that can simplify the data by making it easily understandable & readable at the same time while attracting & keeping the interest of its readers and effectively showcase large amounts of complex data in a simplified manner.

If the user can create an insightful presentation of the data in hand with the same sets of facts and figures, then the results promise to be impressive.

There have been situations where the user has had a great amount of data and vision for expansion but the presentation drowned his/her vision.

To impress the higher management and top brass of a firm, effective presentation of data is needed.

Data Presentation helps the clients or the audience to not spend time grasping the concept and the future alternatives of the business and to convince them to invest in the company & turn it profitable both for the investors & the company.

Although data presentation has a lot to offer, the following are some of the major reason behind the essence of an effective presentation:-

  • Many consumers or higher authorities are interested in the interpretation of data, not the raw data itself. Therefore, after the analysis of the data, users should represent the data with a visual aspect for better understanding and knowledge.
  • The user should not overwhelm the audience with a number of slides of the presentation and inject an ample amount of texts as pictures that will speak for themselves.
  • Data presentation often happens in a nutshell with each department showcasing their achievements towards company growth through a graph or a histogram.
  • Providing a brief description would help the user to attain attention in a small amount of time while informing the audience about the context of the presentation
  • The inclusion of pictures, charts, graphs and tables in the presentation help for better understanding the potential outcomes.
  • An effective presentation would allow the organization to determine the difference with the fellow organization and acknowledge its flaws. Comparison of data would assist them in decision making.

Recommended Courses

Data-Visualization-Using-PowerBI-Tableau

Data Visualization

Using powerbi &tableau.

tableau-course

Tableau for Data Analysis

mysql-course

MySQL Certification Program

powerbi-course

The PowerBI Masterclass

Need help call our support team 7:00 am to 10:00 pm (ist) at (+91 999-074-8956 | 9650-308-956), keep in touch, email: [email protected].

WhatsApp us

Data presentation: A comprehensive guide

Learn how to create data presentation effectively and communicate your insights in a way that is clear, concise, and engaging.

Raja Bothra

Building presentations

team preparing data presentation

Hey there, fellow data enthusiast!

Welcome to our comprehensive guide on data presentation.

Whether you're an experienced presenter or just starting, this guide will help you present your data like a pro. We'll dive deep into what data presentation is, why it's crucial, and how to master it. So, let's embark on this data-driven journey together.

What is data presentation?

Data presentation is the art of transforming raw data into a visual format that's easy to understand and interpret. It's like turning numbers and statistics into a captivating story that your audience can quickly grasp. When done right, data presentation can be a game-changer, enabling you to convey complex information effectively.

Why are data presentations important?

Imagine drowning in a sea of numbers and figures. That's how your audience might feel without proper data presentation. Here's why it's essential:

  • Clarity : Data presentations make complex information clear and concise.
  • Engagement : Visuals, such as charts and graphs, grab your audience's attention.
  • Comprehension : Visual data is easier to understand than long, numerical reports.
  • Decision-making : Well-presented data aids informed decision-making.
  • Impact : It leaves a lasting impression on your audience.

Types of data presentation:

Now, let's delve into the diverse array of data presentation methods, each with its own unique strengths and applications. We have three primary types of data presentation, and within these categories, numerous specific visualization techniques can be employed to effectively convey your data.

1. Textual presentation

Textual presentation harnesses the power of words and sentences to elucidate and contextualize your data. This method is commonly used to provide a narrative framework for the data, offering explanations, insights, and the broader implications of your findings. It serves as a foundation for a deeper understanding of the data's significance.

2. Tabular presentation

Tabular presentation employs tables to arrange and structure your data systematically. These tables are invaluable for comparing various data groups or illustrating how data evolves over time. They present information in a neat and organized format, facilitating straightforward comparisons and reference points.

3. Graphical presentation

Graphical presentation harnesses the visual impact of charts and graphs to breathe life into your data. Charts and graphs are powerful tools for spotlighting trends, patterns, and relationships hidden within the data. Let's explore some common graphical presentation methods:

  • Bar charts: They are ideal for comparing different categories of data. In this method, each category is represented by a distinct bar, and the height of the bar corresponds to the value it represents. Bar charts provide a clear and intuitive way to discern differences between categories.
  • Pie charts: It excel at illustrating the relative proportions of different data categories. Each category is depicted as a slice of the pie, with the size of each slice corresponding to the percentage of the total value it represents. Pie charts are particularly effective for showcasing the distribution of data.
  • Line graphs: They are the go-to choice when showcasing how data evolves over time. Each point on the line represents a specific value at a particular time period. This method enables viewers to track trends and fluctuations effortlessly, making it perfect for visualizing data with temporal dimensions.
  • Scatter plots: They are the tool of choice when exploring the relationship between two variables. In this method, each point on the plot represents a pair of values for the two variables in question. Scatter plots help identify correlations, outliers, and patterns within data pairs.

The selection of the most suitable data presentation method hinges on the specific dataset and the presentation's objectives. For instance, when comparing sales figures of different products, a bar chart shines in its simplicity and clarity. On the other hand, if your aim is to display how a product's sales have changed over time, a line graph provides the ideal visual narrative.

Additionally, it's crucial to factor in your audience's level of familiarity with data presentations. For a technical audience, more intricate visualization methods may be appropriate. However, when presenting to a general audience, opting for straightforward and easily understandable visuals is often the wisest choice.

In the world of data presentation, choosing the right method is akin to selecting the perfect brush for a masterpiece. Each tool has its place, and understanding when and how to use them is key to crafting compelling and insightful presentations. So, consider your data carefully, align your purpose, and paint a vivid picture that resonates with your audience.

What to include in data presentation?

When creating your data presentation, remember these key components:

  • Data points : Clearly state the data points you're presenting.
  • Comparison : Highlight comparisons and trends in your data.
  • Graphical methods : Choose the right chart or graph for your data.
  • Infographics : Use visuals like infographics to make information more digestible.
  • Numerical values : Include numerical values to support your visuals.
  • Qualitative information : Explain the significance of the data.
  • Source citation : Always cite your data sources.

How to structure an effective data presentation?

Creating a well-structured data presentation is not just important; it's the backbone of a successful presentation. Here's a step-by-step guide to help you craft a compelling and organized presentation that captivates your audience:

1. Know your audience

Understanding your audience is paramount. Consider their needs, interests, and existing knowledge about your topic. Tailor your presentation to their level of understanding, ensuring that it resonates with them on a personal level. Relevance is the key.

2. Have a clear message

Every effective data presentation should convey a clear and concise message. Determine what you want your audience to learn or take away from your presentation, and make sure your message is the guiding light throughout your presentation. Ensure that all your data points align with and support this central message.

3. Tell a compelling story

Human beings are naturally wired to remember stories. Incorporate storytelling techniques into your presentation to make your data more relatable and memorable. Your data can be the backbone of a captivating narrative, whether it's about a trend, a problem, or a solution. Take your audience on a journey through your data.

4. Leverage visuals

Visuals are a powerful tool in data presentation. They make complex information accessible and engaging. Utilize charts, graphs, and images to illustrate your points and enhance the visual appeal of your presentation. Visuals should not just be an accessory; they should be an integral part of your storytelling.

5. Be clear and concise

Avoid jargon or technical language that your audience may not comprehend. Use plain language and explain your data points clearly. Remember, clarity is king. Each piece of information should be easy for your audience to digest.

6. Practice your delivery

Practice makes perfect. Rehearse your presentation multiple times before the actual delivery. This will help you deliver it smoothly and confidently, reducing the chances of stumbling over your words or losing track of your message.

A basic structure for an effective data presentation

Armed with a comprehensive comprehension of how to construct a compelling data presentation, you can now utilize this fundamental template for guidance:

In the introduction, initiate your presentation by introducing both yourself and the topic at hand. Clearly articulate your main message or the fundamental concept you intend to communicate.

Moving on to the body of your presentation, organize your data in a coherent and easily understandable sequence. Employ visuals generously to elucidate your points and weave a narrative that enhances the overall story. Ensure that the arrangement of your data aligns with and reinforces your central message.

As you approach the conclusion, succinctly recapitulate your key points and emphasize your core message once more. Conclude by leaving your audience with a distinct and memorable takeaway, ensuring that your presentation has a lasting impact.

Additional tips for enhancing your data presentation

To take your data presentation to the next level, consider these additional tips:

  • Consistent design : Maintain a uniform design throughout your presentation. This not only enhances visual appeal but also aids in seamless comprehension.
  • High-quality visuals : Ensure that your visuals are of high quality, easy to read, and directly relevant to your topic.
  • Concise text : Avoid overwhelming your slides with excessive text. Focus on the most critical points, using visuals to support and elaborate.
  • Anticipate questions : Think ahead about the questions your audience might pose. Be prepared with well-thought-out answers to foster productive discussions.

By following these guidelines, you can structure an effective data presentation that not only informs but also engages and inspires your audience. Remember, a well-structured presentation is the bridge that connects your data to your audience's understanding and appreciation.

Do’s and don'ts on a data presentation

  • Use visuals : Incorporate charts and graphs to enhance understanding.
  • Keep it simple : Avoid clutter and complexity.
  • Highlight key points : Emphasize crucial data.
  • Engage the audience : Encourage questions and discussions.
  • Practice : Rehearse your presentation.

Don'ts:

  • Overload with data : Less is often more; don't overwhelm your audience.
  • Fit Unrelated data : Stay on topic; don't include irrelevant information.
  • Neglect the audience : Ensure your presentation suits your audience's level of expertise.
  • Read word-for-word : Avoid reading directly from slides.
  • Lose focus : Stick to your presentation's purpose.

Summarizing key takeaways

  • Definition : Data presentation is the art of visualizing complex data for better understanding.
  • Importance : Data presentations enhance clarity, engage the audience, aid decision-making, and leave a lasting impact.
  • Types : Textual, Tabular, and Graphical presentations offer various ways to present data.
  • Choosing methods : Select the right method based on data, audience, and purpose.
  • Components : Include data points, comparisons, visuals, infographics, numerical values, and source citations.
  • Structure : Know your audience, have a clear message, tell a compelling story, use visuals, be concise, and practice.
  • Do's and don'ts : Do use visuals, keep it simple, highlight key points, engage the audience, and practice. Don't overload with data, include unrelated information, neglect the audience's expertise, read word-for-word, or lose focus.

FAQ's on a data presentation

1. what is data presentation, and why is it important in 2024.

Data presentation is the process of visually representing data sets to convey information effectively to an audience. In an era where the amount of data generated is vast, visually presenting data using methods such as diagrams, graphs, and charts has become crucial. By simplifying complex data sets, presentation of the data may helps your audience quickly grasp much information without drowning in a sea of chart's, analytics, facts and figures.

