• Campus Life
  • ...a student.
  • ...a veteran.
  • ...an alum.
  • ...a parent.
  • ...faculty or staff.
  • Class Schedule
  • Crisis Resources
  • People Finder
  • Change Password

UTC RAVE Alert

Critical thinking and problem-solving, jump to: , what is critical thinking, characteristics of critical thinking, why teach critical thinking.

  • Teaching Strategies to Help Promote Critical Thinking Skills

References and Resources

When examining the vast literature on critical thinking, various definitions of critical thinking emerge. Here are some samples:

  • "Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action" (Scriven, 1996).
  • "Most formal definitions characterize critical thinking as the intentional application of rational, higher order thinking skills, such as analysis, synthesis, problem recognition and problem solving, inference, and evaluation" (Angelo, 1995, p. 6).
  • "Critical thinking is thinking that assesses itself" (Center for Critical Thinking, 1996b).
  • "Critical thinking is the ability to think about one's thinking in such a way as 1. To recognize its strengths and weaknesses and, as a result, 2. To recast the thinking in improved form" (Center for Critical Thinking, 1996c).

Perhaps the simplest definition is offered by Beyer (1995) : "Critical thinking... means making reasoned judgments" (p. 8). Basically, Beyer sees critical thinking as using criteria to judge the quality of something, from cooking to a conclusion of a research paper. In essence, critical thinking is a disciplined manner of thought that a person uses to assess the validity of something (statements, news stories, arguments, research, etc.).

Back        

Wade (1995) identifies eight characteristics of critical thinking. Critical thinking involves asking questions, defining a problem, examining evidence, analyzing assumptions and biases, avoiding emotional reasoning, avoiding oversimplification, considering other interpretations, and tolerating ambiguity. Dealing with ambiguity is also seen by Strohm & Baukus (1995) as an essential part of critical thinking, "Ambiguity and doubt serve a critical-thinking function and are a necessary and even a productive part of the process" (p. 56).

Another characteristic of critical thinking identified by many sources is metacognition. Metacognition is thinking about one's own thinking. More specifically, "metacognition is being aware of one's thinking as one performs specific tasks and then using this awareness to control what one is doing" (Jones & Ratcliff, 1993, p. 10 ).

In the book, Critical Thinking, Beyer elaborately explains what he sees as essential aspects of critical thinking. These are:

  • Dispositions: Critical thinkers are skeptical, open-minded, value fair-mindedness, respect evidence and reasoning, respect clarity and precision, look at different points of view, and will change positions when reason leads them to do so.
  • Criteria: To think critically, must apply criteria. Need to have conditions that must be met for something to be judged as believable. Although the argument can be made that each subject area has different criteria, some standards apply to all subjects. "... an assertion must... be based on relevant, accurate facts; based on credible sources; precise; unbiased; free from logical fallacies; logically consistent; and strongly reasoned" (p. 12).
  • Argument: Is a statement or proposition with supporting evidence. Critical thinking involves identifying, evaluating, and constructing arguments.
  • Reasoning: The ability to infer a conclusion from one or multiple premises. To do so requires examining logical relationships among statements or data.
  • Point of View: The way one views the world, which shapes one's construction of meaning. In a search for understanding, critical thinkers view phenomena from many different points of view.
  • Procedures for Applying Criteria: Other types of thinking use a general procedure. Critical thinking makes use of many procedures. These procedures include asking questions, making judgments, and identifying assumptions.

Oliver & Utermohlen (1995) see students as too often being passive receptors of information. Through technology, the amount of information available today is massive. This information explosion is likely to continue in the future. Students need a guide to weed through the information and not just passively accept it. Students need to "develop and effectively apply critical thinking skills to their academic studies, to the complex problems that they will face, and to the critical choices they will be forced to make as a result of the information explosion and other rapid technological changes" (Oliver & Utermohlen, p. 1 ).

As mentioned in the section, Characteristics of Critical Thinking , critical thinking involves questioning. It is important to teach students how to ask good questions, to think critically, in order to continue the advancement of the very fields we are teaching. "Every field stays alive only to the extent that fresh questions are generated and taken seriously" (Center for Critical Thinking, 1996a ).

Beyer sees the teaching of critical thinking as important to the very state of our nation. He argues that to live successfully in a democracy, people must be able to think critically in order to make sound decisions about personal and civic affairs. If students learn to think critically, then they can use good thinking as the guide by which they live their lives.

Teaching Strategies to Help Promote Critical Thinking

The 1995, Volume 22, issue 1, of the journal, Teaching of Psychology , is devoted to the teaching critical thinking. Most of the strategies included in this section come from the various articles that compose this issue.

  • CATS (Classroom Assessment Techniques): Angelo stresses the use of ongoing classroom assessment as a way to monitor and facilitate students' critical thinking. An example of a CAT is to ask students to write a "Minute Paper" responding to questions such as "What was the most important thing you learned in today's class? What question related to this session remains uppermost in your mind?" The teacher selects some of the papers and prepares responses for the next class meeting.
  • Cooperative Learning Strategies: Cooper (1995) argues that putting students in group learning situations is the best way to foster critical thinking. "In properly structured cooperative learning environments, students perform more of the active, critical thinking with continuous support and feedback from other students and the teacher" (p. 8).
  • Case Study /Discussion Method: McDade (1995) describes this method as the teacher presenting a case (or story) to the class without a conclusion. Using prepared questions, the teacher then leads students through a discussion, allowing students to construct a conclusion for the case.
  • Using Questions: King (1995) identifies ways of using questions in the classroom:
  • Reciprocal Peer Questioning: Following lecture, the teacher displays a list of question stems (such as, "What are the strengths and weaknesses of...). Students must write questions about the lecture material. In small groups, the students ask each other the questions. Then, the whole class discusses some of the questions from each small group.
  • Reader's Questions: Require students to write questions on assigned reading and turn them in at the beginning of class. Select a few of the questions as the impetus for class discussion.
  • Conference Style Learning: The teacher does not "teach" the class in the sense of lecturing. The teacher is a facilitator of a conference. Students must thoroughly read all required material before class. Assigned readings should be in the zone of proximal development. That is, readings should be able to be understood by students, but also challenging. The class consists of the students asking questions of each other and discussing these questions. The teacher does not remain passive, but rather, helps "direct and mold discussions by posing strategic questions and helping students build on each others' ideas" (Underwood & Wald, 1995, p. 18 ).
  • Use Writing Assignments: Wade sees the use of writing as fundamental to developing critical thinking skills. "With written assignments, an instructor can encourage the development of dialectic reasoning by requiring students to argue both [or more] sides of an issue" (p. 24).
  • Written dialogues: Give students written dialogues to analyze. In small groups, students must identify the different viewpoints of each participant in the dialogue. Must look for biases, presence or exclusion of important evidence, alternative interpretations, misstatement of facts, and errors in reasoning. Each group must decide which view is the most reasonable. After coming to a conclusion, each group acts out their dialogue and explains their analysis of it.
  • Spontaneous Group Dialogue: One group of students are assigned roles to play in a discussion (such as leader, information giver, opinion seeker, and disagreer). Four observer groups are formed with the functions of determining what roles are being played by whom, identifying biases and errors in thinking, evaluating reasoning skills, and examining ethical implications of the content.
  • Ambiguity: Strohm & Baukus advocate producing much ambiguity in the classroom. Don't give students clear cut material. Give them conflicting information that they must think their way through.
  • Angelo, T. A. (1995). Beginning the dialogue: Thoughts on promoting critical thinking: Classroom assessment for critical thinking. Teaching of Psychology, 22(1), 6-7.
  • Beyer, B. K. (1995). Critical thinking. Bloomington, IN: Phi Delta Kappa Educational Foundation.
  • Center for Critical Thinking (1996a). The role of questions in thinking, teaching, and learning. [On-line]. Available HTTP: http://www.criticalthinking.org/University/univlibrary/library.nclk
  • Center for Critical Thinking (1996b). Structures for student self-assessment. [On-line]. Available HTTP: http://www.criticalthinking.org/University/univclass/trc.nclk
  • Center for Critical Thinking (1996c). Three definitions of critical thinking [On-line]. Available HTTP: http://www.criticalthinking.org/University/univlibrary/library.nclk
  • Cooper, J. L. (1995). Cooperative learning and critical thinking. Teaching of Psychology, 22(1), 7-8.
  • Jones, E. A. & Ratcliff, G. (1993). Critical thinking skills for college students. National Center on Postsecondary Teaching, Learning, and Assessment, University Park, PA. (Eric Document Reproduction Services No. ED 358 772)
  • King, A. (1995). Designing the instructional process to enhance critical thinking across the curriculum: Inquiring minds really do want to know: Using questioning to teach critical thinking. Teaching of Psychology, 22 (1) , 13-17.
  • McDade, S. A. (1995). Case study pedagogy to advance critical thinking. Teaching Psychology, 22(1), 9-10.
  • Oliver, H. & Utermohlen, R. (1995). An innovative teaching strategy: Using critical thinking to give students a guide to the future.(Eric Document Reproduction Services No. 389 702)
  • Robertson, J. F. & Rane-Szostak, D. (1996). Using dialogues to develop critical thinking skills: A practical approach. Journal of Adolescent & Adult Literacy, 39(7), 552-556.
  • Scriven, M. & Paul, R. (1996). Defining critical thinking: A draft statement for the National Council for Excellence in Critical Thinking. [On-line]. Available HTTP: http://www.criticalthinking.org/University/univlibrary/library.nclk
  • Strohm, S. M., & Baukus, R. A. (1995). Strategies for fostering critical thinking skills. Journalism and Mass Communication Educator, 50 (1), 55-62.
  • Underwood, M. K., & Wald, R. L. (1995). Conference-style learning: A method for fostering critical thinking with heart. Teaching Psychology, 22(1), 17-21.
  • Wade, C. (1995). Using writing to develop and assess critical thinking. Teaching of Psychology, 22(1), 24-28.

Other Reading

  • Bean, J. C. (1996). Engaging ideas: The professor's guide to integrating writing, critical thinking, & active learning in the classroom. Jossey-Bass.
  • Bernstein, D. A. (1995). A negotiation model for teaching critical thinking. Teaching of Psychology, 22(1), 22-24.
  • Carlson, E. R. (1995). Evaluating the credibility of sources. A missing link in the teaching of critical thinking. Teaching of Psychology, 22(1), 39-41.
  • Facione, P. A., Sanchez, C. A., Facione, N. C., & Gainen, J. (1995). The disposition toward critical thinking. The Journal of General Education, 44(1), 1-25.
  • Halpern, D. F., & Nummedal, S. G. (1995). Closing thoughts about helping students improve how they think. Teaching of Psychology, 22(1), 82-83.
  • Isbell, D. (1995). Teaching writing and research as inseparable: A faculty-librarian teaching team. Reference Services Review, 23(4), 51-62.
  • Jones, J. M. & Safrit, R. D. (1994). Developing critical thinking skills in adult learners through innovative distance learning. Paper presented at the International Conference on the practice of adult education and social development. Jinan, China. (Eric Document Reproduction Services No. ED 373 159)
  • Sanchez, M. A. (1995). Using critical-thinking principles as a guide to college-level instruction. Teaching of Psychology, 22(1), 72-74.
  • Spicer, K. L. & Hanks, W. E. (1995). Multiple measures of critical thinking skills and predisposition in assessment of critical thinking. Paper presented at the annual meeting of the Speech Communication Association, San Antonio, TX. (Eric Document Reproduction Services No. ED 391 185)
  • Terenzini, P. T., Springer, L., Pascarella, E. T., & Nora, A. (1995). Influences affecting the development of students' critical thinking skills. Research in Higher Education, 36(1), 23-39.

On the Internet

  • Carr, K. S. (1990). How can we teach critical thinking. Eric Digest. [On-line]. Available HTTP: http://ericps.ed.uiuc.edu/eece/pubs/digests/1990/carr90.html
  • The Center for Critical Thinking (1996). Home Page. Available HTTP: http://www.criticalthinking.org/University/
  • Ennis, Bob (No date). Critical thinking. [On-line], April 4, 1997. Available HTTP: http://www.cof.orst.edu/cof/teach/for442/ct.htm
  • Montclair State University (1995). Curriculum resource center. Critical thinking resources: An annotated bibliography. [On-line]. Available HTTP: http://www.montclair.edu/Pages/CRC/Bibliographies/CriticalThinking.html
  • No author, No date. Critical Thinking is ... [On-line], April 4, 1997. Available HTTP: http://library.usask.ca/ustudy/critical/
  • Sheridan, Marcia (No date). Internet education topics hotlink page. [On-line], April 4, 1997. Available HTTP: http://sun1.iusb.edu/~msherida/topics/critical.html

Walker Center for Teaching and Learning

  • 433 Library
  • Dept 4354
  • 615 McCallie Ave
  •   423-425-4188

Chapter 8: Thinking, Communicating & Problem-Solving

Critical thinking & problem-solving, assess your critical thinking strategies.