2. What are some common methods of data presentation?

There are various methods of data presentation, including graphs and charts, histograms, and cumulative frequency polygons. Each method has its strengths and is often used depending on the type of data you're using and the message you want to convey. For instance, if you want to show data over time, try using a line graph. If you're presenting geographical data, consider to use a heat map.

3. How can I ensure that my data presentation is clear and readable?

To ensure that your data presentation is clear and readable, pay attention to the design and labeling of your charts. Don't forget to label the axes appropriately, as they are critical for understanding the values they represent. Don't fit all the information in one slide or in a single paragraph. Presentation software like Prezent and PowerPoint can help you simplify your vertical axis, charts and tables, making them much easier to understand.

4. What are some common mistakes presenters make when presenting data?

One common mistake is trying to fit too much data into a single chart, which can distort the information and confuse the audience. Another mistake is not considering the needs of the audience. Remember that your audience won't have the same level of familiarity with the data as you do, so it's essential to present the data effectively and respond to questions during a Q&A session.

5. How can I use data visualization to present important data effectively on platforms like LinkedIn?

When presenting data on platforms like LinkedIn, consider using eye-catching visuals like bar graphs or charts. Use concise captions and e.g., examples to highlight the single most important information in your data report. Visuals, such as graphs and tables, can help you stand out in the sea of textual content, making your data presentation more engaging and shareable among your LinkedIn connections.

Create your data presentation with prezent

Prezent can be a valuable tool for creating data presentations. Here's how Prezent can help you in this regard:

  • Time savings : Prezent saves up to 70% of presentation creation time, allowing you to focus on data analysis and insights.
  • On-brand consistency : Ensure 100% brand alignment with Prezent's brand-approved designs for professional-looking data presentations.
  • Effortless collaboration : Real-time sharing and collaboration features make it easy for teams to work together on data presentations.
  • Data storytelling : Choose from 50+ storylines to effectively communicate data insights and engage your audience.
  • Personalization : Create tailored data presentations that resonate with your audience's preferences, enhancing the impact of your data.

In summary, Prezent streamlines the process of creating data presentations by offering time-saving features, ensuring brand consistency, promoting collaboration, and providing tools for effective data storytelling. Whether you need to present data to clients, stakeholders, or within your organization, Prezent can significantly enhance your presentation-making process.

So, go ahead, present your data with confidence, and watch your audience be wowed by your expertise.

Thank you for joining us on this data-driven journey. Stay tuned for more insights, and remember, data presentation is your ticket to making numbers come alive! Sign up for our free trial or book a demo ! ‍

More zenpedia articles

data presentation in research methods

The role of effective team communication for enhanced organizational effectiveness

data presentation in research methods

How to create a compelling brand positioning presentation

data presentation in research methods

Competitor analysis presentation: A comprehensive guide

Get the latest from Prezent community

Join thousands of subscribers who receive our best practices on communication, storytelling, presentation design, and more. New tips weekly. (No spam, we promise!)

websights

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Malays Fam Physician
  • v.1(2-3); 2006

How To Present Research Data?

Tong seng fah.

MMed (FamMed UKM), Department of Family Medicine, Universiti Kebangsaan Malaysia

Aznida Firzah Abdul Aziz

Introduction.

The result section of an original research paper provides answer to this question “What was found?” The amount of findings generated in a typical research project is often much more than what medical journal can accommodate in one article. So, the first thing the author needs to do is to make a selection of what is worth presenting. Having decided that, he/she will need to convey the message effectively using a mixture of text, tables and graphics. The level of details required depends a great deal on the target audience of the paper. Hence it is important to check the requirement of journal we intend to send the paper to (e.g. the Uniform Requirements for Manuscripts Submitted to Medical Journals 1 ). This article condenses some common general rules on the presentation of research data that we find useful.

SOME GENERAL RULES

  • Keep it simple. This golden rule seems obvious but authors who have immersed in their data sometime fail to realise that readers are lost in the mass of data they are a little too keen to present. Present too much information tends to cloud the most pertinent facts that we wish to convey.
  • First general, then specific. Start with response rate and description of research participants (these information give the readers an idea of the representativeness of the research data), then the key findings and relevant statistical analyses.
  • Data should answer the research questions identified earlier.
  • Leave the process of data collection to the methods section. Do not include any discussion. These errors are surprising quite common.
  • Always use past tense in describing results.
  • Text, tables or graphics? These complement each other in providing clear reporting of research findings. Do not repeat the same information in more than one format. Select the best method to convey the message.

Consider these two lines:

  • Mean baseline HbA 1c of 73 diabetic patients before intervention was 8.9% and mean HbA 1c after intervention was 7.8%.
  • Mean HbA 1c of 73 of diabetic patients decreased from 8.9% to 7.8% after an intervention.

In line 1, the author presents only the data (i.e. what exactly was found in a study) but the reader is forced to analyse and draw their own conclusion (“mean HbA 1c decreased”) thus making the result more difficult to read. In line 2, the preferred way of writing, the data was presented together with its interpretation.

  • Data, which often are numbers and figures, are better presented in tables and graphics, while the interpretation are better stated in text. By doing so, we do not need to repeat the values of HbA 1c in the text (which will be illustrated in tables or graphics), and we can interpret the data for the readers. However, if there are too few variables, the data can be easily described in a simple sentence including its interpretation. For example, the majority of diabetic patients enrolled in the study were male (80%) compare to female (20%).
  • Using qualitative words to attract the readers’ attention is not helpful. Such words like “remarkably” decreased, “extremely” different and “obviously” higher are redundant. The exact values in the data will show just how remarkable, how extreme and how obvious the findings are.

“It is clearly evident from Figure 1B that there was significant different (p=0.001) in HbA 1c level at 6, 12 and 18 months after diabetic self-management program between 96 patients in intervention group and 101 patients in control group, but no difference seen from 24 months onwards.” [Too wordy]

An external file that holds a picture, illustration, etc.
Object name is MFP-01-82-g002.jpg

Changes of HbA 1c level after diabetic self-management program.

The above can be rewritten as:

“Statistical significant difference was only observed at 6, 12 and 18 months after diabetic self-management program between intervention and control group (Fig 1B)”. [The p values and numbers of patients are already presented in Figure 1B and need not be repeated.]

  • Avoid redundant words and information. Do not repeat the result within the text, tables and figures. Well-constructed tables and graphics should be self-explanatory, thus detailed explanation in the text is not required. Only important points and results need to be highlighted in the text.

Tables are useful to highlight precise numerical values; proportions or trends are better illustrated with charts or graphics. Tables summarise large amounts of related data clearly and allow comparison to be made among groups of variables. Generally, well-constructed tables should be self explanatory with four main parts: title, columns, rows and footnotes.

  • Title. Keep it brief and relate clearly the content of the table. Words in the title should represent and summarise variables used in the columns and rows rather than repeating the columns and rows’ titles. For example, “Comparing full blood count results among different races” is clearer and simpler than “Comparing haemoglobin, platelet count, and total white cell count among Malays, Chinese and Indians”.
MalayChineseIndianOthers
Waist circumference9810210595
HbA1c8.898.669.08.7
SBP165.1164.0170.34168
DBP98.510199.397.6
LDL-C3.83.93.43.1
WC (SD)HbA (SD), %SBP (SD)DBP (SD)LDL-C (SD)
Malay98 (15)8.9 (1.5)165 (21)98 (13)3.8 (0.9)
Chinese102 (18)8.7 (2.1)164 (28)101 (15)3.9 (0.7)
Indian105 (22)9.0 (1.8)170 (36)99 (22)3.4 (1.2)
Others95 (28)8.7 (2.5)168 (40)97 (28)3.1 (1.0)

*WC, waist circumference (in cm)

†SBP, systolic blood pressure (in mmHg)

‡DBP, diastolic blood pressure (in mmHg)

£LDL-cholesterol (in mmol/L)

SymptomPlatelet count (%)OR* (95% CI)
NormalThrombocytopaenia
Presented at or after day 3 of fever26 (65)31 (93.9)5.88(1.20-28.8)†
Myalgia32 (80)23 (82.1)1.09 (0.51-2.31)
Headache25 (64.1)22 (78.6)1.56 (0.75-3.26)
Nausea/vomiting18 (46.2)23 (76.7)2.24 (1.12-4.50)‡
Arthralgia26 (40)13 (54.2)1.43 (0.76-2.69)
Retro-orbital pain9 (23.1)6 (26.1)1.11 (0.54-2.29)
Rash5 (12.5)8 (24.2)1.47 (0.88-2.49)

*Odds ratio (95% confidence interval)

†p=0.04

‡p=0.01

  • Footnotes. These add clarity to the data presented. They are listed at the bottom of tables. Their use is to define unconventional abbreviation, symbols, statistical analysis and acknowledgement (if the table is adapted from a published table). Generally the font size is smaller in the footnotes and follows a sequence of foot note signs (*, †, ‡, §, ‖, ¶, **, ††, # ). 1 These symbols and abbreviation should be standardised in all tables to avoid confusion and unnecessary long list of footnotes. Proper use of footnotes will reduce the need for multiple columns (e.g. replacing a list of p values) and the width of columns (abbreviating waist circumference to WC as in table 1B )
  • Consistent use of units and its decimal places. The data on systolic blood pressure in Table 1B is neater than the similar data in Table 1A .
  • Arrange date and timing from left to the right.
  • Round off the numbers to fewest decimal places possible to convey meaningful precision. Mean systolic blood pressure of 165.1mmHg (as in Table 1B ) does not add much precision compared to 165mmHg. Furthermore, 0.1mmHg does not add any clinical importance. Hence blood pressure is best to round off to nearest 1mmHg.
  • Avoid listing numerous zeros, which made comparison incomprehensible. For example total white cell count is best represented with 11.3 ×10 6 /L rather than 11,300,000/L. This way, we only need to write 11.3 in the cell of the table.
  • Avoid too many lines in a table. Often it is sufficient to just have three horizontal lines in a table; one below the title; one dividing the column titles and data; one dividing the data and footnotes. Vertical lines are not necessary. It will only make a table more difficult to read (compare Tables 1A and ​ and1B 1B ).
  • Standard deviation can be added to show precision of the data in our table. Placement of standard deviation can be difficult to decide. If we place the standard deviation at the side of our data, it allows clear comparison when we read down ( Table 1B ). On the other hand, if we place the standard deviation below our data, it makes comparison across columns easier. Hence, we should decide what we want the readers to compare.
  • It is neater and space-saving if we highlight statistically significant finding with an asterisk (*) or other symbols instead of listing down all the p values ( Table 2 ). It is not necessary to add an extra column to report the detail of student-t test or chi-square values.