  • Visit the Quia Critical Thinking Quiz page and click on Start Now (you don’t need to enter your name).
  • Select the best answer for each question, and then click on Submit Answers. A score of 70 percent or better on this quiz is considered passing.
  • Based on the content of the questions, do you feel you use good critical thinking strategies in college? In what ways could you improve as a critical thinker?

chapter 15 critical thinking and problem solving

The essence of the independent mind lies not in what it thinks, but in how it thinks. —Christopher Hitchens, author and journalist

Critical Thinking

As a college student, you are tasked with engaging and expanding your thinking skills. One of the most important of these skills is critical thinking. Critical thinking is important because it relates to nearly all tasks, situations, topics, careers, environments, challenges, and opportunities. It’s a discipline-general thinking skill, not a thinking skill that’s reserved for a one subject alone or restricted to a particular content area. Of all your thinking skills, critical thinking may have the greatest value.

What Is Critical Thinking?

Critical thinking is clear, reasonable, reflective thinking focused on deciding what to believe or do. It means asking probing questions like, “How do we know?” or “Is this true in every case or just in this instance?” It involves being skeptical and challenging assumptions, rather than simply memorizing facts or blindly accepting what you hear or read. Critical thinking skills will help you in any profession or any circumstance of life, from science to art to business to teaching.

Critical thinkers are curious and reflective people. They explore and probe new areas and seek knowledge, clarification, and solutions. They ask pertinent questions, evaluate statements and arguments, and distinguish between facts and opinion. They are also willing to examine their own beliefs, possessing a manner of humility that allows them to admit lack of knowledge or understanding when needed. Critical thinkers are open to changing their mind. Perhaps most of all, they actively enjoy learning and view seeking new knowledge as a lifelong pursuit.

Thinking critically will help you develop more balanced arguments, express yourself clearly, read more critically, and glean important information efficiently. With critical thinking, you become a clearer thinker and problem solver.

What Critical Thinking Is What Critical Thinking Is Not
Skepticism Memorizing
Examining assumptions Group thinking
Challenging reasoning Blind acceptance of authority
Uncovering biases Believing stereotypes

The following video, from Lawrence Bland, presents the major concepts and benefits of critical thinking.

The Role of Logic in Critical Thinking

Critical thinking is fundamentally a process of questioning information and data. You may question the information you read in a textbook, or you may question what a politician or a professor or a classmate says. You can also question a commonly-held belief or a new idea. With critical thinking, anything and everything is subject to question and examination for the purpose of logically constructing reasoned perspectives.

The word logic comes from the Ancient Greek logike , referring to the science or art of reasoning. Using logic, a person evaluates arguments and reasoning and strives to distinguish between good and bad reasoning or between truth and falsehood. Using logic, you can evaluate ideas or claims people make, make good decisions, and form sound beliefs about the world. [1] . Logical thinkers provide reasonable and appropriate evidence to support their claims, acknowledge the strengths of the opposing side’s position, actively investigate a variety of possible outcomes or new solutions, and use measured and objective language to present their positions.

Clarify Thinking

When you use critical thinking to evaluate information, you need to clarify your thinking to yourself and likely to others. Doing this well is mainly a process of asking and answering logical, probing questions. Design your questions to fit your needs, but be sure to cover adequate ground.

  • What is the purpose?
  • What question are we trying to answer?
  • What point of view is being expressed?
  • What assumptions are we or others making?
  • What are the facts and data we know, and how do we know them?
  • What are the concepts we’re working with?
  • What are the conclusions, and do they make sense?
  • What are the implications?

Avoid Fallacies

You’ll also want to make sure you can avoid and spot logical fallacies. Fallacies are faults in thinking or illogical approaches used to persuade the other side. Statements such as, everyone else is doing it ca n be very persuasive even though they demonstrate faulty logic, in this case, the bandwagon appeal. These fallacies can undermine your authority and weaken your position. Students shouldn’t park in the faculty lot because that lot is for faculty is another example of a logical fallacy, this time circular reasoning.

Consult the two websites below to identify and avoid some of the many kinds of logical fallacies:

  • Fallacies Files—Home
  • Logical Fallacies Jeopardy

Applying critical thinking

The following questions may apply to formulating a logical, reasoned perspective in the scenario below or any other situation:

  • What is happening? Gather the basic information and begin to think of questions.
  • Why is it important? Ask yourself why it’s significant and whether or not you agree.
  • What don’t I see? Is there anything important missing?
  • How do I know? Ask yourself where the information came from and how it was constructed.
  • Who is saying it? What’s the position of the speaker and what is influencing them?
  • What else? What if? What other ideas exist and are there other possibilities?

A man has a Ph.D. in political science, and he works as a professor at a local college. His wife works at the college, too. They have three young children in the local school system, and their family is well known in the community. The man is now running for political office.

Are his credentials and experience sufficient for entering public office? Will he be effective in political office? Some voters might believe that his personal life and current job, on the surface, suggest he will do well in the position, and they will vote for him. In truth, the characteristics described don’t guarantee that the man will do a good job. The information is somewhat irrelevant.

What else might you want to know? How about whether the man had already held a political office and done a good job? In this case, we want to ask, How much information is adequate in order to make a decision based on logic instead of assumptions?

Problem-Solving with Critical Thinking

For most people, a typical day is filled with critical thinking and problem-solving challenges. In fact, critical thinking and problem-solving go hand-in-hand. They both refer to using knowledge, facts, and data to solve problems effectively, but with problem-solving, you are specifically identifying, selecting, and defending your solution.

Applying the strategies described in the action checklist below can help you utilize critical thinking skills to solve problems.

STRATEGIES ACTION CHECKLIST
1 Define the problem
2 Identify available solutions
3 Select your solution

Problem-solving can be an efficient and rewarding process, especially if you are organized and mindful of critical steps and strategies. Remember, too, to assume the attributes of a good critical thinker. If you are curious, reflective, knowledge-seeking, open to change, probing, organized, and ethical, your challenge or problem will be less of a hurdle, and you’ll be in a good position to find intelligent solutions.

 Developing Yourself As a Critical Thinker and Problem-Solver

Critical thinking is a fundamental skill for college students, but it should also be a lifelong pursuit that we continually refine. Below are additional strategies to develop yourself as a critical thinker in college and in everyday life:

  • Reflect and practice : Always reflect on what you’ve learned. Is it true all the time? How did you arrive at your conclusions?
  • Use wasted time : It’s certainly important to make time for relaxing, but if you find you are indulging in too much of a good thing, think about using your time more constructively. Determine when you do your best thinking and try to learn something new during that part of the day.
  • Redefine the way you see things : It can be very uninteresting to always think the same way. Challenge yourself to see familiar things in new ways. Put yourself in someone else’s shoes and consider a certain situation from a different angle or perspective. If you’re trying to solve a problem, list all your concerns, such as what you need in order to solve it, who can help, and what some possible barriers might be. It’s often possible to reframe a problem as an opportunity. Try to find a solution where there seems to be none.
  • Analyze the influences on your thinking and in your life : Why do you think or feel the way you do? Analyze your influences. Think about who in your life influences you. Do you feel or react a certain way because of social convention or because you believe it is what is expected of you? Try to break out of any molds that may be constricting you.
  • Express yourself : Critical thinking also involves being able to express yourself clearly. Most important in expressing yourself clearly is stating one point at a time. You might be inclined to argue every thought, but you might have greater impact if you focus only on your main arguments. This will help others to follow your thinking clearly. For more abstract ideas, assume that your audience may not understand. Provide examples, analogies, or metaphors where you can.
  • Enhance your wellness : It’s easier to think critically when you take care of your mental and physical health. Try taking 10-minute activity breaks to reach 30 to 60 minutes of physical activity each day . Try taking a break between classes and walk to the coffee shop that’s farthest away. Scheduling physical activity into your day can help lower stress and increase mental alertness.
  • Do your most difficult work when you have the most energy: Think about the time of day you are most effective and have the most energy. Plan to do your most difficult thinking during these times.

Reflect on Critical Thinking

  • Think about someone whom you consider to be a critical thinker (friend, professor, historical figure, etc). What qualities does he/she have?
  • Review some of the critical thinking strategies discussed on this page. Choose one strategy that makes sense to you. How can you apply this critical thinking technique to your academic work?
  • Habits of mind are attitudes and beliefs that influence how you approach the world (inquiring attitude, open mind, respect for truth, etc.). What is one habit of mind you would like to actively develop over the next year? How will you develop a daily practice to cultivate this habit?

Cultivate Critical Habits of Mind

Earlier in this text we discussed, “habits of mind,” the personal commitments, values, and standards people have about the principle of good thinking. Consider your intellectual commitments, values, and standards. Do you approach problems with an open mind, a respect for truth, and an inquiring attitude? Some good habits to have when thinking critically are being receptive to having your opinions changed, having respect for others, being independent and not accepting something is true until you’ve had the time to examine the available evidence. Other important habits of mind include being fair-minded, having respect for a reason, having an inquiring mind, not making assumptions, and always, especially, questioning your own conclusions. In their quest towards developing an intellectual work ethic, critical thinkers constantly try to work these qualities into their daily lives.

 problem-solving with critical thinking

Below are some examples of using critical thinking to problem-solve. Can you think of additional action steps to apply to the following situations? You may want to look back to Chapter 2 “Defining Goals” to utilize the five step problem solving strategy described there.

  • Your roommate was upset and said some unkind words to you, which has put a crimp in the relationship. You try to see through the angry behaviors to determine how you might best support your roommate and help bring the relationship back to a comfortable spot.
  • Your campus club has been languishing on account of lack of participation and funds. The new club president, though, is a marketing major and has identified some strategies to interest students in joining and supporting the club. Implementation is forthcoming.
  • Your final art class project challenges you to conceptualize form in new ways. On the last day of class when students present their projects, you describe the techniques you used to fulfill the assignment. You explain why and how you selected that approach.
  • Your math teacher sees that the class is not quite grasping a concept. She uses clever questioning to dispel anxiety and guide you to new understanding of the concept.
  • You have a job interview for a position that you feel you are only partially qualified for, although you really want the job and you are excited about the prospects. You analyze how you will explain your skills and experiences in a way to show that you are a good match for the prospective employer.
  • You are doing well in college, and most of your college and living expenses are covered. But there are some gaps between what you want and what you feel you can afford. You analyze your income, savings, and budget to better calculate what you will need to stay in college and maintain your desired level of spending.
  • "logike." Wordnik. n.d. Web. 16 Feb 2016. ↵
  • "Student Success-Thinking Critically In Class and Online."  Critical Thinking Gateway . St Petersburg College, n.d. Web. 16 Feb 2016. ↵
  • Critical Thinking Skills. Authored by : Linda Bruce. Provided by : Lumen Learning. License : CC BY: Attribution
  • Critical Thinking. Provided by : Critical and Creative Thinking Program. Located at : http://cct.wikispaces.umb.edu/Critical+Thinking . License : CC BY: Attribution
  • Thinking Critically. Authored by : UBC Learning Commons. Provided by : The University of British Columbia, Vancouver Campus. Located at : http://www.oercommons.org/courses/learning-toolkit-critical-thinking/view . License : CC BY: Attribution
  • Critical Thinking 101: Spectrum of Authority. Authored by : UBC Leap. Located at : https://youtu.be/9G5xooMN2_c . License : CC BY: Attribution
  • Image of students putting post-its on wall. Authored by : Hector Alejandro. Located at : https://flic.kr/p/7b2Ax2 . License : CC BY: Attribution
  • Foundations of Academic Success. Authored by : Thomas C. Priester, editor. Provided by : Open SUNY Textbooks. Located at : http://textbooks.opensuny.org/foundations-of-academic-success/ . License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • Image of three students. Authored by : PopTech. Located at : https://flic.kr/p/8tXtQp . License : CC BY-SA: Attribution-ShareAlike
  • Critical Thinking.wmv. Authored by : Lawrence Bland. Located at : https://youtu.be/WiSklIGUblo . License : All Rights Reserved . License Terms : Standard YouTube License

Footer Logo Lumen Candela

Privacy Policy

chapter 15 critical thinking and problem solving

Chapter 15: Critical Thinking and Problem Solving

Oct 27, 2014

220 likes | 567 Views

Chapter 15: Critical Thinking and Problem Solving. Critical Thinking. Definition & Characteristics (Dr. Richard Paul) “ A systematic way to form and shape one ’ s thinking ” Functions purposefully & exactingly Disciplined Comprehensive Based on intellectual standards Well-reasoned.

Share Presentation

  • problem solving
  • critical thinking
  • study skills
  • scientific problem solving
  • chapter 15 critical thinking

chester-gilliam

Presentation Transcript

Critical Thinking • Definition & Characteristics (Dr. Richard Paul) • “A systematic way to form and shape one’s thinking” • Functions purposefully & exactingly • Disciplined • Comprehensive • Based on intellectual standards • Well-reasoned

Critical Thinking (cont’d) • Features of Critical Thinking in Health Care • Purposeful & results-oriented • Based on principles of: • Health care practice • Scientific method • Evidence-based • Guided by professional standards & ethics codes • Self-correcting through constant reevaluation

Critical Thinking (cont’d) • Analyzing and Evaluating Information • What is the main purpose? • What is the most important information? • What data support the main purpose? • What are the key concepts or most important ideas? How do they relate to the main purpose? • What message is the author trying to convey?

Critical Thinking (cont’d) • Improving Your Critical-Thinking Skills • Clarify your thinking • Discipline your thinking • Ask meaningful questions • Be willing to change your mind

Problem Solving • Basic Problem-Solving Approach in Action • Identify the problem • Gather information & identify possible solutions • Select the best option • Implement the solution • Evaluate the results

Problem Solving (cont’d) • Basic problem-solving approach

Problem Solving (cont’d) • Trial-and-Error Problem Solving • Testing solutions until one is found that works • Not effective in health care • Can be dangerous

Problem Solving (cont’d) • Scientific Problem Solving • Problem identification • Data collection • Hypothesis formulation • Plan of action • Hypothesis testing • Interpretation of results • Evaluation

Problem Solving (cont’d) • Intuitive Problem Solving • Based on inner prompting or instinct • No logical thinking • Identifying a solution to a problem based on its similarity or dissimilarity to other problems

Study Skills • Four Processes of Studying • Refreshing one’s memory • Taking in new information • Organizing & memorizing data • Making connections among information

Study Skills (cont’d) • Study Area: Desired Features • Adequate but not overwhelming lighting • Comfortable temperature • Soft, non-distracting background music • White noise • No phone • No TV

Study Skills (cont’d) • Daily Preparation • Read texts • Review notes • Study patient files • Analyze test results • Consult fellow learners or colleagues • Examine additional resources

Study Skills (cont’d) • Reading Strategies • Pay attention to bold & italicized print • Write main paragraph points in page margins or a notebook • Read everything, including: • Tables • Graphs • Illustrations

Study Skills (cont’d) • Three Parts of Learning Information • Reception: taking in information without knowing what it means • Perception: giving meaning to information • Selection: recognizing information as important or unimportant

Study Skills (cont’d) • Types of Memory • Working memory • Short-term memory • Long-term memory

Study Skills (cont’d) • Techniques for recalling information • Say or write down everything you can remember • Try to recall events or information in a different order • Recreate the learning environment or relive the event

Study Skills (cont’d) • Different Strategies for Learning • Make associations • Acronyms & acrostics • Flashcards • Music

Study Skills (cont’d) • Study Groups: Characteristics of Effective Members • Committed • Contributing • Compatible • Considerate

Study Skills (cont’d) • Study Groups: Making the Most of Study Sessions • Determine objectives • Prepare in advance • Alternate instruction • Focus on the task

  • More by User

Examples of Critical Thinking

Examples of Critical Thinking

Examples of Critical Thinking. What is Critical Thinking?. CRITICAL THINKING is the active and systematic process of Communication Problem-solving Evaluation Analysis Synthesis Reflection both individually and in community to Foster understanding

1.07k views • 8 slides

CRITICAL THINKING

CRITICAL THINKING

CRITICAL THINKING. “Thinking that is purposeful, reasoned, and goal-directed—the kind of thinking involved in solving problems, formulating inferences, calculating likelihoods, and making decisions.” Diane Helpern. What is Critical thinking?. Do not believe everything you see, read, or hear.

566 views • 13 slides

Developing Minds: Problem Solving, Creativity & Critical Thinking Pat Hubert – ESA2

Developing Minds: Problem Solving, Creativity & Critical Thinking Pat Hubert – ESA2

Developing Minds: Problem Solving, Creativity & Critical Thinking Pat Hubert – ESA2. Creativity and Problem Solving. When you think of someone who is “creative”, who comes to mind? When you think of someone who is a “problem solver or critical thinker”, who comes to mind?. Big Ideas:.

971 views • 47 slides

Chapter 9: Critical Thinking

Chapter 9: Critical Thinking

Chapter 9: Critical Thinking. Bridging the Gap, 9/e Brenda Smith. In this chapter you will answer the questions:. What is thinking? What is critical thinking? What are the characteristics of critical thinkers? What are the barriers to critical thinking?

1.08k views • 32 slides

Critical Thinking

Critical Thinking

Critical Thinking. Define critical thinking and discuss why it is an important topic to be addressed by today's educators. How is critical thinking similar to and different from creativity?. Developed by W. Huitt, 1999. Critical Thinking.

433 views • 21 slides

CRITICAL THINKING

CRITICAL THINKING. OBJECTIVES. 1. Discuss critical thinking and problem solving. 2. Describe importance of critical thinking for nurses. PRETEST. 1. Define the word critical. 2. Identify one way in which nurses use critical thinking in their practice.

1.13k views • 42 slides

Problem Solving

Problem Solving

Problem Solving. Kimberley Clow [email protected] http://instruct.uwo.ca/psychology/130. Outline. Learning vs. Thinking Stages in Creative Thinking Preparation Incubation Illumination Verification Hindrances to Problem Solving Process of Problem Solving Methods of Problem Solving

929 views • 38 slides

CRITICAL SKILLS

CRITICAL SKILLS

Judit Munso Lossiemouth High School. CRITICAL SKILLS. Develop the 4 capacities Collaborative learning. What are Critical Skills?. problem solving decision making creative thinking critical thinking. What’s involved?. Communication Organization Management Leadership. And…….

341 views • 8 slides

Skills and Problem Solving

Skills and Problem Solving

Skills and Problem Solving. Skills . Thinking Skills: Reasoning. Making decisions. Solving problems. Thinking creatively. Knowing how to learn. Critical Thinking and Problem Solving. Analyze situations and reach a reasonable conclusion.

496 views • 11 slides

Foundations of Problem Solving chapter 2

Foundations of Problem Solving chapter 2

Foundations of Problem Solving chapter 2 . Dr Lahen Ouarbya . Outcomes . This chapter is all about problems and how we solve them Problem-solving is the heart of programming What is a problem ? The problem with problem solving A strategy for solving problems

381 views • 18 slides

THE ROLE OF CRITICAL THINKING IN PROBLEM SOLVING IN ORGANIZATIONS

THE ROLE OF CRITICAL THINKING IN PROBLEM SOLVING IN ORGANIZATIONS

THE ROLE OF CRITICAL THINKING IN PROBLEM SOLVING IN ORGANIZATIONS. BY ADEBAYO JIMOH GMD/CEO ODU’A INVESTMENT COMPANY LIMITED PAPER PRESENTED TO THE PERSONNEL PSYCHOLOGY STUDENTS ASSOCIATION UNIVERSITY OF IBADAN 14 TH MARCH, 2013. OUTLINE. INTRODUCTION WHAT IS CRITICAL THINKING

524 views • 22 slides

Critical Thinking Lesson 8

Critical Thinking Lesson 8

Critical Thinking Lesson 8. Lesson 8 Objectives Become a better problem solver by Identifying the problem Identifying alternatives Identifying advantages and disadvantages of the alternatives Finding a solution Evaluating the solution. The Problem-Solving Method .

2.34k views • 12 slides

Chapter 9: Critical Thinking

612 views • 32 slides

Chapter 8: Thinking

Chapter 8: Thinking

Chapter 8: Thinking. Music : “Thinking of You ” Norah Jones “Think” Katherine McPhee. Thinking: Agenda. 1. The Cognitive Revolution 2. Reasoning: a) deductive b) inductive 3. Problem Solving: a) approaches b) barriers 4. Judgments & Decision Making Problems (a-f)

295 views • 16 slides

Develop 21 st Century Critical Thinking Skills With Opposing Viewpoints Resource Center: Critical Thinking

Develop 21 st Century Critical Thinking Skills With Opposing Viewpoints Resource Center: Critical Thinking

Develop 21 st Century Critical Thinking Skills With Opposing Viewpoints Resource Center: Critical Thinking. What is Critical Thinking?. Problem solving Thinking outside the box Teaching kids to think for themselves The ability to analyze and understand Forming ones own opinion

636 views • 14 slides

Questioning, Thinking, and Problem Solving

Questioning, Thinking, and Problem Solving

Questioning, Thinking, and Problem Solving. Tiffany Hogan. Journaling Choice Board (Please select 1-2). Thinking, questioning, problem solving. Be a 5!. Teachers’ lounge. “Wow! I had no idea aspirin came in such large bottles!”. Introduction. About Me Parking Lot Chocolate

1.24k views • 84 slides

Thinking Skills

Thinking Skills

Thinking Skills. TCH 347 Social Studies in the Elementary School Department of Teacher Education Shippensburg University Han Liu, Ph.D. List of Thinking Skills. Critical thinking Creative thinking Decision making Problem solving Analytical Thinking vs. Synthesizing thinking

1.73k views • 22 slides

Thinking and Problem Solving

Thinking and Problem Solving

Thinking and Problem Solving. What is thinking?. Thinking is the mental activity that is involved in the manipulation and understanding of information. Units of Thought: Concept : group of objects, events, or ideas that share similar characteristics Concept of “mom,” “dad,” “soccer game”

275 views • 6 slides

Critical Thinking 		for Kind Learners

Critical Thinking for Kind Learners

Critical Thinking for Kind Learners. Neil Browne. The Problem. What is the sound of this thing called CRITICAL THINKING. EVALUATION. The 2 dimensions of the problem. 1. What the learner hears and thinks when hearing “This course encourages critical thinking.”

317 views • 16 slides

Critical Thinking

Critical Thinking. What do we learn?. Data information Knowledge Wisdom Intelligence Power (making right decisions) Experiences of success Boosted self-esteem and self-confidence. What’s involved in critical thinking?. Logical operations Reasoning Problem-solving Decision-making

681 views • 36 slides

Executive Function: Critical Thinking

Executive Function: Critical Thinking

Executive Function: Critical Thinking. Dr. Hazel McBride Ph.D. Teach Critical Thinking. http://youtu.be/-85-j7Nr9i4. Problem solving. Identify problem. Generate possible solutions. Prioritize solutions. Develop a plan. Take action. Evaluate the result. Successful.

437 views • 20 slides

Chapter 2: Problem Solving

Chapter 2: Problem Solving

Chapter 2: Problem Solving. In this chapter you will learn about: Introduction to Problem Solving Software development method (SDM) Specification of needs Problem analysis Design and algorithmic representation Implementation Testing and verification Documentation.

892 views • 36 slides

Logo for Pressbooks @ Howard Community College

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

15 Chapter Fifteen: Critical Thinking

Critical Thinking

Thinking comes naturally. You don’t have to make it happen—it just does. But you can make it happen in different ways. For example, you can think positively or negatively. You can think with “heart” and you can think with rational judgment. You can also think strategically and analytically, and mathematically and scientifically. These are a few of multiple ways in which the mind can process thought.

What are some forms of thinking you use? When do you use them, and why?

As a college student, you are tasked with engaging and expanding your thinking skills. One of the most important of these skills is critical thinking. Critical thinking is important because it relates to nearly all tasks, situations, topics, careers, environments, challenges, and opportunities. It’s a “domain-general” thinking skill—not a thinking skill that’s reserved for a one subject alone or restricted to a particular subject area.

Great leaders have highly attuned critical thinking skills, and you can, too. In fact, you probably have a lot of these skills already. Of all your thinking skills, critical thinking may have the greatest value.

What Is Critical Thinking?