Graphics are particularly good for demonstrating a trend in the data that would not be apparent in tables. It provides visual emphasis and avoids lengthy text description. However, presenting numerical data in the form of graphs will lose details of its precise values which tables are able to provide. The authors have to decide the best format of getting the intended message across. Is it for data precision or emphasis on a particular trend and pattern? Likewise, if the data is easily described in text, than text will be the preferred method, as it is more costly to print graphics than text. For example, having a nicely drawn age histogram is take up lots of space but carries little extra information. It is better to summarise it as mean ±SD or median depends on whether the age is normally distributed or skewed. Since graphics should be self-explanatory, all information provided has to be clear. Briefly, a well-constructed graphic should have a title, figure legend and footnotes along with the figure. As with the tables, titles should contain words that describe the data succinctly. Define symbols and lines used in legends clearly.

Some general guides to graphic presentation are:

  • Bar charts, either horizontal or column bars, are used to display categorical data. Strictly speaking, bar charts with continuous data should be drawn as histograms or line graphs. Usually, data presented in bar charts are better illustrated in tables unless there are important pattern or trends need to be emphasised.

An external file that holds a picture, illustration, etc.
Object name is MFP-01-82-g001.jpg

  • Line graphs are most appropriate in tracking changing values between variables over a period of time or when the changing values are continuous data. Independent variables (e.g. time) are usually on the X-axis and dependant variables (for example, HbA 1c ) are usually on the Y-axis. The trend of HbA 1c changes is much more apparent with Figure 1B than Figure 1A , and HbA 1c level at any time after intervention can be accurately read in Figure 1B .
  • Pie charts should not be used often as any data in a pie chart is better represented in bar charts (if there are specific data trend to be emphasised) or simple text description (if there are only a few variables). A common error is presenting sex distribution of study subjects in a pie chart. It is simpler by just stating % of male or female in text form.
  • Patients’ identity in all illustrations, for example pictures of the patients, x-ray films, and investigation results should remain confidential. Use patient’s initials instead of their real names. Cover or blackout the eyes whenever possible. Obtain consent if pictures are used. Highlight and label areas in the illustration, which need emphasis. Do not let the readers search for details in the illustration, which may result in misinterpretation. Remember, we write to avoid misunderstanding whilst maintaining clarity of data.

Papers are often rejected because wrong statistical tests are used or interpreted incorrectly. A simple approach is to consult the statistician early. Bearing in mind that most readers are not statisticians, the reporting of any statistical tests should aim to be understandable by the average audience but sufficiently rigorous to withstand the critique of experts.

  • Simple statistic such as mean and standard deviation, median, normality testing is better reported in text. For example, age of group A subjects was normally distributed with mean of 45.4 years old kg (SD=5.6). More complicated statistical tests involving many variables are better illustrated in tables or graphs with their interpretation by text. (See section on Tables).
  • We should quote and interpret p value correctly. It is preferable to quote the exact p value, since it is now easily obtained from standard statistical software. This is more so if the p value is statistically not significant, rather just quoting p>0.05 or p=ns. It is not necessary to report the exact p value that is smaller than 0.001 (quoting p<0.001 is sufficient); it is incorrect to report p=0.0000 (as some software apt to report for very small p value).
  • We should refrain from reporting such statement: “mean systolic blood pressure for group A (135mmHg, SD=12.5) was higher than group B (130mmHg, SD= 9.8) but did not reach statistical significance (t=4.5, p=0.56).” When p did not show statistical significance (it might be >0.01 or >0.05, depending on which level you would take), it simply means no difference among groups.
  • Confidence intervals. It is now preferable to report the 95% confidence intervals (95%CI) together with p value, especially if a hypothesis testing has been performed.

The main core of the result section consists of text, tables and graphics. As a general rule, text provides narration and interpretation of the data presented. Simple data with few categories is better presented in text form. Tables are useful in summarising large amounts of data systemically and graphics should be used to highlight evidence and trends in the data presented. The content of the data presented must match the research questions and objectives of the study in order to give meaning to the data presented. Keep the data and its statistical analyses as simple as possible to give the readers maximal clarity.

Contributor Information

Tong Seng Fah, MMed (FamMed UKM), Department of Family Medicine, Universiti Kebangsaan Malaysia.

Aznida Firzah Abdul Aziz, MMed (FamMed UKM), Department of Family Medicine, Universiti Kebangsaan Malaysia.

FURTHER READINGS

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

data presentation in research methods

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Creating Brand Value
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading Change and Organizational Renewal
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

17 Data Visualization Techniques All Professionals Should Know

Data Visualizations on a Page

  • 17 Sep 2019

There’s a growing demand for business analytics and data expertise in the workforce. But you don’t need to be a professional analyst to benefit from data-related skills.

Becoming skilled at common data visualization techniques can help you reap the rewards of data-driven decision-making , including increased confidence and potential cost savings. Learning how to effectively visualize data could be the first step toward using data analytics and data science to your advantage to add value to your organization.

Several data visualization techniques can help you become more effective in your role. Here are 17 essential data visualization techniques all professionals should know, as well as tips to help you effectively present your data.

Access your free e-book today.

What Is Data Visualization?

Data visualization is the process of creating graphical representations of information. This process helps the presenter communicate data in a way that’s easy for the viewer to interpret and draw conclusions.

There are many different techniques and tools you can leverage to visualize data, so you want to know which ones to use and when. Here are some of the most important data visualization techniques all professionals should know.

Data Visualization Techniques

The type of data visualization technique you leverage will vary based on the type of data you’re working with, in addition to the story you’re telling with your data .

Here are some important data visualization techniques to know:

  • Gantt Chart
  • Box and Whisker Plot
  • Waterfall Chart
  • Scatter Plot
  • Pictogram Chart
  • Highlight Table
  • Bullet Graph
  • Choropleth Map
  • Network Diagram
  • Correlation Matrices

1. Pie Chart

Pie Chart Example

Pie charts are one of the most common and basic data visualization techniques, used across a wide range of applications. Pie charts are ideal for illustrating proportions, or part-to-whole comparisons.

Because pie charts are relatively simple and easy to read, they’re best suited for audiences who might be unfamiliar with the information or are only interested in the key takeaways. For viewers who require a more thorough explanation of the data, pie charts fall short in their ability to display complex information.

2. Bar Chart

Bar Chart Example

The classic bar chart , or bar graph, is another common and easy-to-use method of data visualization. In this type of visualization, one axis of the chart shows the categories being compared, and the other, a measured value. The length of the bar indicates how each group measures according to the value.

One drawback is that labeling and clarity can become problematic when there are too many categories included. Like pie charts, they can also be too simple for more complex data sets.

3. Histogram

Histogram Example

Unlike bar charts, histograms illustrate the distribution of data over a continuous interval or defined period. These visualizations are helpful in identifying where values are concentrated, as well as where there are gaps or unusual values.

Histograms are especially useful for showing the frequency of a particular occurrence. For instance, if you’d like to show how many clicks your website received each day over the last week, you can use a histogram. From this visualization, you can quickly determine which days your website saw the greatest and fewest number of clicks.

4. Gantt Chart

Gantt Chart Example

Gantt charts are particularly common in project management, as they’re useful in illustrating a project timeline or progression of tasks. In this type of chart, tasks to be performed are listed on the vertical axis and time intervals on the horizontal axis. Horizontal bars in the body of the chart represent the duration of each activity.

Utilizing Gantt charts to display timelines can be incredibly helpful, and enable team members to keep track of every aspect of a project. Even if you’re not a project management professional, familiarizing yourself with Gantt charts can help you stay organized.

5. Heat Map

Heat Map Example

A heat map is a type of visualization used to show differences in data through variations in color. These charts use color to communicate values in a way that makes it easy for the viewer to quickly identify trends. Having a clear legend is necessary in order for a user to successfully read and interpret a heatmap.

There are many possible applications of heat maps. For example, if you want to analyze which time of day a retail store makes the most sales, you can use a heat map that shows the day of the week on the vertical axis and time of day on the horizontal axis. Then, by shading in the matrix with colors that correspond to the number of sales at each time of day, you can identify trends in the data that allow you to determine the exact times your store experiences the most sales.

6. A Box and Whisker Plot

Box and Whisker Plot Example

A box and whisker plot , or box plot, provides a visual summary of data through its quartiles. First, a box is drawn from the first quartile to the third of the data set. A line within the box represents the median. “Whiskers,” or lines, are then drawn extending from the box to the minimum (lower extreme) and maximum (upper extreme). Outliers are represented by individual points that are in-line with the whiskers.

This type of chart is helpful in quickly identifying whether or not the data is symmetrical or skewed, as well as providing a visual summary of the data set that can be easily interpreted.

7. Waterfall Chart

Waterfall Chart Example

A waterfall chart is a visual representation that illustrates how a value changes as it’s influenced by different factors, such as time. The main goal of this chart is to show the viewer how a value has grown or declined over a defined period. For example, waterfall charts are popular for showing spending or earnings over time.

8. Area Chart

Area Chart Example

An area chart , or area graph, is a variation on a basic line graph in which the area underneath the line is shaded to represent the total value of each data point. When several data series must be compared on the same graph, stacked area charts are used.

This method of data visualization is useful for showing changes in one or more quantities over time, as well as showing how each quantity combines to make up the whole. Stacked area charts are effective in showing part-to-whole comparisons.

9. Scatter Plot

Scatter Plot Example

Another technique commonly used to display data is a scatter plot . A scatter plot displays data for two variables as represented by points plotted against the horizontal and vertical axis. This type of data visualization is useful in illustrating the relationships that exist between variables and can be used to identify trends or correlations in data.

Scatter plots are most effective for fairly large data sets, since it’s often easier to identify trends when there are more data points present. Additionally, the closer the data points are grouped together, the stronger the correlation or trend tends to be.

10. Pictogram Chart

Pictogram Example

Pictogram charts , or pictograph charts, are particularly useful for presenting simple data in a more visual and engaging way. These charts use icons to visualize data, with each icon representing a different value or category. For example, data about time might be represented by icons of clocks or watches. Each icon can correspond to either a single unit or a set number of units (for example, each icon represents 100 units).

In addition to making the data more engaging, pictogram charts are helpful in situations where language or cultural differences might be a barrier to the audience’s understanding of the data.

11. Timeline

Timeline Example

Timelines are the most effective way to visualize a sequence of events in chronological order. They’re typically linear, with key events outlined along the axis. Timelines are used to communicate time-related information and display historical data.

Timelines allow you to highlight the most important events that occurred, or need to occur in the future, and make it easy for the viewer to identify any patterns appearing within the selected time period. While timelines are often relatively simple linear visualizations, they can be made more visually appealing by adding images, colors, fonts, and decorative shapes.

12. Highlight Table

Highlight Table Example

A highlight table is a more engaging alternative to traditional tables. By highlighting cells in the table with color, you can make it easier for viewers to quickly spot trends and patterns in the data. These visualizations are useful for comparing categorical data.