Critical thinking is clear, reasonable, reflective thinking focused on deciding what to believe or do. It means asking probing questions like, “How do we know?” or “Is this true in every case or just in this instance?” It involves being skeptical and challenging assumptions, rather than simply memorizing facts or blindly accepting what you hear or read.

Imagine, for example, that you’re reading a history textbook. You wonder who wrote it and why, because you detect certain biases in the writing. You find that the author has a limited scope of research focused only on a particular group within a population. In this case, your critical thinking reveals that there are “other sides to the story.”

Who are critical thinkers, and what characteristics do they have in common? Critical thinkers are usually curious and reflective people. They like to explore and probe new areas and seek knowledge, clarification, and new solutions. They ask pertinent questions, evaluate statements and arguments, and they distinguish between facts and opinion. They are also willing to examine their own beliefs, possessing a manner of humility that allows them to admit lack of knowledge or understanding when needed. They are open to changing their mind. Perhaps most of all, they actively enjoy learning, and seeking new knowledge is a lifelong pursuit.

This may well be you!

No matter where you are on the road to being a critical thinker, you can always more fully develop and finely tune your skills. Doing so will help you develop more balanced arguments, express yourself clearly, read critically, and glean important information efficiently. Critical thinking skills will help you in any profession or any circumstance of life, from science to art to business to teaching. With critical thinking, you become a clearer thinker and problem solver.

Critical Thinking IS Critical Thinking is NOT
Skepticism Memorizing
Examining assumptions Group thinking
Challenging reasoning Blind acceptance of authority
Uncovering biases

Activity: Self-assess Your Critical Thinking Strategies

  • Assess your basic understanding of the skills involved in critical thinking.
  • Visit the Quia Critical Thinking Quiz
  •  (Links to an external site.)
  •  page and click on Start Now (you don’t need to enter your name). Select the best answer for each question, and then click on Submit Answers. A score of 70 percent or better on this quiz is considering passing.
  • Based on the content of the questions, do you feel you use good critical thinking strategies in college? In what ways might you improve as a critical thinker?

Critical Thinking and Logic

Critical thinking is fundamentally a process of questioning information and data. You may question the information you read in a textbook, or you may question what a politician or a professor or a classmate says. You can also question a commonly-held belief or a new idea. With critical thinking, anything and everything is subject to question and examination for the purpose of logically constructing reasoned perspectives.

What Is Logic, and Why Is It Important in Critical Thinking?

The word logic comes from the Ancient Greek logike, referring to the science or art of reasoning. Using logic, a person evaluates arguments and reasoning and strives to distinguish between good and bad reasoning, or between truth and falsehood. Using logic, you can evaluate ideas or claims people make, make good decisions, and form sound beliefs about the world. [1]

Questions of Logic in Critical Thinking

Let’s use a simple example of applying logic to a critical-thinking situation. In this hypothetical scenario, a man has a PhD in political science, and he works as a professor at a local college. His wife works at the college, too. They have three young children in the local school system, and their family is well known in the community. The man is now running for political office. Are his credentials and experience sufficient for entering public office? Will he be effective in the political office? Some voters might believe that his personal life and current job, on the surface, suggest he will do well in the position, and they will vote for him. In truth, the characteristics described don’t guarantee that the man will do a good job. The information is somewhat irrelevant. What else might you want to know? How about whether the man had already held a political office and done a good job? In this case, we want to ask, How much information is adequate in order to make a decision based on logic instead of assumptions?

The following questions, presented in Figure 1, below, are ones you may apply to formulating a logical, reasoned perspective in the above scenario or any other situation:

  • What’s happening? Gather the basic information and begin to think of questions.
  • Why is it important? Ask yourself why it’s significant and whether or not you agree.
  • What don’t I see? Is there anything important missing?
  • How do I know? Ask yourself where the information came from and how it was constructed.
  • Who is saying it? What’s the position of the speaker and what is influencing them?
  • What else? What if? What other ideas exist and are there other possibilities?

Problem-Solving with Critical Thinking

For most people, a typical day is filled with critical thinking and problem-solving challenges. In fact, critical thinking and problem-solving go hand-in-hand. They both refer to using knowledge, facts, and data to solve problems effectively. But with problem-solving, you are specifically identifying, selecting, and defending your solution. Below are some examples of using critical thinking to problem-solve:

  • Your roommate was upset and said some unkind words to you, which put a crimp in the relationship. You try to see through the angry behaviors to determine how you might best support the roommate and help bring the relationship back to a comfortable spot.
  • Your campus club has been languishing on account of lack of participation and funds. The new club president, though, is a marketing major and has identified some strategies to interest students in joining and supporting the club. Implementation is forthcoming.
  • Your final art class project challenges you to conceptualize form in new ways. On the last day of class when students present their projects, you describe the techniques you used to fulfill the assignment. You explain why and how you selected that approach.
  • Your math teacher sees that the class is not quite grasping a concept. She uses clever questioning to dispel anxiety and guide you to new understanding of the concept.
  • You have a job interview for a position that you feel you are only partially qualified for, although you really want the job and you are excited about the prospects. You analyze how you will explain your skills and experiences in a way to show that you are a good match for the prospective employer.
  • You are doing well in college, and most of your college and living expenses are covered. But there are some gaps between what you want and what you feel you can afford. You analyze your income, savings, and budget to better calculate what you will need to stay in college and maintain your desired level of spending.

Problem-Solving Action Checklist

Problem-solving can be an efficient and rewarding process, especially if you are organized and mindful of critical steps and strategies. Remember, too, to assume the attributes of a good critical thinker. If you are curious, reflective, knowledge-seeking, open to change, probing, organized, and ethical, your challenge or problem will be less of a hurdle, and you’ll be in a good position to find intelligent solutions.

STRATEGIES ACTION CHECKLIST
1 Define the problem
2 Identify available solutions
3 Select your solution

Evaluating Information with Critical Thinking

Evaluating information can be one of the most complex tasks you will be faced with in college. But if you utilize the following four strategies, you will be well on your way to success:

  • Read for understanding by using text coding
  • Examine arguments
  • Clarify thinking
  • Cultivate “habits of mind”

Read for Understanding Using Text Coding

When you read and take notes, use the text coding strategy . Text coding is a way of tracking your thinking while reading. It entails marking the text and recording what you are thinking either in the margins or perhaps on Post-it notes. As you make connections and ask questions in response to what you read,  you monitor your comprehension and enhance your long-term understanding of the material.

With text coding, mark important arguments and key facts. Indicate where you agree and disagree or have further questions. You don’t necessarily need to read every word, but make sure you understand the concepts or the intentions behind what is written. Feel free to develop your own shorthand style when reading or taking notes. The following are a few options to consider using while coding text.

Shorthand Meaning
! Important
L Learned something new
! Big idea surfaced
* Interesting or important fact
? Dig deeper
âś“ Agree
≠ Disagree

See more text coding from PBWorks and Collaborative for Teaching and Learning.

Examine Arguments

When you examine arguments or claims that an author, speaker, or other source is making, your goal is to identify and examine the hard facts. You can use the spectrum of authority strategy for this purpose. The spectrum of authority strategy assists you in identifying the “hot” end of an argument—feelings, beliefs, cultural influences, and societal influences—and the “cold” end of an argument—scientific influences.

Clarify Thinking

When you use critical thinking to evaluate information, you need to clarify your thinking to yourself and likely to others. Doing this well is mainly a process of asking and answering probing questions, such as the logic questions discussed earlier. Design your questions to fit your needs, but be sure to cover adequate ground. What is the purpose? What question are we trying to answer? What point of view is being expressed? What assumptions are we or others making? What are the facts and data we know, and how do we know them? What are the concepts we’re working with? What are the conclusions, and do they make sense? What are the implications?

Cultivate “Habits of Mind”

“Habits of mind” are the personal commitments, values, and standards you have about the principle of good thinking. Consider your intellectual commitments, values, and standards. Do you approach problems with an open mind, a respect for truth, and an inquiring attitude? Some good habits to have when thinking critically are being receptive to having your opinions changed, having respect for others, being independent and not accepting something is true until you’ve had the time to examine the available evidence, being fair-minded, having respect for a reason, having an inquiring mind, not making assumptions, and always, especially, questioning your own conclusions—in other words, developing an intellectual work ethic. Try to work these qualities into your daily life.

Developing Yourself As a Critical Thinker

Critical thinking is a desire to seek, patience to doubt, fondness to meditate, slowness to assert, readiness to consider, carefulness to dispose and set in order; and hatred for every kind of imposture. —Francis Bacon, philosopher

Critical thinking is a fundamental skill for college students, but it should also be a lifelong pursuit. Below are additional strategies to develop yourself as a critical thinker in college and in everyday life:

  • Reflect and practice: Always reflect on what you’ve learned. Is it true all the time? How did you arrive at your conclusions?
  • Use wasted time: It’s certainly important to make time for relaxing, but if you find you are indulging in too much of a good thing, think about using your time more constructively. Determine when you do your best thinking and try to learn something new during that part of the day.
  • Redefine the way you see things: It can be very uninteresting to always think the same way. Challenge yourself to see familiar things in new ways. Put yourself in someone else’s shoes and consider things from a different angle or perspective.  If you’re trying to solve a problem, list all your concerns: what you need in order to solve it, who can help, what some possible barriers might be, etc. It’s often possible to reframe a problem as an opportunity. Try to find a solution where there seems to be none.
  • Analyze the influences on your thinking and in your life: Why do you think or feel the way you do? Analyze your influences. Think about who in your life influences you. Do you feel or react a certain way because of social convention, or because you believe it is what is expected of you? Try to break out of any molds that may be constricting you.
  • Express yourself: Critical thinking also involves being able to express yourself clearly. Most important in expressing yourself clearly is stating one point at a time. You might be inclined to argue every thought, but you might have greater impact if you focus just on your main arguments. This will help others to follow your thinking clearly. For more abstract ideas, assume that your audience may not understand. Provide examples, analogies, or metaphors where you can.
  • Enhance your wellness: It’s easier to think critically when you take care of your mental and physical health.
  • Try taking 10-minute activity breaks to reach 30 to 60 minutes of physical activity each day. Try taking a break between classes and walk to the coffee shop that’s farthest away. Scheduling physical activity into your day can help lower stress and increase mental alertness. Also, do your most difficult work when you have the most energy. Think about the time of day you are most effective and have the most energy. Plan to do your most difficult work during these times. And be sure to reach out for help. If you feel you need assistance with your mental or physical health, talk to a counselor or visit a doctor.

Activity: Reflect on Critical Thinking

  • Apply critical thinking strategies to your life

Directions:

  • Think about someone you consider to be a critical thinker (friend, professor, historical figure, etc). What qualities does he/she have?
  • Review some of the critical thinking strategies discussed on this page. Pick one strategy that makes sense to you. How can you apply this critical thinking technique to your academic work?
  • Habits of mind are attitudes and beliefs that influence how you approach the world (i.e., inquiring attitude, open mind, respect for truth, etc). What is one habit of mind you would like to actively develop over the next year? How will you develop a daily practice to cultivate this habit?
  • Write your responses in journal form, and submit according to your instructor’s guidelines.

The following text is an excerpt from an essay by Dr. Andrew Robert Baker, “Thinking Critically and Creatively.” In these paragraphs, Dr. Baker underscores the importance of critical thinking—the imperative of critical thinking, really—to improving as students, teachers, and researchers. The follow-up portion of this essay appears in the Creative Thinking section of this course.

Thinking Critically and Creatively —Dr. Andrew Robert Baker, Foundations of Academic Success: Words of Wisdom

Critical thinking skills are perhaps the most fundamental skills involved in making judgments and solving problems. You use them every day, and you can continue improving them.

The ability to think critically about a matter—to analyze a question, situation, or problem down to its most basic parts—is what helps us evaluate the accuracy and truthfulness of statements, claims, and information we read and hear. It is the sharp knife that, when honed, separates fact from fiction, honesty from lies, and the accurate from the misleading. We all use this skill to one degree or another almost every day. For example, we use critical thinking every day as we consider the latest consumer products and why one particular product is the best among its peers. Is it a quality product because a celebrity endorses it? Because a lot of other people may have used it? Because it is made by one company versus another? Or perhaps because it is made in one country or another? These are questions representative of critical thinking.

The academic setting demands more of us in terms of critical thinking than everyday life. It demands that we evaluate information and analyze myriad issues. It is the environment where our critical thinking skills can be the difference between success and failure. In this environment we must consider information in an analytical, critical manner. We must ask questions—What is the source of this information? Is this source an expert one and what makes it so? Are there multiple perspectives to consider on an issue? Do multiple sources agree or disagree on an issue? Does quality research substantiate information or opinion? Do I have any personal biases that may affect my consideration of this information?

It is only through purposeful, frequent, intentional questioning such as this that we can sharpen our critical thinking skills and improve as students, learners and researchers.

Thinking Critically While Reading

Being a critical reader is essential to your success as a student and a citizen. To avoid being spammed and spoofed, you need to probe written and visual texts for their messages, tones, lenses, etc. Doing so will not only encourage you to become a better critical thinker, but it will also enable you to become a more engaged citizen.

  • One technique that will not only make you a better critical thinker but will also help you develop as a writer is to break down others’ arguments when reading. Critical Reading Practices will assist you in analyzing argument-driven pieces, as will Distinguishing between Main Points and Sub-claims and The Guiding Idea and Argumentative Thesis Statement.
  • Identifying a Conversation will instruct you about how to make connections between sources, preparing you to situate your own argument in an existing conversation about a particular topic.
  • Engaging in rhetorical analysis requires you to develop an awareness and understanding of the rhetorical appeals (ethos, pathos, logos, and kairos) and the logical fallacies, which in this section are organized based on their associated rhetorical appeal: fallacious ethos, fallacious pathos, fallacious logos, and fallacious kairos.
  • Writers use visual rhetoric to sway consumers’ buying decisions, voting preferences, and emotional responses to alphabetic texts. Consult Breaking Down an Image to discover how to dissect an image into its essential components, and check out Ad Analysis to learn how to analyze advertisements from a particular lens (i.e., race, gender, or socioeconomic status).

THINKING CRITICALLY AND CREATIVELY

While critical thinking analyzes information and roots out the true nature and facets of problems, it is creative thinking that drives progress forward when it comes to solving these problems. Exceptional creative thinkers are people that invent new solutions to existing problems that do not rely on past or current solutions. They are the ones who invent solution C when everyone else is still arguing between A and B. Creative thinking skills involve using strategies to clear the mind so that our thoughts and ideas can transcend the current limitations of a problem and allow us to see beyond barriers that prevent new solutions from being found.

Brainstorming is the simplest example of intentional creative thinking that most people have tried at least once. With the quick generation of many ideas at once, we can block-out our brain’s natural tendency to limit our solution-generating abilities so we can access and combine many possible solutions/thoughts and invent new ones. It is sort of like sprinting through a race’s finish line only to find there is a new track on the other side and we can keep going, if we choose. As with critical thinking, higher education both demands creative thinking from us and is the perfect place to practice and develop the skill. Everything from word problems in a math class, to opinion or persuasive speeches and papers, call upon our creative thinking skills to generate new solutions and perspectives in response to our professor’s demands. Creative thinking skills ask questions such as—What if? Why not? What else is out there? Can I combine perspectives/solutions? What is something no one else has brought-up? What is being forgotten/ignored? What about ______? It is the opening of doors and options that follows problem-identification.

Consider an assignment that required you to compare two different authors on the topic of education and select and defend one as better. Now add to this scenario that your professor clearly prefers one author over the other. While critical thinking can get you as far as identifying the similarities and differences between these authors and evaluating their merits, it is creative thinking that you must use if you wish to challenge your professor’s opinion and invent new perspectives on the authors that have not previously been considered.

So, what can we do to develop our critical and creative thinking skills? Although many students may dislike it, group work is an excellent way to develop our thinking skills. Many times I have heard from students their disdain for working in groups based on scheduling, varied levels of commitment to the group or project, and personality conflicts too, of course. True—it’s not always easy, but that is why it is so effective. When we work collaboratively on a project or problem we bring many brains to bear on a subject. These different brains will naturally develop varied ways of solving or explaining problems and examining information. To the observant individual we see that this places us in a constant state of back and forth critical/creative thinking modes.

For example, in group work we are simultaneously analyzing information and generating solutions on our own, while challenging other analyses/ideas and responding to challenges to our own analyses/ideas. This is part of why students tend to avoid group work—it challenges us as thinkers and forces us to analyze others while defending ourselves, which is not something we are used to or comfortable with as most of our educational experiences involve solo work. Your professors know this—that’s why we assign it—to help you grow as students, learners, and thinkers!

—Dr. Andrew Robert Baker, Foundations of Academic Success: Words of Wisdom

Resources for Critical Thinking

  • Glossary of Critical Thinking Terms
  • Critical Thinking Self-Assessment
  • Logical Fallacies Jeopardy Template
  • Fallacies Files—Home
  • Thinking Critically | Learning Commons
  • Foundation for Critical Thinking
  • To Analyze Thinking We Must Identify and Question Its Elemental Structures
  • Critical Thinking in Everyday Life

Chapter Fifteen: Critical Thinking Copyright © by Erin Nunnally and Brooke Tyson is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

50 Problem-Solving and Critical Thinking Examples

Critical thinking and problem solving are essential skills for success in the 21st century. Critical thinking is the ability to analyze information, evaluate evidence, and draw logical conclusions. Problem solving is the ability to apply critical thinking to find effective solutions to various challenges. Both skills require creativity, curiosity, and persistence. Developing critical thinking and problem solving skills can help students improve their academic performance, enhance their career prospects, and become more informed and engaged citizens.

chapter 15 critical thinking and problem solving

Sanju Pradeepa

Problem-Solving and Critical Thinking Examples

In today’s complex and fast-paced world, the ability to think critically and solve problems effectively has become a vital skill for success in all areas of life. Whether it’s navigating professional challenges, making sound decisions, or finding innovative solutions, critical thinking and problem-solving are key to overcoming obstacles and achieving desired outcomes. In this blog post, we will explore problem-solving and critical thinking examples.

Table of Contents

Developing the skills needed for critical thinking and problem solving.

Developing the skills needed for critical thinking and problem solving

It is not enough to simply recognize an issue; we must use the right tools and techniques to address it. To do this, we must learn how to define and identify the problem or task at hand, gather relevant information from reliable sources, analyze and compare data to draw conclusions, make logical connections between different ideas, generate a solution or action plan, and make a recommendation.

The first step in developing these skills is understanding what the problem or task is that needs to be addressed. This requires careful consideration of all available information in order to form an accurate picture of what needs to be done. Once the issue has been identified, gathering reliable sources of data can help further your understanding of it. Sources could include interviews with customers or stakeholders, surveys, industry reports, and analysis of customer feedback.

After collecting relevant information from reliable sources, it’s important to analyze and compare the data in order to draw meaningful conclusions about the situation at hand. This helps us better understand our options for addressing an issue by providing context for decision-making. Once you have analyzed the data you collected, making logical connections between different ideas can help you form a more complete picture of the situation and inform your potential solutions.

Once you have analyzed your options for addressing an issue based on all available data points, it’s time to generate a solution or action plan that takes into account considerations such as cost-effectiveness and feasibility. It’s also important to consider the risk factors associated with any proposed solutions in order to ensure that they are responsible before moving forward with implementation. Finally, once all the analysis has been completed, it is time to make a recommendation based on your findings, which should take into account any objectives set out by stakeholders at the beginning of this process as well as any other pertinent factors discovered throughout the analysis stage.

By following these steps carefully when faced with complex issues, one can effectively use critical thinking and problem-solving skills in order to achieve desired outcomes more efficiently than would otherwise be possible without them, while also taking responsibility for decisions made along the way.

what does critical thinking involve

What Does Critical Thinking Involve: 5 Essential Skill

Problem-solving and critical thinking examples.

Problem-Solving and Critical Thinking Examples

Problem-solving and critical thinking are key skills that are highly valued in any professional setting. These skills enable individuals to analyze complex situations, make informed decisions, and find innovative solutions. Here, we present 25 examples of problem-solving and critical thinking. problem-solving scenarios to help you cultivate and enhance these skills.

Ethical dilemma: A company faces a situation where a client asks for a product that does not meet quality standards. The team must decide how to address the client’s request without compromising the company’s credibility or values.

Brainstorming session: A team needs to come up with new ideas for a marketing campaign targeting a specific demographic. Through an organized brainstorming session, they explore various approaches and analyze their potential impact.

Troubleshooting technical issues : An IT professional receives a ticket indicating a network outage. They analyze the issue, assess potential causes (hardware, software, or connectivity), and solve the problem efficiently.

Negotiation : During contract negotiations, representatives from two companies must find common ground to strike a mutually beneficial agreement, considering the needs and limitations of both parties.

Project management: A project manager identifies potential risks and develops contingency plans to address unforeseen obstacles, ensuring the project stays on track.

Decision-making under pressure: In a high-stakes situation, a medical professional must make a critical decision regarding a patient’s treatment, weighing all available information and considering potential risks.

Conflict resolution: A team encounters conflicts due to differing opinions or approaches. The team leader facilitates a discussion to reach a consensus while considering everyone’s perspectives.

Data analysis: A data scientist is presented with a large dataset and is tasked with extracting valuable insights. They apply analytical techniques to identify trends, correlations, and patterns that can inform decision-making.

Customer service: A customer service representative encounters a challenging customer complaint and must employ active listening and problem-solving skills to address the issue and provide a satisfactory resolution.

Market research : A business seeks to expand into a new market. They conduct thorough market research, analyzing consumer behavior, competitor strategies, and economic factors to make informed market-entry decisions.

Creative problem-solvin g: An engineer faces a design challenge and must think outside the box to come up with a unique and innovative solution that meets project requirements.

Change management: During a company-wide transition, managers must effectively communicate the change, address employees’ concerns, and facilitate a smooth transition process.

Crisis management: When a company faces a public relations crisis, effective critical thinking is necessary to analyze the situation, develop a response strategy, and minimize potential damage to the company’s reputation.

Cost optimization : A financial analyst identifies areas where expenses can be reduced while maintaining operational efficiency, presenting recommendations for cost savings.

Time management : An employee has multiple deadlines to meet. They assess the priority of each task, develop a plan, and allocate time accordingly to achieve optimal productivity.

Quality control: A production manager detects an increase in product defects and investigates the root causes, implementing corrective actions to enhance product quality.

Strategic planning: An executive team engages in strategic planning to define long-term goals, assess market trends, and identify growth opportunities.

Cross-functional collaboration: Multiple teams with different areas of expertise must collaborate to develop a comprehensive solution, combining their knowledge and skills.

Training and development : A manager identifies skill gaps in their team and designs training programs to enhance critical thinking, problem-solving, and decision-making abilities.

Risk assessment : A risk management professional evaluates potential risks associated with a new business venture, weighing their potential impact and developing strategies to mitigate them.

Continuous improvement: An operations manager analyzes existing processes, identifies inefficiencies, and introduces improvements to enhance productivity and customer satisfaction.

Customer needs analysis: A product development team conducts extensive research to understand customer needs and preferences, ensuring that the resulting product meets those requirements.

Crisis decision-making: A team dealing with a crisis must think quickly, assess the situation, and make timely decisions with limited information.

Marketing campaign analysis : A marketing team evaluates the success of a recent campaign, analyzing key performance indicators to understand its impact on sales and customer engagement.

Constructive feedback: A supervisor provides feedback to an employee, highlighting areas for improvement and offering constructive suggestions for growth.

Conflict resolution in a team project: Team members engaged in a project have conflicting ideas on the approach. They must engage in open dialogue, actively listen to each other’s perspectives, and reach a compromise that aligns with the project’s goals.

Crisis response in a natural disaster: Emergency responders must think critically and swiftly in responding to a natural disaster, coordinating rescue efforts, allocating resources effectively, and prioritizing the needs of affected individuals.

Product innovation : A product development team conducts market research, studies consumer trends, and uses critical thinking to create innovative products that address unmet customer needs.

Supply chain optimization: A logistics manager analyzes the supply chain to identify areas for efficiency improvement, such as reducing transportation costs, improving inventory management, or streamlining order fulfillment processes.

Business strategy formulation: A business executive assesses market dynamics, the competitive landscape, and internal capabilities to develop a robust business strategy that ensures sustainable growth and competitiveness.

Crisis communication: In the face of a public relations crisis, an organization’s spokesperson must think critically to develop and deliver a transparent, authentic, and effective communication strategy to rebuild trust and manage reputation.

Social problem-solving: A group of volunteers addresses a specific social issue, such as poverty or homelessness, by critically examining its root causes, collaborating with stakeholders, and implementing sustainable solutions for the affected population.