Depending on the data visualization tool you’re using, you may be able to add conditional formatting rules to the table that automatically color cells that meet specified conditions. For instance, when using a highlight table to visualize a company’s sales data, you may color cells red if the sales data is below the goal, or green if sales were above the goal. Unlike a heat map, the colors in a highlight table are discrete and represent a single meaning or value.

13. Bullet Graph

Bullet Graph Example

A bullet graph is a variation of a bar graph that can act as an alternative to dashboard gauges to represent performance data. The main use for a bullet graph is to inform the viewer of how a business is performing in comparison to benchmarks that are in place for key business metrics.

In a bullet graph, the darker horizontal bar in the middle of the chart represents the actual value, while the vertical line represents a comparative value, or target. If the horizontal bar passes the vertical line, the target for that metric has been surpassed. Additionally, the segmented colored sections behind the horizontal bar represent range scores, such as “poor,” “fair,” or “good.”

14. Choropleth Maps

Choropleth Map Example

A choropleth map uses color, shading, and other patterns to visualize numerical values across geographic regions. These visualizations use a progression of color (or shading) on a spectrum to distinguish high values from low.

Choropleth maps allow viewers to see how a variable changes from one region to the next. A potential downside to this type of visualization is that the exact numerical values aren’t easily accessible because the colors represent a range of values. Some data visualization tools, however, allow you to add interactivity to your map so the exact values are accessible.

15. Word Cloud

Word Cloud Example

A word cloud , or tag cloud, is a visual representation of text data in which the size of the word is proportional to its frequency. The more often a specific word appears in a dataset, the larger it appears in the visualization. In addition to size, words often appear bolder or follow a specific color scheme depending on their frequency.

Word clouds are often used on websites and blogs to identify significant keywords and compare differences in textual data between two sources. They are also useful when analyzing qualitative datasets, such as the specific words consumers used to describe a product.

16. Network Diagram

Network Diagram Example

Network diagrams are a type of data visualization that represent relationships between qualitative data points. These visualizations are composed of nodes and links, also called edges. Nodes are singular data points that are connected to other nodes through edges, which show the relationship between multiple nodes.

There are many use cases for network diagrams, including depicting social networks, highlighting the relationships between employees at an organization, or visualizing product sales across geographic regions.

17. Correlation Matrix

Correlation Matrix Example

A correlation matrix is a table that shows correlation coefficients between variables. Each cell represents the relationship between two variables, and a color scale is used to communicate whether the variables are correlated and to what extent.

Correlation matrices are useful to summarize and find patterns in large data sets. In business, a correlation matrix might be used to analyze how different data points about a specific product might be related, such as price, advertising spend, launch date, etc.

Other Data Visualization Options

While the examples listed above are some of the most commonly used techniques, there are many other ways you can visualize data to become a more effective communicator. Some other data visualization options include:

  • Bubble clouds
  • Circle views
  • Dendrograms
  • Dot distribution maps
  • Open-high-low-close charts
  • Polar areas
  • Radial trees
  • Ring Charts
  • Sankey diagram
  • Span charts
  • Streamgraphs
  • Wedge stack graphs
  • Violin plots

Business Analytics | Become a data-driven leader | Learn More

Tips For Creating Effective Visualizations

Creating effective data visualizations requires more than just knowing how to choose the best technique for your needs. There are several considerations you should take into account to maximize your effectiveness when it comes to presenting data.

Related : What to Keep in Mind When Creating Data Visualizations in Excel

One of the most important steps is to evaluate your audience. For example, if you’re presenting financial data to a team that works in an unrelated department, you’ll want to choose a fairly simple illustration. On the other hand, if you’re presenting financial data to a team of finance experts, it’s likely you can safely include more complex information.

Another helpful tip is to avoid unnecessary distractions. Although visual elements like animation can be a great way to add interest, they can also distract from the key points the illustration is trying to convey and hinder the viewer’s ability to quickly understand the information.

Finally, be mindful of the colors you utilize, as well as your overall design. While it’s important that your graphs or charts are visually appealing, there are more practical reasons you might choose one color palette over another. For instance, using low contrast colors can make it difficult for your audience to discern differences between data points. Using colors that are too bold, however, can make the illustration overwhelming or distracting for the viewer.

Related : Bad Data Visualization: 5 Examples of Misleading Data

Visuals to Interpret and Share Information

No matter your role or title within an organization, data visualization is a skill that’s important for all professionals. Being able to effectively present complex data through easy-to-understand visual representations is invaluable when it comes to communicating information with members both inside and outside your business.

There’s no shortage in how data visualization can be applied in the real world. Data is playing an increasingly important role in the marketplace today, and data literacy is the first step in understanding how analytics can be used in business.

Are you interested in improving your analytical skills? Learn more about Business Analytics , our eight-week online course that can help you use data to generate insights and tackle business decisions.

This post was updated on January 20, 2022. It was originally published on September 17, 2019.

data presentation in research methods

About the Author

Data Presentation

Josée Dupuis, PhD, Professor of Biostatistics, Boston University School of Public Health

Wayne LaMorte, MD, PhD, MPH, Professor of Epidemiology, Boston University School of Public Health

Introduction

"Modern data graphics can do much more than simply substitute for small statistical tables. At their best, graphics are instruments for reasoning about quantitative information. Often the most effective was to describe, explore, and summarize a set of numbers - even a very large set - is to look at pictures of those numbers. Furthermore, of all methods for analyzing and communicating statistical information, well-designed data graphics are usually the simplest and at the same time the most powerful."

Edward R. Tufte in the introduction to

"The Visual Display of Quantitative Information"

While graphical summaries of data can certainly be powerful ways of communicating results clearly and unambiguously in a way that facilitates our ability to think about the information, poorly designed graphical displays can be ambiguous, confusing, and downright misleading. The keys to excellence in graphical design and communication are much like the keys to good writing. Adhere to fundamental principles of style and communicate as logically, accurately, and clearly as possible. Excellence in writing is generally achieved by avoiding unnecessary words and paragraphs; it is efficient. In a similar fashion, excellence in graphical presentation is generally achieved by efficient designs that avoid unnecessary ink.

Excellence in graphical presentation depends on:

  • Choosing the best medium for presenting the information
  • Designing the components of the graph in a way that communicates the information as clearly and accurately as possible.

Table or Graph?

  • Tables are generally best if you want to be able to look up specific information or if the values must be reported precisely.
  • Graphics are best for illustrating trends and making comparisons

The side by side illustrations below show the same information, first in table form and then in graphical form. While the information in the table is precise, the real goal is to compare a series of clinical outcomes in subjects taking either a drug or a placebo. The graphical presentation on the right makes it possible to quickly see that for each of the outcomes evaluated, the drug produced relief in a great proportion of subjects. Moreover, the viewer gets a clear sense of the magnitude of improvement, and the error bars provided a sense of the uncertainty in the data.

Source: Connor JT.  Statistical Graphics in AJG:  Save the Ink for the Information.  Am J of Gastroenterology. 2009; 104:1624-1630.

Principles for Table Display

  • Sort table rows in a meaningful way
  • Avoid alphabetical listing!
  • Use rates, proportions or ratios in addition (or instead of) totals
  • Show more than two time points if available
  • Multiple time points may be better presented in a Figure
  • Similar data should go down columns
  • Highlight important comparisons
  • Show the source of the data

Consider the data in the table below from http://www.cancer.gov/cancertopics/types/commoncancers

Incidence

Proportion

Bladder

72,570

5.7%

Breast

232,340

18.2%

Colon

142,820

11.2%

Kidney

59,938

4.7%

Leukemia

48,610

3.8%

Lung

228,190

17.9%

Melanoma

76,690

6.0%

Lymphoma

69,740

5.5%

Pancreas

45,220

3.5%

Prostate

238,590

18.7%

Thyroid

60,220

4.7%

Our ability to quickly understand the relative frequency of these cancers is hampered by presenting them in alphabetical order. It is much easier for the reader to grasp the relative frequency by listing them from most frequent to least frequent as in the next table.

Type

Incidence

Proportion

Prostate

238,590

18.7%

Breast

232,340

18.2%

Lung

228,340

17.9%

Colon

142,820

11.2%

Melanoma

76,690

6.0%

Bladder

72,570

5.7%

Lymphoma

69,740

5.5%

Thyroid

60,220

4.7%

Kidney

59,938

4.7%

Leukemia

48,610

3.8%

Pancreas

45,220

3.5%

However, the same information might be presented more effectively with a dot plot, as shown below.

data presentation in research methods

Data from http://www.cancer.gov/cancertopics/types/commoncancers

Principles of Graphical Excellence from E.R. Tufte

 

From E. R. Tufte. The Visual Display of Quantitative Information, 2nd Edition.  Graphics Press, Cheshire, Connecticut, 2001.

 

Pattern Perception

Pattern perception is done by

  • Detection: recognition of geometry encoding physical values
  • Assembly: grouping of detected symbol elements; discerning overall patterns in data
  • Estimation: assessment of relative magnitudes of two physical values

Geographic Variation in Cancer

As an example, Tufte offers a series of maps that summarize the age-adjusted mortality rates for various types of cancer in the 3,056 counties in the United States. The maps showing the geographic variation in stomach cancer are shown below.

Adapted from Atlas of Cancer Mortality for U.S. Counties: 1950-1969,

TJ Mason et al, PHS, NIH, 1975

 

These maps summarize an enormous amount of information and present it efficiently, coherently, and effectively.in a way that invites the viewer to make comparisons and to think about the substance of the findings. Consider, for example, that the region to the west of the Great Lakes was settled largely by immigrants from Germany and Scand anavia, where traditional methods of preserving food included pickling and curing of fish by smoking. Could these methods be associated with an increased risk of stomach cancer?

John Snow's Spot Map of Cholera Cases

Consider also the spot map that John Snow presented after the cholera outbreak in the Broad Street section of London in September 1854. Snow ascertained the place of residence or work of the victims and represented them on a map of the area using a small black disk to represent each victim and stacking them when more than one occurred at a particular location. Snow reasoned that cholera was probably caused by something that was ingested, because of the intense diarrhea and vomiting of the victims, and he noted that the vast majority of cholera deaths occurred in people who lived or worked in the immediate vicinity of the broad street pump (shown with a red dot that we added for clarity). He further ascertained that most of the victims drank water from the Broad Street pump, and it was this evidence that persuaded the authorities to remove the handle from the pump in order to prevent more deaths.

Map of the Broad Street area of London showing stacks of black disks to represent the number of cholera cases that occurred at various locations. The cases seem to be clustered around the Broad Street water pump.

Humans can readily perceive differences like this when presented effectively as in the two previous examples. However, humans are not good at estimating differences without directly seeing them (especially for steep curves), and we are particularly bad at perceiving relative angles (the principal perception task used in a pie chart).