Problem-Solving Mindset

Problem-Solving Mindset: How to Achieve It (15 Ways)

Risk assessment in investment decision-making: An investment analyst evaluates various investment opportunities, conducting risk assessments based on market trends, financial indicators, and potential regulatory changes to make informed investment recommendations.

Environmental sustainability: An environmental scientist analyzes the impact of industrial processes on the environment, develops strategies to mitigate risks, and promotes sustainable practices within organizations and communities.

Adaptation to technological advancements : In a rapidly evolving technological landscape, professionals need critical thinking skills to adapt to new tools, software, and systems, ensuring they can effectively leverage these advancements to enhance productivity and efficiency.

Productivity improvement: An operations manager leverages critical thinking to identify productivity bottlenecks within a workflow and implement process improvements to optimize resource utilization, minimize waste, and increase overall efficiency.

Cost-benefit analysis: An organization considering a major investment or expansion opportunity conducts a thorough cost-benefit analysis, weighing potential costs against expected benefits to make an informed decision.

Human resources management : HR professionals utilize critical thinking to assess job applicants, identify skill gaps within the organization, and design training and development programs to enhance the workforce’s capabilities.

Root cause analysis: In response to a recurring problem or inefficiency, professionals apply critical thinking to identify the root cause of the issue, develop remedial actions, and prevent future occurrences.

Leadership development: Aspiring leaders undergo critical thinking exercises to enhance their decision-making abilities, develop strategic thinking skills, and foster a culture of innovation within their teams.

Brand positioning : Marketers conduct comprehensive market research and consumer behavior analysis to strategically position a brand, differentiating it from competitors and appealing to target audiences effectively.

Resource allocation: Non-profit organizations distribute limited resources efficiently, critically evaluating project proposals, considering social impact, and allocating resources to initiatives that align with their mission.

Innovating in a mature market: A company operating in a mature market seeks to innovate to maintain a competitive edge. They cultivate critical thinking skills to identify gaps, anticipate changing customer needs, and develop new strategies, products, or services accordingly.

Analyzing financial statements : Financial analysts critically assess financial statements, analyze key performance indicators, and derive insights to support financial decision-making, such as investment evaluations or budget planning.

Crisis intervention : Mental health professionals employ critical thinking and problem-solving to assess crises faced by individuals or communities, develop intervention plans, and provide support during challenging times.

Data privacy and cybersecurity : IT professionals critically evaluate existing cybersecurity measures, identify vulnerabilities, and develop strategies to protect sensitive data from threats, ensuring compliance with privacy regulations.

Process improvement : Professionals in manufacturing or service industries critically evaluate existing processes, identify inefficiencies, and implement improvements to optimize efficiency, quality, and customer satisfaction.

Multi-channel marketing strategy : Marketers employ critical thinking to design and execute effective marketing campaigns across various channels such as social media, web, print, and television, ensuring a cohesive brand experience for customers.

Peer review: Researchers critically analyze and review the work of their peers, providing constructive feedback and ensuring the accuracy, validity, and reliability of scientific studies.

Project coordination : A project manager must coordinate multiple teams and resources to ensure seamless collaboration, identify potential bottlenecks, and find solutions to keep the project on schedule.  

These examples highlight the various contexts in which problem-solving and critical-thinking skills are necessary for success. By understanding and practicing these skills, individuals can enhance their ability to navigate challenges and make sound decisions in both personal and professional endeavors.

Conclusion:

Critical thinking and problem-solving are indispensable skills that empower individuals to overcome challenges, make sound decisions, and find innovative solutions. By honing these skills, one can navigate through the complexities of modern life and achieve success in both personal and professional endeavors. Embrace the power of critical thinking and problem-solving, and unlock the door to endless possibilities and growth.

  • Problem solving From Wikipedia, the free encyclopedia
  • Critical thinking From Wikipedia, the free encyclopedia
  • The Importance of Critical Thinking and Problem Solving Skills for Students (5 Minutes)

Believe in mind Newsletter

Let’s boost your self-growth with Believe in Mind.

Interested in self-reflection tips, learning hacks, and knowing ways to calm down your mind? We offer you the best content which you have been looking for.

Sanju Danthanarayana

Follow Me on

You May Like Also

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Logo for College of DuPage Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7 Module 7: Thinking, Reasoning, and Problem-Solving

This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure out the solution to many problems, because you feel capable of using logic to argue a point, because you can evaluate whether the things you read and hear make sense—you do not need any special training in thinking. But this, of course, is one of the key barriers to helping people think better. If you do not believe that there is anything wrong, why try to fix it?

The human brain is indeed a remarkable thinking machine, capable of amazing, complex, creative, logical thoughts. Why, then, are we telling you that you need to learn how to think? Mainly because one major lesson from cognitive psychology is that these capabilities of the human brain are relatively infrequently realized. Many psychologists believe that people are essentially “cognitive misers.” It is not that we are lazy, but that we have a tendency to expend the least amount of mental effort necessary. Although you may not realize it, it actually takes a great deal of energy to think. Careful, deliberative reasoning and critical thinking are very difficult. Because we seem to be successful without going to the trouble of using these skills well, it feels unnecessary to develop them. As you shall see, however, there are many pitfalls in the cognitive processes described in this module. When people do not devote extra effort to learning and improving reasoning, problem solving, and critical thinking skills, they make many errors.

As is true for memory, if you develop the cognitive skills presented in this module, you will be more successful in school. It is important that you realize, however, that these skills will help you far beyond school, even more so than a good memory will. Although it is somewhat useful to have a good memory, ten years from now no potential employer will care how many questions you got right on multiple choice exams during college. All of them will, however, recognize whether you are a logical, analytical, critical thinker. With these thinking skills, you will be an effective, persuasive communicator and an excellent problem solver.

The module begins by describing different kinds of thought and knowledge, especially conceptual knowledge and critical thinking. An understanding of these differences will be valuable as you progress through school and encounter different assignments that require you to tap into different kinds of knowledge. The second section covers deductive and inductive reasoning, which are processes we use to construct and evaluate strong arguments. They are essential skills to have whenever you are trying to persuade someone (including yourself) of some point, or to respond to someone’s efforts to persuade you. The module ends with a section about problem solving. A solid understanding of the key processes involved in problem solving will help you to handle many daily challenges.

7.1. Different kinds of thought

7.2. Reasoning and Judgment

7.3. Problem Solving

READING WITH PURPOSE

Remember and understand.

By reading and studying Module 7, you should be able to remember and describe:

  • Concepts and inferences (7.1)
  • Procedural knowledge (7.1)
  • Metacognition (7.1)
  • Characteristics of critical thinking:  skepticism; identify biases, distortions, omissions, and assumptions; reasoning and problem solving skills  (7.1)
  • Reasoning:  deductive reasoning, deductively valid argument, inductive reasoning, inductively strong argument, availability heuristic, representativeness heuristic  (7.2)
  • Fixation:  functional fixedness, mental set  (7.3)
  • Algorithms, heuristics, and the role of confirmation bias (7.3)
  • Effective problem solving sequence (7.3)

By reading and thinking about how the concepts in Module 6 apply to real life, you should be able to:

  • Identify which type of knowledge a piece of information is (7.1)
  • Recognize examples of deductive and inductive reasoning (7.2)
  • Recognize judgments that have probably been influenced by the availability heuristic (7.2)
  • Recognize examples of problem solving heuristics and algorithms (7.3)

Analyze, Evaluate, and Create

By reading and thinking about Module 6, participating in classroom activities, and completing out-of-class assignments, you should be able to:

  • Use the principles of critical thinking to evaluate information (7.1)
  • Explain whether examples of reasoning arguments are deductively valid or inductively strong (7.2)
  • Outline how you could try to solve a problem from your life using the effective problem solving sequence (7.3)

7.1. Different kinds of thought and knowledge

  • Take a few minutes to write down everything that you know about dogs.
  • Do you believe that:
  • Psychic ability exists?
  • Hypnosis is an altered state of consciousness?
  • Magnet therapy is effective for relieving pain?
  • Aerobic exercise is an effective treatment for depression?
  • UFO’s from outer space have visited earth?

On what do you base your belief or disbelief for the questions above?

Of course, we all know what is meant by the words  think  and  knowledge . You probably also realize that they are not unitary concepts; there are different kinds of thought and knowledge. In this section, let us look at some of these differences. If you are familiar with these different kinds of thought and pay attention to them in your classes, it will help you to focus on the right goals, learn more effectively, and succeed in school. Different assignments and requirements in school call on you to use different kinds of knowledge or thought, so it will be very helpful for you to learn to recognize them (Anderson, et al. 2001).

Factual and conceptual knowledge

Module 5 introduced the idea of declarative memory, which is composed of facts and episodes. If you have ever played a trivia game or watched Jeopardy on TV, you realize that the human brain is able to hold an extraordinary number of facts. Likewise, you realize that each of us has an enormous store of episodes, essentially facts about events that happened in our own lives. It may be difficult to keep that in mind when we are struggling to retrieve one of those facts while taking an exam, however. Part of the problem is that, in contradiction to the advice from Module 5, many students continue to try to memorize course material as a series of unrelated facts (picture a history student simply trying to memorize history as a set of unrelated dates without any coherent story tying them together). Facts in the real world are not random and unorganized, however. It is the way that they are organized that constitutes a second key kind of knowledge, conceptual.

Concepts are nothing more than our mental representations of categories of things in the world. For example, think about dogs. When you do this, you might remember specific facts about dogs, such as they have fur and they bark. You may also recall dogs that you have encountered and picture them in your mind. All of this information (and more) makes up your concept of dog. You can have concepts of simple categories (e.g., triangle), complex categories (e.g., small dogs that sleep all day, eat out of the garbage, and bark at leaves), kinds of people (e.g., psychology professors), events (e.g., birthday parties), and abstract ideas (e.g., justice). Gregory Murphy (2002) refers to concepts as the “glue that holds our mental life together” (p. 1). Very simply, summarizing the world by using concepts is one of the most important cognitive tasks that we do. Our conceptual knowledge  is  our knowledge about the world. Individual concepts are related to each other to form a rich interconnected network of knowledge. For example, think about how the following concepts might be related to each other: dog, pet, play, Frisbee, chew toy, shoe. Or, of more obvious use to you now, how these concepts are related: working memory, long-term memory, declarative memory, procedural memory, and rehearsal? Because our minds have a natural tendency to organize information conceptually, when students try to remember course material as isolated facts, they are working against their strengths.

One last important point about concepts is that they allow you to instantly know a great deal of information about something. For example, if someone hands you a small red object and says, “here is an apple,” they do not have to tell you, “it is something you can eat.” You already know that you can eat it because it is true by virtue of the fact that the object is an apple; this is called drawing an  inference , assuming that something is true on the basis of your previous knowledge (for example, of category membership or of how the world works) or logical reasoning.

Procedural knowledge

Physical skills, such as tying your shoes, doing a cartwheel, and driving a car (or doing all three at the same time, but don’t try this at home) are certainly a kind of knowledge. They are procedural knowledge, the same idea as procedural memory that you saw in Module 5. Mental skills, such as reading, debating, and planning a psychology experiment, are procedural knowledge, as well. In short, procedural knowledge is the knowledge how to do something (Cohen & Eichenbaum, 1993).

Metacognitive knowledge

Floyd used to think that he had a great memory. Now, he has a better memory. Why? Because he finally realized that his memory was not as great as he once thought it was. Because Floyd eventually learned that he often forgets where he put things, he finally developed the habit of putting things in the same place. (Unfortunately, he did not learn this lesson before losing at least 5 watches and a wedding ring.) Because he finally realized that he often forgets to do things, he finally started using the To Do list app on his phone. And so on. Floyd’s insights about the real limitations of his memory have allowed him to remember things that he used to forget.

All of us have knowledge about the way our own minds work. You may know that you have a good memory for people’s names and a poor memory for math formulas. Someone else might realize that they have difficulty remembering to do things, like stopping at the store on the way home. Others still know that they tend to overlook details. This knowledge about our own thinking is actually quite important; it is called metacognitive knowledge, or  metacognition . Like other kinds of thinking skills, it is subject to error. For example, in unpublished research, one of the authors surveyed about 120 General Psychology students on the first day of the term. Among other questions, the students were asked them to predict their grade in the class and report their current Grade Point Average. Two-thirds of the students predicted that their grade in the course would be higher than their GPA. (The reality is that at our college, students tend to earn lower grades in psychology than their overall GPA.) Another example: Students routinely report that they thought they had done well on an exam, only to discover, to their dismay, that they were wrong (more on that important problem in a moment). Both errors reveal a breakdown in metacognition.