The use of pie charts is generally discouraged. Consider the pie chart on the left below. It is difficult to accurately assess the relative size of the components in the pie chart, because the human eye has difficulty judging angles. The dot plot on the right shows the same data, but it is much easier to quickly assess the relative size of the components and how they changed from Fiscal Year 2000 to Fiscal Year 2007.

Adapted from Wainer H.:Improving data displays: Ours and the media's. Chance, 2007;20:8-15.

Data from http://www.taxpolicycenter.org/taxfacts/displayafact.cfm?Docid=203

Consider the information in the two pie charts below (showing the same information).The 3-dimensional pie chart on the left distorts the relative proportions. In contrast the 2-dimensional pie chart on the right makes it much easier to compare the relative size of the varies components..

Adapted from Cawley S, et al. (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116:499-509, Figure 1

More Principles of Graphical Excellence

 

Adapted from Frank E. Harrell Jr. on graphics:  http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatGraphCourse/graphscourse.pdf ]

Exclude Unneeded Dimensions

 

 

 

 

Source: Cotter DJ, et al. (2004) Hematocrit was not validated as a surrogate endpoint for survival among epoetin-treated hemodialysis patients. Journal of Clinical Epidemiology 57:1086-1095, Figure 2.

 

Source: Roeder K (1994) DNA fingerprinting: A review of the controversy (with discussion). Statistical Science 9:222-278, Figure 4.

These 3-dimensional techniques distort the data and actually interfere with our ability to make accurate comparisons. The distortion caused by 3-dimensional elements can be particularly severe when the graphic is slanted at an angle or when the viewer tends to compare ends up unwittingly comparing the areas of the ink rather than the heights of the bars.

It is much easier to make comparisons with a chart like the one below.

data presentation in research methods

Source: Huang, C, Guo C, Nichols C, Chen S, Martorell R. Elevated levels of protein in urine in adulthood after exposure to

the Chinese famine of 1959–61 during gestation and the early postnatal period. Int. J. Epidemiol. (2014) 43 (6): 1806-1814 .

Omit "Chart Junk"

Consider these two examples.

Hash lines are what E.R. Tufte refers to as "chart junk."

 

This graphic uses unnecessary bar graphs, pointless and annoying cross-hatching, and labels with incomplete abbreviations. The cluttered legend expands the inadequate bar labels, but it is difficult to go back and forth from the legend to the bar graph, and the use of all uppercase letters is visually unappealing.

This presentation would have been greatly enhanced by simply using a horizontal dot plot that rank ordered the categories in a logical way. This approach could have been cleared and would have completely avoided the need for a legend.

This grey background is a waste of ink, and it actually detracts from the readability of the graph by reducing contrast between the data points and other elements of the graph. Also, the axis labels are too small to be read easily.

 Source: Miller AH, Goldenberg EN, Erbring L.  (1979)  Type-Set Politics: Impact of Newspapers on Public Confidence. American Political Science Review, 73:67-84.

 

 

Source: Jorgenson E, et al. (2005) Ethnicity and human genetic linkage maps. 76:276-290, Figure 2

Here is a simple enumeration of the number of pets in a neighborhood. There is absolutely no reason to connect these counts with lines. This is, in fact, confusing and inappropriate and nothing more than "chart junk."

data presentation in research methods

Source: http://www.go-education.com/free-graph-maker.html

Moiré Vibration

Moiré effects are sometimes used in modern art to produce the appearance of vibration and movement. However, when these effects are applied to statistical presentations, they are distracting and add clutter because the visual noise interferes with the interpretation of the data.

Tufte presents the example shown below from Instituto de Expansao Commercial, Brasil, Graphicos Estatisticas (Rio de Janeiro, 1929, p. 15).

 While the intention is to present quantitative information about the textile industry, the moiré effects do not add anything, and they are distracting, if not visually annoying.

Present Data to Facilitate Comparisons

Tips

 

Here is an attempt to compare catches of cod fish and crab across regions and to relate the variation to changes in water temperature. The problem here is that the Y-axes are vastly different, making it hard to sort out what's really going on. Even the Y-axes for temperature are vastly different.

data presentation in research methods

http://seananderson.ca/courses/11-multipanel/multipanel.pdf1

The ability to make comparisons is greatly facilitated by using the same scales for axes, as illustrated below.

data presentation in research methods

Data source: Dawber TR, Meadors GF, Moore FE Jr. Epidemiological approaches to heart disease:

the Framingham Study. Am J Public Health Nations Health. 1951;41(3):279-81. PMID: 14819398

It is also important to avoid distorting the X-axis. Note in the example below that the space between 0.05 to 0.1 is the same as space between 0.1 and 0.2.

data presentation in research methods

Source: Park JH, Gail MH, Weinberg CR, et al. Distribution of allele frequencies and effect sizes and

their interrelationships for common genetic susceptibility variants. Proc Natl Acad Sci U S A. 2011; 108:18026-31.

Consider the range of the Y-axis. In the examples below there is no relevant information below $40,000, so it is not necessary to begin the Y-axis at 0. The graph on the right makes more sense.

Data from http://www.myplan.com/careers/registered-nurses/salary-29-1111.00.html

Also, consider using a log scale. this can be particularly useful when presenting ratios as in the example below.

data presentation in research methods

Source: Broman KW, Murray JC, Sheffield VC, White RL, Weber JL (1998) Comprehensive human genetic maps:

Individual and sex-specific variation in recombination. American Journal of Human Genetics 63:861-869, Figure 1

We noted earlier that pie charts make it difficult to see differences within a single pie chart, but this is particularly difficult when data is presented with multiple pie charts, as in the example below.

data presentation in research methods

Source: Bell ML, et al. (2007) Spatial and temporal variation in PM2.5 chemical composition in the United States

for health effects studies. Environmental Health Perspectives 115:989-995, Figure 3

When multiple comparisons are being made, it is essential to use colors and symbols in a consistent way, as in this example.

data presentation in research methods

Source: Manning AK, LaValley M, Liu CT, et al.  Meta-Analysis of Gene-Environment Interaction:

Joint Estimation of SNP and SNP x Environment Regression Coefficients.  Genet Epidemiol 2011, 35(1):11-8.

Avoid putting too many lines on the same chart. In the example below, the only thing that is readily apparent is that 1980 was a very hot summer.

data presentation in research methods

Data from National Weather Service Weather Forecast Office at

http://www.srh.noaa.gov/tsa/?n=climo_tulyeartemp

Make Efficient Use of Space

 

More Tips:

Reduce the Ratio of Ink to Information

This isn't efficient, because this graphic is totally uninformative.

data presentation in research methods

Source: Mykland P, Tierney L, Yu B (1995) Regeneration in Markov chain samplers.  Journal of the American Statistical Association 90:233-241, Figure 1

Bar charts are not appropriate for indicating means ± SEs. The only important information is the mean and the variation about the mean. Consider the figure to the right. By representing a mean with a number and a bar that has width, the information is representing one number over and over with:

 

 

Bar graphs add ink without conveying any additional information, and they are distracting. The graph below on the left inappropriately uses bars which clutter the graph without adding anything. The graph on the right displays the same data, by does so more clearly and with less clutter.

Source: Conford EM, Huot ME. Glucose transfer from male to female schistosomes. Science. 1981 213:1269-71

 

"Just as a good editor of prose ruthlessly prunes unnecessary words, so a designer of statistical graphics should prune out ink that fails to present fresh data-information. Although nothing can replace a good graphical idea applied to an interesting set of numbers, editing and revision are as essential to sound graphical design work as they are to writing."

Edward R. Tufte, "The Visual Display of Quantitative Information"

Multiple Types of Information on the Same Figure

Choosing the Best Graph Type

Adapted from Frank E Harrell, Jr: on Graphics:

http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatGraphCourse/graphscourse.pdf

 

Bar Charts, Error Bars and Dot Plots

As noted previously, bar charts can be problematic. Here is another one presenting means and error bars, but the error bars are misleading because they only extend in one direction. A better alternative would have been to to use full error bars with a scatter plot, as illustrated previously (right).

Source: Hummer BT, Li XL, Hassel BA (2001) Role for p53 in gene

induction by double-stranded RNA. J Virol 75:7774-7777, Figure 4

 

Consider the four graphs below presenting the incidence of cancer by type. The upper left graph unnecessary uses bars, which take up a lot of ink. This layout also ends up making the fonts for the types of cancer too small. Small font is also a problem for the dot plot at the upper right, and this one also has unnecessary grid lines across the entire width.

The graph at the lower left has more readable labels and uses a simple dot plot, but the rank order is difficult to figure out.

The graph at the lower right is clearly the best, since the labels are readable, the magnitude of incidence is shown clearly by the dot plots, and the cancers are sorted by frequency.

*************************

+

Single Continuous Numeric Variable

In this situation a cumulative distribution function conveys the most information and requires no grouping of the variable. A box plot will show selected quantiles effectively, and box plots are especially useful when stratifying by multiple categories of another variable.

Histograms are also possible. Consider the examples below.

Density Plot

Histogram

Box Plot

Two Variables

Adapted from Frank E. Harrell Jr. on graphics: 

http://biostat.mc.vanderbiltedu/twiki/pub/Main/StatGraphCourse/graphscourse.pdf

 The two graphs below summarize BMI (Body Mass Index) measurements in four categories, i.e., younger and older men and women. The graph on the left shows the means and 95% confidence interval for the mean in each of the four groups. This is easy to interpret, but the viewer cannot see that the data is actually quite skewed. The graph on the right shows the same information presented as a box plot. With this presentation method one gets a better understanding of the skewed distribution and how the groups compare.

The next example is a scatter plot with a superimposed smoothed line of prediction. The shaded region embracing the blue line is a representation of the 95% confidence limits for the estimated prediction. This was created using "ggplot" in the R programming language.

data presentation in research methods

Source: Frank E. Harrell Jr. on graphics:  http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatGraphCourse/graphscourse.pdf (page 121)

Multivariate Data

The example below shows the use of multiple panels.

data presentation in research methods

Source: Cleveland S. The Elements of Graphing Data. Hobart Press, Summit, NJ, 1994.

Displaying Uncertainty

  • Error bars showing confidence limits
  • Confidence bands drawn using two lines
  • Shaded confidence bands
  • Bayesian credible intervals
  • Bayesian posterior densities

Confidence Limits

Shaded Confidence Bands

data presentation in research methods

Source: Frank E. Harrell Jr. on graphics:  http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatGraphCourse/graphscourse.pdf

data presentation in research methods

Source: Tweedie RL and Mengersen KL. (1992) Br. J. Cancer 66: 700-705

Forest Plot

This is a Forest plot summarizing 26 studies of cigarette smoke exposure on risk of lung cancer. The sizes of the black boxes indicating the estimated odds ratio are proportional to the sample size in each study.

data presentation in research methods

Data from Tweedie RL and Mengersen KL. (1992) Br. J. Cancer 66: 700-705

Summary Recommendations

  • In general, avoid bar plots
  • Avoid chart junk and the use of too much ink relative to the information you are displaying. Keep it simple and clear.
  • Avoid pie charts, because humans have difficulty perceiving relative angles.
  • Pay attention to scale, and make scales consistent.
  • Explore several ways to display the data!