The Dunning-Kruger Effect

In general, most college students probably do not study enough. For example, using data from the National Survey of Student Engagement, Fosnacht, McCormack, and Lerma (2018) reported that first-year students at 4-year colleges in the U.S. averaged less than 14 hours per week preparing for classes. The typical suggestion is that you should spend two hours outside of class for every hour in class, or 24 – 30 hours per week for a full-time student. Clearly, students in general are nowhere near that recommended mark. Many observers, including some faculty, believe that this shortfall is a result of students being too busy or lazy. Now, it may be true that many students are too busy, with work and family obligations, for example. Others, are not particularly motivated in school, and therefore might correctly be labeled lazy. A third possible explanation, however, is that some students might not think they need to spend this much time. And this is a matter of metacognition. Consider the scenario that we mentioned above, students thinking they had done well on an exam only to discover that they did not. Justin Kruger and David Dunning examined scenarios very much like this in 1999. Kruger and Dunning gave research participants tests measuring humor, logic, and grammar. Then, they asked the participants to assess their own abilities and test performance in these areas. They found that participants in general tended to overestimate their abilities, already a problem with metacognition. Importantly, the participants who scored the lowest overestimated their abilities the most. Specifically, students who scored in the bottom quarter (averaging in the 12th percentile) thought they had scored in the 62nd percentile. This has become known as the  Dunning-Kruger effect . Many individual faculty members have replicated these results with their own student on their course exams, including the authors of this book. Think about it. Some students who just took an exam and performed poorly believe that they did well before seeing their score. It seems very likely that these are the very same students who stopped studying the night before because they thought they were “done.” Quite simply, it is not just that they did not know the material. They did not know that they did not know the material. That is poor metacognition.

In order to develop good metacognitive skills, you should continually monitor your thinking and seek frequent feedback on the accuracy of your thinking (Medina, Castleberry, & Persky 2017). For example, in classes get in the habit of predicting your exam grades. As soon as possible after taking an exam, try to find out which questions you missed and try to figure out why. If you do this soon enough, you may be able to recall the way it felt when you originally answered the question. Did you feel confident that you had answered the question correctly? Then you have just discovered an opportunity to improve your metacognition. Be on the lookout for that feeling and respond with caution.

concept :  a mental representation of a category of things in the world

Dunning-Kruger effect : individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

inference : an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

metacognition :  knowledge about one’s own cognitive processes; thinking about your thinking

Critical thinking

One particular kind of knowledge or thinking skill that is related to metacognition is  critical thinking (Chew, 2020). You may have noticed that critical thinking is an objective in many college courses, and thus it could be a legitimate topic to cover in nearly any college course. It is particularly appropriate in psychology, however. As the science of (behavior and) mental processes, psychology is obviously well suited to be the discipline through which you should be introduced to this important way of thinking.

More importantly, there is a particular need to use critical thinking in psychology. We are all, in a way, experts in human behavior and mental processes, having engaged in them literally since birth. Thus, perhaps more than in any other class, students typically approach psychology with very clear ideas and opinions about its subject matter. That is, students already “know” a lot about psychology. The problem is, “it ain’t so much the things we don’t know that get us into trouble. It’s the things we know that just ain’t so” (Ward, quoted in Gilovich 1991). Indeed, many of students’ preconceptions about psychology are just plain wrong. Randolph Smith (2002) wrote a book about critical thinking in psychology called  Challenging Your Preconceptions,  highlighting this fact. On the other hand, many of students’ preconceptions about psychology are just plain right! But wait, how do you know which of your preconceptions are right and which are wrong? And when you come across a research finding or theory in this class that contradicts your preconceptions, what will you do? Will you stick to your original idea, discounting the information from the class? Will you immediately change your mind? Critical thinking can help us sort through this confusing mess.

But what is critical thinking? The goal of critical thinking is simple to state (but extraordinarily difficult to achieve): it is to be right, to draw the correct conclusions, to believe in things that are true and to disbelieve things that are false. We will provide two definitions of critical thinking (or, if you like, one large definition with two distinct parts). First, a more conceptual one: Critical thinking is thinking like a scientist in your everyday life (Schmaltz, Jansen, & Wenckowski, 2017).  Our second definition is more operational; it is simply a list of skills that are essential to be a critical thinker. Critical thinking entails solid reasoning and problem solving skills; skepticism; and an ability to identify biases, distortions, omissions, and assumptions. Excellent deductive and inductive reasoning, and problem solving skills contribute to critical thinking. So, you can consider the subject matter of sections 7.2 and 7.3 to be part of critical thinking. Because we will be devoting considerable time to these concepts in the rest of the module, let us begin with a discussion about the other aspects of critical thinking.

Let’s address that first part of the definition. Scientists form hypotheses, or predictions about some possible future observations. Then, they collect data, or information (think of this as making those future observations). They do their best to make unbiased observations using reliable techniques that have been verified by others. Then, and only then, they draw a conclusion about what those observations mean. Oh, and do not forget the most important part. “Conclusion” is probably not the most appropriate word because this conclusion is only tentative. A scientist is always prepared that someone else might come along and produce new observations that would require a new conclusion be drawn. Wow! If you like to be right, you could do a lot worse than using a process like this.

A Critical Thinker’s Toolkit 

Now for the second part of the definition. Good critical thinkers (and scientists) rely on a variety of tools to evaluate information. Perhaps the most recognizable tool for critical thinking is  skepticism (and this term provides the clearest link to the thinking like a scientist definition, as you are about to see). Some people intend it as an insult when they call someone a skeptic. But if someone calls you a skeptic, if they are using the term correctly, you should consider it a great compliment. Simply put, skepticism is a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided. People from Missouri should recognize this principle, as Missouri is known as the Show-Me State. As a skeptic, you are not inclined to believe something just because someone said so, because someone else believes it, or because it sounds reasonable. You must be persuaded by high quality evidence.

Of course, if that evidence is produced, you have a responsibility as a skeptic to change your belief. Failure to change a belief in the face of good evidence is not skepticism; skepticism has open mindedness at its core. M. Neil Browne and Stuart Keeley (2018) use the term weak sense critical thinking to describe critical thinking behaviors that are used only to strengthen a prior belief. Strong sense critical thinking, on the other hand, has as its goal reaching the best conclusion. Sometimes that means strengthening your prior belief, but sometimes it means changing your belief to accommodate the better evidence.

Many times, a failure to think critically or weak sense critical thinking is related to a  bias , an inclination, tendency, leaning, or prejudice. Everybody has biases, but many people are unaware of them. Awareness of your own biases gives you the opportunity to control or counteract them. Unfortunately, however, many people are happy to let their biases creep into their attempts to persuade others; indeed, it is a key part of their persuasive strategy. To see how these biases influence messages, just look at the different descriptions and explanations of the same events given by people of different ages or income brackets, or conservative versus liberal commentators, or by commentators from different parts of the world. Of course, to be successful, these people who are consciously using their biases must disguise them. Even undisguised biases can be difficult to identify, so disguised ones can be nearly impossible.

Here are some common sources of biases:

  • Personal values and beliefs.  Some people believe that human beings are basically driven to seek power and that they are typically in competition with one another over scarce resources. These beliefs are similar to the world-view that political scientists call “realism.” Other people believe that human beings prefer to cooperate and that, given the chance, they will do so. These beliefs are similar to the world-view known as “idealism.” For many people, these deeply held beliefs can influence, or bias, their interpretations of such wide ranging situations as the behavior of nations and their leaders or the behavior of the driver in the car ahead of you. For example, if your worldview is that people are typically in competition and someone cuts you off on the highway, you may assume that the driver did it purposely to get ahead of you. Other types of beliefs about the way the world is or the way the world should be, for example, political beliefs, can similarly become a significant source of bias.
  • Racism, sexism, ageism and other forms of prejudice and bigotry.  These are, sadly, a common source of bias in many people. They are essentially a special kind of “belief about the way the world is.” These beliefs—for example, that women do not make effective leaders—lead people to ignore contradictory evidence (examples of effective women leaders, or research that disputes the belief) and to interpret ambiguous evidence in a way consistent with the belief.
  • Self-interest.  When particular people benefit from things turning out a certain way, they can sometimes be very susceptible to letting that interest bias them. For example, a company that will earn a profit if they sell their product may have a bias in the way that they give information about their product. A union that will benefit if its members get a generous contract might have a bias in the way it presents information about salaries at competing organizations. (Note that our inclusion of examples describing both companies and unions is an explicit attempt to control for our own personal biases). Home buyers are often dismayed to discover that they purchased their dream house from someone whose self-interest led them to lie about flooding problems in the basement or back yard. This principle, the biasing power of self-interest, is likely what led to the famous phrase  Caveat Emptor  (let the buyer beware) .  

Knowing that these types of biases exist will help you evaluate evidence more critically. Do not forget, though, that people are not always keen to let you discover the sources of biases in their arguments. For example, companies or political organizations can sometimes disguise their support of a research study by contracting with a university professor, who comes complete with a seemingly unbiased institutional affiliation, to conduct the study.

People’s biases, conscious or unconscious, can lead them to make omissions, distortions, and assumptions that undermine our ability to correctly evaluate evidence. It is essential that you look for these elements. Always ask, what is missing, what is not as it appears, and what is being assumed here? For example, consider this (fictional) chart from an ad reporting customer satisfaction at 4 local health clubs.

chapter 15 critical thinking and problem solving

Clearly, from the results of the chart, one would be tempted to give Club C a try, as customer satisfaction is much higher than for the other 3 clubs.

There are so many distortions and omissions in this chart, however, that it is actually quite meaningless. First, how was satisfaction measured? Do the bars represent responses to a survey? If so, how were the questions asked? Most importantly, where is the missing scale for the chart? Although the differences look quite large, are they really?

Well, here is the same chart, with a different scale, this time labeled:

chapter 15 critical thinking and problem solving

Club C is not so impressive any more, is it? In fact, all of the health clubs have customer satisfaction ratings (whatever that means) between 85% and 88%. In the first chart, the entire scale of the graph included only the percentages between 83 and 89. This “judicious” choice of scale—some would call it a distortion—and omission of that scale from the chart make the tiny differences among the clubs seem important, however.

Also, in order to be a critical thinker, you need to learn to pay attention to the assumptions that underlie a message. Let us briefly illustrate the role of assumptions by touching on some people’s beliefs about the criminal justice system in the US. Some believe that a major problem with our judicial system is that many criminals go free because of legal technicalities. Others believe that a major problem is that many innocent people are convicted of crimes. The simple fact is, both types of errors occur. A person’s conclusion about which flaw in our judicial system is the greater tragedy is based on an assumption about which of these is the more serious error (letting the guilty go free or convicting the innocent). This type of assumption is called a value assumption (Browne and Keeley, 2018). It reflects the differences in values that people develop, differences that may lead us to disregard valid evidence that does not fit in with our particular values.

Oh, by the way, some students probably noticed this, but the seven tips for evaluating information that we shared in Module 1 are related to this. Actually, they are part of this section. The tips are, to a very large degree, set of ideas you can use to help you identify biases, distortions, omissions, and assumptions. If you do not remember this section, we strongly recommend you take a few minutes to review it.

skepticism :  a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

bias : an inclination, tendency, leaning, or prejudice

  • Which of your beliefs (or disbeliefs) from the Activate exercise for this section were derived from a process of critical thinking? If some of your beliefs were not based on critical thinking, are you willing to reassess these beliefs? If the answer is no, why do you think that is? If the answer is yes, what concrete steps will you take?

7.2 Reasoning and Judgment

  • What percentage of kidnappings are committed by strangers?
  • Which area of the house is riskiest: kitchen, bathroom, or stairs?
  • What is the most common cancer in the US?
  • What percentage of workplace homicides are committed by co-workers?

An essential set of procedural thinking skills is  reasoning , the ability to generate and evaluate solid conclusions from a set of statements or evidence. You should note that these conclusions (when they are generated instead of being evaluated) are one key type of inference that we described in Section 7.1. There are two main types of reasoning, deductive and inductive.