12 Tips on How to Display Data Badly

Adapted from Wainer H.  How to Display Data Badly.  The American Statistician 1984; 38: 137-147. 

  • Show as few data as possible
  • Hide what data you do show; minimize the data-ink ratio
  • Ignore the visual metaphor altogether
  • Only order matters
  • Graph data out of context
  • Change scales in mid-axis
  • Emphasize the trivial;  ignore the important
  • Jiggle the baseline
  • Alphabetize everything.
  • Make your labels illegible, incomplete, incorrect, and ambiguous.
  • More is murkier: use a lot of decimal places and make your graphs three dimensional whenever possible.
  • If it has been done well in the past, think of another way to do it

Additional Resources

  • Stephen Few: Designing Effective Tables and Graphs. http://www.perceptualedge.com/images/Effective_Chart_Design.pdf
  • Gary Klaas: Presenting Data: Tabular and graphic display of social indicators. Illinois State University, 2002. http://lilt.ilstu.edu/gmklass/pos138/datadisplay/sections/goodcharts.htm (Note: The web site will be discontinued to be replaced by the Just Plain Data Analysis site).
  • University Libraries
  • Research Guides
  • Topic Guides
  • Research Methods Guide
  • Data Analysis

Research Methods Guide: Data Analysis

  • Introduction
  • Research Design & Method
  • Survey Research
  • Interview Research
  • Resources & Consultation

Tools for Analyzing Survey Data

  • R (open source)
  • Stata 
  • DataCracker (free up to 100 responses per survey)
  • SurveyMonkey (free up to 100 responses per survey)

Tools for Analyzing Interview Data

  • AQUAD (open source)
  • NVivo 

Data Analysis and Presentation Techniques that Apply to both Survey and Interview Research

  • Create a documentation of the data and the process of data collection.
  • Analyze the data rather than just describing it - use it to tell a story that focuses on answering the research question.
  • Use charts or tables to help the reader understand the data and then highlight the most interesting findings.
  • Don’t get bogged down in the detail - tell the reader about the main themes as they relate to the research question, rather than reporting everything that survey respondents or interviewees said.
  • State that ‘most people said …’ or ‘few people felt …’ rather than giving the number of people who said a particular thing.
  • Use brief quotes where these illustrate a particular point really well.
  • Respect confidentiality - you could attribute a quote to 'a faculty member', ‘a student’, or 'a customer' rather than ‘Dr. Nicholls.'

Survey Data Analysis

  • If you used an online survey, the software will automatically collate the data – you will just need to download the data, for example as a spreadsheet.
  • If you used a paper questionnaire, you will need to manually transfer the responses from the questionnaires into a spreadsheet.  Put each question number as a column heading, and use one row for each person’s answers.  Then assign each possible answer a number or ‘code’.
  • When all the data is present and correct, calculate how many people selected each response.
  • Once you have calculated how many people selected each response, you can set up tables and/or graph to display the data.  This could take the form of a table or chart.
  • In addition to descriptive statistics that characterize findings from your survey, you can use statistical and analytical reporting techniques if needed.

Interview Data Analysis

  • Data Reduction and Organization: Try not to feel overwhelmed by quantity of information that has been collected from interviews- a one-hour interview can generate 20 to 25 pages of single-spaced text.   Once you start organizing your fieldwork notes around themes, you can easily identify which part of your data to be used for further analysis.
  • What were the main issues or themes that struck you in this contact / interviewee?"
  • Was there anything else that struck you as salient, interesting, illuminating or important in this contact / interviewee? 
  • What information did you get (or failed to get) on each of the target questions you had for this contact / interviewee?
  • Connection of the data: You can connect data around themes and concepts - then you can show how one concept may influence another.
  • Examination of Relationships: Examining relationships is the centerpiece of the analytic process, because it allows you to move from simple description of the people and settings to explanations of why things happened as they did with those people in that setting.
  • << Previous: Interview Research
  • Next: Resources & Consultation >>
  • Last Updated: Aug 21, 2023 10:42 AM

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Present Your Data Like a Pro

  • Joel Schwartzberg

data presentation in research methods

Demystify the numbers. Your audience will thank you.

While a good presentation has data, data alone doesn’t guarantee a good presentation. It’s all about how that data is presented. The quickest way to confuse your audience is by sharing too many details at once. The only data points you should share are those that significantly support your point — and ideally, one point per chart. To avoid the debacle of sheepishly translating hard-to-see numbers and labels, rehearse your presentation with colleagues sitting as far away as the actual audience would. While you’ve been working with the same chart for weeks or months, your audience will be exposed to it for mere seconds. Give them the best chance of comprehending your data by using simple, clear, and complete language to identify X and Y axes, pie pieces, bars, and other diagrammatic elements. Try to avoid abbreviations that aren’t obvious, and don’t assume labeled components on one slide will be remembered on subsequent slides. Every valuable chart or pie graph has an “Aha!” zone — a number or range of data that reveals something crucial to your point. Make sure you visually highlight the “Aha!” zone, reinforcing the moment by explaining it to your audience.

With so many ways to spin and distort information these days, a presentation needs to do more than simply share great ideas — it needs to support those ideas with credible data. That’s true whether you’re an executive pitching new business clients, a vendor selling her services, or a CEO making a case for change.

data presentation in research methods

  • JS Joel Schwartzberg oversees executive communications for a major national nonprofit, is a professional presentation coach, and is the author of Get to the Point! Sharpen Your Message and Make Your Words Matter and The Language of Leadership: How to Engage and Inspire Your Team . You can find him on LinkedIn and X. TheJoelTruth

Partner Center

Data Presentation — Quantitative Data

Cite this chapter.

data presentation in research methods

  • David Bowers 2  

101 Accesses

In Chapter 2 we discussed various ways (several graphical and one tabular) of presenting qualitative data. In all the example we considered, the data arose from a nominal measuring scale. Although nominal (i.e. qualitative) data often occurs in business and economics, more common is quantitative data, arising from the use of ordinal and interval/ratio measuring scales. In this chapter we will discuss methods of presenting such data in ways which enable a rapid appreciation of its principal features. The methods we discuss include both tabular and graphical descriptions of data, but the emphasis throughout the chapter lies with frequency distributions and associated procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Unable to display preview.  Download preview PDF.

Author information

Authors and affiliations.

Department of Social and Economic Studies, University of Bradford, UK

David Bowers ( Lecturer )

You can also search for this author in PubMed   Google Scholar

Copyright information

© 1991 David Bowers

About this chapter

Bowers, D. (1991). Data Presentation — Quantitative Data. In: Statistics for Economics and Business. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-21346-7_3

Download citation

DOI : https://doi.org/10.1007/978-1-349-21346-7_3

Publisher Name : Palgrave Macmillan, London

Print ISBN : 978-0-333-56029-7

Online ISBN : 978-1-349-21346-7

eBook Packages : Palgrave Business & Management Collection Business and Management (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Data Collection | Definition, Methods & Examples

Data Collection | Definition, Methods & Examples

Published on June 5, 2020 by Pritha Bhandari . Revised on June 21, 2023.

Data collection is a systematic process of gathering observations or measurements. Whether you are performing research for business, governmental or academic purposes, data collection allows you to gain first-hand knowledge and original insights into your research problem .

While methods and aims may differ between fields, the overall process of data collection remains largely the same. Before you begin collecting data, you need to consider:

  • The  aim of the research
  • The type of data that you will collect
  • The methods and procedures you will use to collect, store, and process the data

To collect high-quality data that is relevant to your purposes, follow these four steps.

Table of contents

Step 1: define the aim of your research, step 2: choose your data collection method, step 3: plan your data collection procedures, step 4: collect the data, other interesting articles, frequently asked questions about data collection.

Before you start the process of data collection, you need to identify exactly what you want to achieve. You can start by writing a problem statement : what is the practical or scientific issue that you want to address and why does it matter?

Next, formulate one or more research questions that precisely define what you want to find out. Depending on your research questions, you might need to collect quantitative or qualitative data :

  • Quantitative data is expressed in numbers and graphs and is analyzed through statistical methods .
  • Qualitative data is expressed in words and analyzed through interpretations and categorizations.

If your aim is to test a hypothesis , measure something precisely, or gain large-scale statistical insights, collect quantitative data. If your aim is to explore ideas, understand experiences, or gain detailed insights into a specific context, collect qualitative data. If you have several aims, you can use a mixed methods approach that collects both types of data.

  • Your first aim is to assess whether there are significant differences in perceptions of managers across different departments and office locations.
  • Your second aim is to gather meaningful feedback from employees to explore new ideas for how managers can improve.

Prevent plagiarism. Run a free check.

Based on the data you want to collect, decide which method is best suited for your research.

  • Experimental research is primarily a quantitative method.
  • Interviews , focus groups , and ethnographies are qualitative methods.
  • Surveys , observations, archival research and secondary data collection can be quantitative or qualitative methods.

Carefully consider what method you will use to gather data that helps you directly answer your research questions.

Data collection methods
Method When to use How to collect data
Experiment To test a causal relationship. Manipulate variables and measure their effects on others.
Survey To understand the general characteristics or opinions of a group of people. Distribute a list of questions to a sample online, in person or over-the-phone.
Interview/focus group To gain an in-depth understanding of perceptions or opinions on a topic. Verbally ask participants open-ended questions in individual interviews or focus group discussions.
Observation To understand something in its natural setting. Measure or survey a sample without trying to affect them.
Ethnography To study the culture of a community or organization first-hand. Join and participate in a community and record your observations and reflections.
Archival research To understand current or historical events, conditions or practices. Access manuscripts, documents or records from libraries, depositories or the internet.
Secondary data collection To analyze data from populations that you can’t access first-hand. Find existing datasets that have already been collected, from sources such as government agencies or research organizations.

When you know which method(s) you are using, you need to plan exactly how you will implement them. What procedures will you follow to make accurate observations or measurements of the variables you are interested in?

For instance, if you’re conducting surveys or interviews, decide what form the questions will take; if you’re conducting an experiment, make decisions about your experimental design (e.g., determine inclusion and exclusion criteria ).

Operationalization

Sometimes your variables can be measured directly: for example, you can collect data on the average age of employees simply by asking for dates of birth. However, often you’ll be interested in collecting data on more abstract concepts or variables that can’t be directly observed.

Operationalization means turning abstract conceptual ideas into measurable observations. When planning how you will collect data, you need to translate the conceptual definition of what you want to study into the operational definition of what you will actually measure.

  • You ask managers to rate their own leadership skills on 5-point scales assessing the ability to delegate, decisiveness and dependability.
  • You ask their direct employees to provide anonymous feedback on the managers regarding the same topics.

You may need to develop a sampling plan to obtain data systematically. This involves defining a population , the group you want to draw conclusions about, and a sample, the group you will actually collect data from.

Your sampling method will determine how you recruit participants or obtain measurements for your study. To decide on a sampling method you will need to consider factors like the required sample size, accessibility of the sample, and timeframe of the data collection.

Standardizing procedures

If multiple researchers are involved, write a detailed manual to standardize data collection procedures in your study.

This means laying out specific step-by-step instructions so that everyone in your research team collects data in a consistent way – for example, by conducting experiments under the same conditions and using objective criteria to record and categorize observations. This helps you avoid common research biases like omitted variable bias or information bias .

This helps ensure the reliability of your data, and you can also use it to replicate the study in the future.

Creating a data management plan

Before beginning data collection, you should also decide how you will organize and store your data.

  • If you are collecting data from people, you will likely need to anonymize and safeguard the data to prevent leaks of sensitive information (e.g. names or identity numbers).
  • If you are collecting data via interviews or pencil-and-paper formats, you will need to perform transcriptions or data entry in systematic ways to minimize distortion.
  • You can prevent loss of data by having an organization system that is routinely backed up.

Finally, you can implement your chosen methods to measure or observe the variables you are interested in.

The closed-ended questions ask participants to rate their manager’s leadership skills on scales from 1–5. The data produced is numerical and can be statistically analyzed for averages and patterns.

To ensure that high quality data is recorded in a systematic way, here are some best practices:

  • Record all relevant information as and when you obtain data. For example, note down whether or how lab equipment is recalibrated during an experimental study.
  • Double-check manual data entry for errors.
  • If you collect quantitative data, you can assess the reliability and validity to get an indication of your data quality.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Likert scale

Research bias

  • Implicit bias
  • Framing effect
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g. understanding the needs of your consumers or user testing your website)
  • You can control and standardize the process for high reliability and validity (e.g. choosing appropriate measurements and sampling methods )

However, there are also some drawbacks: data collection can be time-consuming, labor-intensive and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 21). Data Collection | Definition, Methods & Examples. Scribbr. Retrieved September 3, 2024, from https://www.scribbr.com/methodology/data-collection/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, qualitative vs. quantitative research | differences, examples & methods, sampling methods | types, techniques & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

We use essential cookies to make Venngage work. By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts.

Manage Cookies

Cookies and similar technologies collect certain information about how you’re using our website. Some of them are essential, and without them you wouldn’t be able to use Venngage. But others are optional, and you get to choose whether we use them or not.

Strictly Necessary Cookies

These cookies are always on, as they’re essential for making Venngage work, and making it safe. Without these cookies, services you’ve asked for can’t be provided.

Show cookie providers

  • Google Login

Functionality Cookies

These cookies help us provide enhanced functionality and personalisation, and remember your settings. They may be set by us or by third party providers.

Performance Cookies

These cookies help us analyze how many people are using Venngage, where they come from and how they're using it. If you opt out of these cookies, we can’t get feedback to make Venngage better for you and all our users.

  • Google Analytics

Targeting Cookies

These cookies are set by our advertising partners to track your activity and show you relevant Venngage ads on other sites as you browse the internet.

  • Google Tag Manager
  • Infographics
  • Daily Infographics
  • Popular Templates
  • Accessibility
  • Graphic Design
  • Graphs and Charts
  • Data Visualization
  • Human Resources
  • Beginner Guides

Blog Data Visualization 10 Data Presentation Examples For Strategic Communication

10 Data Presentation Examples For Strategic Communication

Written by: Krystle Wong Sep 28, 2023

Data Presentation Examples

Knowing how to present data is like having a superpower. 

Data presentation today is no longer just about numbers on a screen; it’s storytelling with a purpose. It’s about captivating your audience, making complex stuff look simple and inspiring action. 

To help turn your data into stories that stick, influence decisions and make an impact, check out Venngage’s free chart maker or follow me on a tour into the world of data storytelling along with data presentation templates that work across different fields, from business boardrooms to the classroom and beyond. Keep scrolling to learn more! 

Click to jump ahead:

10 Essential data presentation examples + methods you should know

What should be included in a data presentation, what are some common mistakes to avoid when presenting data, faqs on data presentation examples, transform your message with impactful data storytelling.

Data presentation is a vital skill in today’s information-driven world. Whether you’re in business, academia, or simply want to convey information effectively, knowing the different ways of presenting data is crucial. For impactful data storytelling, consider these essential data presentation methods:

1. Bar graph

Ideal for comparing data across categories or showing trends over time.

Bar graphs, also known as bar charts are workhorses of data presentation. They’re like the Swiss Army knives of visualization methods because they can be used to compare data in different categories or display data changes over time. 

In a bar chart, categories are displayed on the x-axis and the corresponding values are represented by the height of the bars on the y-axis. 

data presentation in research methods

It’s a straightforward and effective way to showcase raw data, making it a staple in business reports, academic presentations and beyond.

Make sure your bar charts are concise with easy-to-read labels. Whether your bars go up or sideways, keep it simple by not overloading with too many categories.

data presentation in research methods

2. Line graph

Great for displaying trends and variations in data points over time or continuous variables.

Line charts or line graphs are your go-to when you want to visualize trends and variations in data sets over time.

One of the best quantitative data presentation examples, they work exceptionally well for showing continuous data, such as sales projections over the last couple of years or supply and demand fluctuations. 

data presentation in research methods

The x-axis represents time or a continuous variable and the y-axis represents the data values. By connecting the data points with lines, you can easily spot trends and fluctuations.

A tip when presenting data with line charts is to minimize the lines and not make it too crowded. Highlight the big changes, put on some labels and give it a catchy title.

data presentation in research methods

3. Pie chart

Useful for illustrating parts of a whole, such as percentages or proportions.

Pie charts are perfect for showing how a whole is divided into parts. They’re commonly used to represent percentages or proportions and are great for presenting survey results that involve demographic data. 

Each “slice” of the pie represents a portion of the whole and the size of each slice corresponds to its share of the total. 

data presentation in research methods

While pie charts are handy for illustrating simple distributions, they can become confusing when dealing with too many categories or when the differences in proportions are subtle.

Don’t get too carried away with slices — label those slices with percentages or values so people know what’s what and consider using a legend for more categories.

data presentation in research methods

4. Scatter plot

Effective for showing the relationship between two variables and identifying correlations.

Scatter plots are all about exploring relationships between two variables. They’re great for uncovering correlations, trends or patterns in data. 

In a scatter plot, every data point appears as a dot on the chart, with one variable marked on the horizontal x-axis and the other on the vertical y-axis.

data presentation in research methods

By examining the scatter of points, you can discern the nature of the relationship between the variables, whether it’s positive, negative or no correlation at all.

If you’re using scatter plots to reveal relationships between two variables, be sure to add trendlines or regression analysis when appropriate to clarify patterns. Label data points selectively or provide tooltips for detailed information.

data presentation in research methods

5. Histogram

Best for visualizing the distribution and frequency of a single variable.

Histograms are your choice when you want to understand the distribution and frequency of a single variable. 

They divide the data into “bins” or intervals and the height of each bar represents the frequency or count of data points falling into that interval. 

data presentation in research methods

Histograms are excellent for helping to identify trends in data distributions, such as peaks, gaps or skewness.

Here’s something to take note of — ensure that your histogram bins are appropriately sized to capture meaningful data patterns. Using clear axis labels and titles can also help explain the distribution of the data effectively.

data presentation in research methods

6. Stacked bar chart

Useful for showing how different components contribute to a whole over multiple categories.

Stacked bar charts are a handy choice when you want to illustrate how different components contribute to a whole across multiple categories. 

Each bar represents a category and the bars are divided into segments to show the contribution of various components within each category. 

data presentation in research methods

This method is ideal for highlighting both the individual and collective significance of each component, making it a valuable tool for comparative analysis.

Stacked bar charts are like data sandwiches—label each layer so people know what’s what. Keep the order logical and don’t forget the paintbrush for snazzy colors. Here’s a data analysis presentation example on writers’ productivity using stacked bar charts:

data presentation in research methods

7. Area chart

Similar to line charts but with the area below the lines filled, making them suitable for showing cumulative data.

Area charts are close cousins of line charts but come with a twist. 

Imagine plotting the sales of a product over several months. In an area chart, the space between the line and the x-axis is filled, providing a visual representation of the cumulative total. 

data presentation in research methods

This makes it easy to see how values stack up over time, making area charts a valuable tool for tracking trends in data.

For area charts, use them to visualize cumulative data and trends, but avoid overcrowding the chart. Add labels, especially at significant points and make sure the area under the lines is filled with a visually appealing color gradient.

data presentation in research methods

8. Tabular presentation

Presenting data in rows and columns, often used for precise data values and comparisons.

Tabular data presentation is all about clarity and precision. Think of it as presenting numerical data in a structured grid, with rows and columns clearly displaying individual data points. 

A table is invaluable for showcasing detailed data, facilitating comparisons and presenting numerical information that needs to be exact. They’re commonly used in reports, spreadsheets and academic papers.

data presentation in research methods

When presenting tabular data, organize it neatly with clear headers and appropriate column widths. Highlight important data points or patterns using shading or font formatting for better readability.

9. Textual data

Utilizing written or descriptive content to explain or complement data, such as annotations or explanatory text.

Textual data presentation may not involve charts or graphs, but it’s one of the most used qualitative data presentation examples. 

It involves using written content to provide context, explanations or annotations alongside data visuals. Think of it as the narrative that guides your audience through the data. 

Well-crafted textual data can make complex information more accessible and help your audience understand the significance of the numbers and visuals.

Textual data is your chance to tell a story. Break down complex information into bullet points or short paragraphs and use headings to guide the reader’s attention.

10. Pictogram

Using simple icons or images to represent data is especially useful for conveying information in a visually intuitive manner.

Pictograms are all about harnessing the power of images to convey data in an easy-to-understand way. 

Instead of using numbers or complex graphs, you use simple icons or images to represent data points. 

For instance, you could use a thumbs up emoji to illustrate customer satisfaction levels, where each face represents a different level of satisfaction. 

data presentation in research methods

Pictograms are great for conveying data visually, so choose symbols that are easy to interpret and relevant to the data. Use consistent scaling and a legend to explain the symbols’ meanings, ensuring clarity in your presentation.

data presentation in research methods

Looking for more data presentation ideas? Use the Venngage graph maker or browse through our gallery of chart templates to pick a template and get started! 

A comprehensive data presentation should include several key elements to effectively convey information and insights to your audience. Here’s a list of what should be included in a data presentation:

1. Title and objective

  • Begin with a clear and informative title that sets the context for your presentation.
  • State the primary objective or purpose of the presentation to provide a clear focus.

data presentation in research methods

2. Key data points

  • Present the most essential data points or findings that align with your objective.
  • Use charts, graphical presentations or visuals to illustrate these key points for better comprehension.

data presentation in research methods

3. Context and significance

  • Provide a brief overview of the context in which the data was collected and why it’s significant.
  • Explain how the data relates to the larger picture or the problem you’re addressing.

4. Key takeaways

  • Summarize the main insights or conclusions that can be drawn from the data.
  • Highlight the key takeaways that the audience should remember.

5. Visuals and charts

  • Use clear and appropriate visual aids to complement the data.
  • Ensure that visuals are easy to understand and support your narrative.

data presentation in research methods

6. Implications or actions

  • Discuss the practical implications of the data or any recommended actions.
  • If applicable, outline next steps or decisions that should be taken based on the data.

data presentation in research methods

7. Q&A and discussion

  • Allocate time for questions and open discussion to engage the audience.
  • Address queries and provide additional insights or context as needed.

Presenting data is a crucial skill in various professional fields, from business to academia and beyond. To ensure your data presentations hit the mark, here are some common mistakes that you should steer clear of:

Overloading with data

Presenting too much data at once can overwhelm your audience. Focus on the key points and relevant information to keep the presentation concise and focused. Here are some free data visualization tools you can use to convey data in an engaging and impactful way. 

Assuming everyone’s on the same page

It’s easy to assume that your audience understands as much about the topic as you do. But this can lead to either dumbing things down too much or diving into a bunch of jargon that leaves folks scratching their heads. Take a beat to figure out where your audience is coming from and tailor your presentation accordingly.

Misleading visuals

Using misleading visuals, such as distorted scales or inappropriate chart types can distort the data’s meaning. Pick the right data infographics and understandable charts to ensure that your visual representations accurately reflect the data.

Not providing context

Data without context is like a puzzle piece with no picture on it. Without proper context, data may be meaningless or misinterpreted. Explain the background, methodology and significance of the data.

Not citing sources properly

Neglecting to cite sources and provide citations for your data can erode its credibility. Always attribute data to its source and utilize reliable sources for your presentation.

Not telling a story

Avoid simply presenting numbers. If your presentation lacks a clear, engaging story that takes your audience on a journey from the beginning (setting the scene) through the middle (data analysis) to the end (the big insights and recommendations), you’re likely to lose their interest.

Infographics are great for storytelling because they mix cool visuals with short and sweet text to explain complicated stuff in a fun and easy way. Create one with Venngage’s free infographic maker to create a memorable story that your audience will remember.

Ignoring data quality

Presenting data without first checking its quality and accuracy can lead to misinformation. Validate and clean your data before presenting it.

Simplify your visuals

Fancy charts might look cool, but if they confuse people, what’s the point? Go for the simplest visual that gets your message across. Having a dilemma between presenting data with infographics v.s data design? This article on the difference between data design and infographics might help you out. 

Missing the emotional connection

Data isn’t just about numbers; it’s about people and real-life situations. Don’t forget to sprinkle in some human touch, whether it’s through relatable stories, examples or showing how the data impacts real lives.

Skipping the actionable insights

At the end of the day, your audience wants to know what they should do with all the data. If you don’t wrap up with clear, actionable insights or recommendations, you’re leaving them hanging. Always finish up with practical takeaways and the next steps.

Can you provide some data presentation examples for business reports?

Business reports often benefit from data presentation through bar charts showing sales trends over time, pie charts displaying market share,or tables presenting financial performance metrics like revenue and profit margins.

What are some creative data presentation examples for academic presentations?

Creative data presentation ideas for academic presentations include using statistical infographics to illustrate research findings and statistical data, incorporating storytelling techniques to engage the audience or utilizing heat maps to visualize data patterns.

What are the key considerations when choosing the right data presentation format?

When choosing a chart format , consider factors like data complexity, audience expertise and the message you want to convey. Options include charts (e.g., bar, line, pie), tables, heat maps, data visualization infographics and interactive dashboards.

Knowing the type of data visualization that best serves your data is just half the battle. Here are some best practices for data visualization to make sure that the final output is optimized. 

How can I choose the right data presentation method for my data?

To select the right data presentation method, start by defining your presentation’s purpose and audience. Then, match your data type (e.g., quantitative, qualitative) with suitable visualization techniques (e.g., histograms, word clouds) and choose an appropriate presentation format (e.g., slide deck, report, live demo).

For more presentation ideas , check out this guide on how to make a good presentation or use a presentation software to simplify the process.  

How can I make my data presentations more engaging and informative?

To enhance data presentations, use compelling narratives, relatable examples and fun data infographics that simplify complex data. Encourage audience interaction, offer actionable insights and incorporate storytelling elements to engage and inform effectively.

The opening of your presentation holds immense power in setting the stage for your audience. To design a presentation and convey your data in an engaging and informative, try out Venngage’s free presentation maker to pick the right presentation design for your audience and topic. 

What is the difference between data visualization and data presentation?

Data presentation typically involves conveying data reports and insights to an audience, often using visuals like charts and graphs. Data visualization , on the other hand, focuses on creating those visual representations of data to facilitate understanding and analysis. 

Now that you’ve learned a thing or two about how to use these methods of data presentation to tell a compelling data story , it’s time to take these strategies and make them your own. 

But here’s the deal: these aren’t just one-size-fits-all solutions. Remember that each example we’ve uncovered here is not a rigid template but a source of inspiration. It’s all about making your audience go, “Wow, I get it now!”

Think of your data presentations as your canvas – it’s where you paint your story, convey meaningful insights and make real change happen. 

So, go forth, present your data with confidence and purpose and watch as your strategic influence grows, one compelling presentation at a time.

Discover popular designs

data presentation in research methods

Infographic maker

data presentation in research methods

Brochure maker

data presentation in research methods

White paper online

data presentation in research methods

Newsletter creator

data presentation in research methods

Flyer maker

data presentation in research methods

Timeline maker

data presentation in research methods

Letterhead maker

data presentation in research methods

Mind map maker

data presentation in research methods

Ebook maker

IMAGES

  1. PPT

    data presentation in research methods

  2. Methods Data Analysis Qualitative Research Ppt Powerpoint Presentation

    data presentation in research methods

  3. (PDF) Chapter 1 Data Presentation

    data presentation in research methods

  4. What is Data Analysis in Research

    data presentation in research methods

  5. Research Methods 18

    data presentation in research methods

  6. Unleashing Insights: Mastering the Art of Research and Data Analysis

    data presentation in research methods

VIDEO

  1. Individual Presentation Research Methods

  2. CHAPTER FOUR DATA ANALYSIS AND GENERATING CHAPTER FIVE

  3. Types of Research Design

  4. chapter -6: data analysis and presentation

  5. Data Presentation, Analysis and Evaluation

  6. Methods of presentation of data: An introduction and beginner level tutorial

COMMENTS

  1. 10 Methods of Data Presentation That Really Work in 2024

    10 Methods of Data Presentation with 5 Great Tips to ...

  2. Understanding Data Presentations (Guide + Examples)

    Understanding Data Presentations (Guide Examples)

  3. Data Presentation

    Data Presentation - Types & Its Importance

  4. Statistical data presentation

    In this article, the techniques of data and information presentation in textual, tabular, and graphical forms are introduced. Text is the principal method for explaining findings, outlining trends, and providing contextual information. A table is best suited for representing individual information and represents both quantitative and ...

  5. Data presentation: A comprehensive guide

    Data Presentation: A Comprehensive Guide

  6. Chapter Four Data Presentation, Analysis and Interpretation 4.0

    CHAPTER FOUR DATA PRESENTATION, ANALYSIS AND ...

  7. How To Present Research Data?

    Start with response rate and description of research participants (these information give the readers an idea of the representativeness of the research data), then the key findings and relevant statistical analyses. Data should answer the research questions identified earlier. Leave the process of data collection to the methods section.

  8. Qualitative Presentation Strategies

    Qualitative Presentation Strategies. Nov 14, 2023. By Dr. Linda Bloomberg, and hosted by Janet Salmons, Ph.D., Research Community Manager for Sage Methodspace. Dr. Bloomberg is the author of Completing Your Qualitative Dissertation: A Road Map From Beginning to End. Use the code COMMUNITY3 for a 20% discount when you order her book, valid ...

  9. Data Collection, Presentation and Analysis

    Abstract. This chapter covers the topics of data collection, data presentation and data analysis. It gives attention to data collection for studies based on experiments, on data derived from existing published or unpublished data sets, on observation, on simulation and digital twins, on surveys, on interviews and on focus group discussions.

  10. (PDF) Data Presentation in Qualitative Research: The Outcomes of the

    The data presentation is one of the segments of the methodology in every research depending on the approach. The methodology, therefore, refers to the design and the theory that underpins the ...

  11. 17 Important Data Visualization Techniques

    17 Important Data Visualization Techniques - HBS Online

  12. (PDF) Statistical data presentation

    (PDF) Statistical data presentation

  13. Data Presentation

    Encourage the eye to compare different pieces of data. Reveal the data at several levels of detail, from a broad overview to the fine structure. Serve a clear purpose: description, exploration, tabulation, or decoration. Be closely integrated with the statistical and verbal descriptions of the data set. From E. R. Tufte.

  14. Research Methods Guide: Data Analysis

    Data Analysis and Presentation Techniques that Apply to both Survey and Interview Research. Create a documentation of the data and the process of data collection. Analyze the data rather than just describing it - use it to tell a story that focuses on answering the research question. Use charts or tables to help the reader understand the data ...

  15. Present Your Data Like a Pro

    Present Your Data Like a Pro

  16. Data Presentation

    Abstract. In Chapter 2 we discussed various ways (several graphical and one tabular) of presenting qualitative data. In all the example we considered, the data arose from a nominal measuring scale. Although nominal (i.e. qualitative) data often occurs in business and economics, more common is quantitative data, arising from the use of ordinal ...

  17. Data Collection

    Data Collection | Definition, Methods & Examples

  18. What Is Data Presentation? (Definition, Types And How-To)

    What Is Data Presentation? (Definition, Types And How-To)

  19. (PDF) Qualitative Data Collection, Analysis and Presentation: A

    qualitative analysis is the production of visual displays. Laying out data in table or matrix form, and drawing theories. out in the form of a flow chart or map, helps to understand. what the ...

  20. 10 Data Presentation Examples For Strategic Communication

    1. Bar graph. Ideal for comparing data across categories or showing trends over time. Bar graphs, also known as bar charts are workhorses of data presentation. They're like the Swiss Army knives of visualization methods because they can be used to compare data in different categories or display data changes over time.