Deductive reasoning

Suppose your teacher tells you that if you get an A on the final exam in a course, you will get an A for the whole course. Then, you get an A on the final exam. What will your final course grade be? Most people can see instantly that you can conclude with certainty that you will get an A for the course. This is a type of reasoning called  deductive reasoning , which is defined as reasoning in which a conclusion is guaranteed to be true as long as the statements leading to it are true. The three statements can be listed as an  argument , with two beginning statements and a conclusion:

Statement 1: If you get an A on the final exam, you will get an A for the course

Statement 2: You get an A on the final exam

Conclusion: You will get an A for the course

This particular arrangement, in which true beginning statements lead to a guaranteed true conclusion, is known as a  deductively valid argument . Although deductive reasoning is often the subject of abstract, brain-teasing, puzzle-like word problems, it is actually an extremely important type of everyday reasoning. It is just hard to recognize sometimes. For example, imagine that you are looking for your car keys and you realize that they are either in the kitchen drawer or in your book bag. After looking in the kitchen drawer, you instantly know that they must be in your book bag. That conclusion results from a simple deductive reasoning argument. In addition, solid deductive reasoning skills are necessary for you to succeed in the sciences, philosophy, math, computer programming, and any endeavor involving the use of logic to persuade others to your point of view or to evaluate others’ arguments.

Cognitive psychologists, and before them philosophers, have been quite interested in deductive reasoning, not so much for its practical applications, but for the insights it can offer them about the ways that human beings think. One of the early ideas to emerge from the examination of deductive reasoning is that people learn (or develop) mental versions of rules that allow them to solve these types of reasoning problems (Braine, 1978; Braine, Reiser, & Rumain, 1984). The best way to see this point of view is to realize that there are different possible rules, and some of them are very simple. For example, consider this rule of logic:

therefore q

Logical rules are often presented abstractly, as letters, in order to imply that they can be used in very many specific situations. Here is a concrete version of the of the same rule:

I’ll either have pizza or a hamburger for dinner tonight (p or q)

I won’t have pizza (not p)

Therefore, I’ll have a hamburger (therefore q)

This kind of reasoning seems so natural, so easy, that it is quite plausible that we would use a version of this rule in our daily lives. At least, it seems more plausible than some of the alternative possibilities—for example, that we need to have experience with the specific situation (pizza or hamburger, in this case) in order to solve this type of problem easily. So perhaps there is a form of natural logic (Rips, 1990) that contains very simple versions of logical rules. When we are faced with a reasoning problem that maps onto one of these rules, we use the rule.

But be very careful; things are not always as easy as they seem. Even these simple rules are not so simple. For example, consider the following rule. Many people fail to realize that this rule is just as valid as the pizza or hamburger rule above.

if p, then q

therefore, not p

Concrete version:

If I eat dinner, then I will have dessert

I did not have dessert

Therefore, I did not eat dinner

The simple fact is, it can be very difficult for people to apply rules of deductive logic correctly; as a result, they make many errors when trying to do so. Is this a deductively valid argument or not?

Students who like school study a lot

Students who study a lot get good grades

Jane does not like school

Therefore, Jane does not get good grades

Many people are surprised to discover that this is not a logically valid argument; the conclusion is not guaranteed to be true from the beginning statements. Although the first statement says that students who like school study a lot, it does NOT say that students who do not like school do not study a lot. In other words, it may very well be possible to study a lot without liking school. Even people who sometimes get problems like this right might not be using the rules of deductive reasoning. Instead, they might just be making judgments for examples they know, in this case, remembering instances of people who get good grades despite not liking school.

Making deductive reasoning even more difficult is the fact that there are two important properties that an argument may have. One, it can be valid or invalid (meaning that the conclusion does or does not follow logically from the statements leading up to it). Two, an argument (or more correctly, its conclusion) can be true or false. Here is an example of an argument that is logically valid, but has a false conclusion (at least we think it is false).

Either you are eleven feet tall or the Grand Canyon was created by a spaceship crashing into the earth.

You are not eleven feet tall

Therefore the Grand Canyon was created by a spaceship crashing into the earth

This argument has the exact same form as the pizza or hamburger argument above, making it is deductively valid. The conclusion is so false, however, that it is absurd (of course, the reason the conclusion is false is that the first statement is false). When people are judging arguments, they tend to not observe the difference between deductive validity and the empirical truth of statements or conclusions. If the elements of an argument happen to be true, people are likely to judge the argument logically valid; if the elements are false, they will very likely judge it invalid (Markovits & Bouffard-Bouchard, 1992; Moshman & Franks, 1986). Thus, it seems a stretch to say that people are using these logical rules to judge the validity of arguments. Many psychologists believe that most people actually have very limited deductive reasoning skills (Johnson-Laird, 1999). They argue that when faced with a problem for which deductive logic is required, people resort to some simpler technique, such as matching terms that appear in the statements and the conclusion (Evans, 1982). This might not seem like a problem, but what if reasoners believe that the elements are true and they happen to be wrong; they will would believe that they are using a form of reasoning that guarantees they are correct and yet be wrong.

deductive reasoning :  a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

argument :  a set of statements in which the beginning statements lead to a conclusion

deductively valid argument :  an argument for which true beginning statements guarantee that the conclusion is true

Inductive reasoning and judgment

Every day, you make many judgments about the likelihood of one thing or another. Whether you realize it or not, you are practicing  inductive reasoning   on a daily basis. In inductive reasoning arguments, a conclusion is likely whenever the statements preceding it are true. The first thing to notice about inductive reasoning is that, by definition, you can never be sure about your conclusion; you can only estimate how likely the conclusion is. Inductive reasoning may lead you to focus on Memory Encoding and Recoding when you study for the exam, but it is possible the instructor will ask more questions about Memory Retrieval instead. Unlike deductive reasoning, the conclusions you reach through inductive reasoning are only probable, not certain. That is why scientists consider inductive reasoning weaker than deductive reasoning. But imagine how hard it would be for us to function if we could not act unless we were certain about the outcome.

Inductive reasoning can be represented as logical arguments consisting of statements and a conclusion, just as deductive reasoning can be. In an inductive argument, you are given some statements and a conclusion (or you are given some statements and must draw a conclusion). An argument is  inductively strong   if the conclusion would be very probable whenever the statements are true. So, for example, here is an inductively strong argument:

  • Statement #1: The forecaster on Channel 2 said it is going to rain today.
  • Statement #2: The forecaster on Channel 5 said it is going to rain today.
  • Statement #3: It is very cloudy and humid.
  • Statement #4: You just heard thunder.
  • Conclusion (or judgment): It is going to rain today.

Think of the statements as evidence, on the basis of which you will draw a conclusion. So, based on the evidence presented in the four statements, it is very likely that it will rain today. Will it definitely rain today? Certainly not. We can all think of times that the weather forecaster was wrong.

A true story: Some years ago psychology student was watching a baseball playoff game between the St. Louis Cardinals and the Los Angeles Dodgers. A graphic on the screen had just informed the audience that the Cardinal at bat, (Hall of Fame shortstop) Ozzie Smith, a switch hitter batting left-handed for this plate appearance, had never, in nearly 3000 career at-bats, hit a home run left-handed. The student, who had just learned about inductive reasoning in his psychology class, turned to his companion (a Cardinals fan) and smugly said, “It is an inductively strong argument that Ozzie Smith will not hit a home run.” He turned back to face the television just in time to watch the ball sail over the right field fence for a home run. Although the student felt foolish at the time, he was not wrong. It was an inductively strong argument; 3000 at-bats is an awful lot of evidence suggesting that the Wizard of Ozz (as he was known) would not be hitting one out of the park (think of each at-bat without a home run as a statement in an inductive argument). Sadly (for the die-hard Cubs fan and Cardinals-hating student), despite the strength of the argument, the conclusion was wrong.

Given the possibility that we might draw an incorrect conclusion even with an inductively strong argument, we really want to be sure that we do, in fact, make inductively strong arguments. If we judge something probable, it had better be probable. If we judge something nearly impossible, it had better not happen. Think of inductive reasoning, then, as making reasonably accurate judgments of the probability of some conclusion given a set of evidence.

We base many decisions in our lives on inductive reasoning. For example:

Statement #1: Psychology is not my best subject

Statement #2: My psychology instructor has a reputation for giving difficult exams

Statement #3: My first psychology exam was much harder than I expected

Judgment: The next exam will probably be very difficult.

Decision: I will study tonight instead of watching Netflix.

Some other examples of judgments that people commonly make in a school context include judgments of the likelihood that:

  • A particular class will be interesting/useful/difficult
  • You will be able to finish writing a paper by next week if you go out tonight
  • Your laptop’s battery will last through the next trip to the library
  • You will not miss anything important if you skip class tomorrow
  • Your instructor will not notice if you skip class tomorrow
  • You will be able to find a book that you will need for a paper
  • There will be an essay question about Memory Encoding on the next exam

Tversky and Kahneman (1983) recognized that there are two general ways that we might make these judgments; they termed them extensional (i.e., following the laws of probability) and intuitive (i.e., using shortcuts or heuristics, see below). We will use a similar distinction between Type 1 and Type 2 thinking, as described by Keith Stanovich and his colleagues (Evans and Stanovich, 2013; Stanovich and West, 2000). Type 1 thinking is fast, automatic, effortful, and emotional. In fact, it is hardly fair to call it reasoning at all, as judgments just seem to pop into one’s head. Type 2 thinking , on the other hand, is slow, effortful, and logical. So obviously, it is more likely to lead to a correct judgment, or an optimal decision. The problem is, we tend to over-rely on Type 1. Now, we are not saying that Type 2 is the right way to go for every decision or judgment we make. It seems a bit much, for example, to engage in a step-by-step logical reasoning procedure to decide whether we will have chicken or fish for dinner tonight.

Many bad decisions in some very important contexts, however, can be traced back to poor judgments of the likelihood of certain risks or outcomes that result from the use of Type 1 when a more logical reasoning process would have been more appropriate. For example:

Statement #1: It is late at night.

Statement #2: Albert has been drinking beer for the past five hours at a party.

Statement #3: Albert is not exactly sure where he is or how far away home is.

Judgment: Albert will have no difficulty walking home.

Decision: He walks home alone.

As you can see in this example, the three statements backing up the judgment do not really support it. In other words, this argument is not inductively strong because it is based on judgments that ignore the laws of probability. What are the chances that someone facing these conditions will be able to walk home alone easily? And one need not be drunk to make poor decisions based on judgments that just pop into our heads.

The truth is that many of our probability judgments do not come very close to what the laws of probability say they should be. Think about it. In order for us to reason in accordance with these laws, we would need to know the laws of probability, which would allow us to calculate the relationship between particular pieces of evidence and the probability of some outcome (i.e., how much likelihood should change given a piece of evidence), and we would have to do these heavy math calculations in our heads. After all, that is what Type 2 requires. Needless to say, even if we were motivated, we often do not even know how to apply Type 2 reasoning in many cases.

So what do we do when we don’t have the knowledge, skills, or time required to make the correct mathematical judgment? Do we hold off and wait until we can get better evidence? Do we read up on probability and fire up our calculator app so we can compute the correct probability? Of course not. We rely on Type 1 thinking. We “wing it.” That is, we come up with a likelihood estimate using some means at our disposal. Psychologists use the term heuristic to describe the type of “winging it” we are talking about. A  heuristic   is a shortcut strategy that we use to make some judgment or solve some problem (see Section 7.3). Heuristics are easy and quick, think of them as the basic procedures that are characteristic of Type 1.  They can absolutely lead to reasonably good judgments and decisions in some situations (like choosing between chicken and fish for dinner). They are, however, far from foolproof. There are, in fact, quite a lot of situations in which heuristics can lead us to make incorrect judgments, and in many cases the decisions based on those judgments can have serious consequences.

Let us return to the activity that begins this section. You were asked to judge the likelihood (or frequency) of certain events and risks. You were free to come up with your own evidence (or statements) to make these judgments. This is where a heuristic crops up. As a judgment shortcut, we tend to generate specific examples of those very events to help us decide their likelihood or frequency. For example, if we are asked to judge how common, frequent, or likely a particular type of cancer is, many of our statements would be examples of specific cancer cases:

Statement #1: Andy Kaufman (comedian) had lung cancer.

Statement #2: Colin Powell (US Secretary of State) had prostate cancer.

Statement #3: Bob Marley (musician) had skin and brain cancer

Statement #4: Sandra Day O’Connor (Supreme Court Justice) had breast cancer.

Statement #5: Fred Rogers (children’s entertainer) had stomach cancer.

Statement #6: Robin Roberts (news anchor) had breast cancer.

Statement #7: Bette Davis (actress) had breast cancer.

Judgment: Breast cancer is the most common type.

Your own experience or memory may also tell you that breast cancer is the most common type. But it is not (although it is common). Actually, skin cancer is the most common type in the US. We make the same types of misjudgments all the time because we do not generate the examples or evidence according to their actual frequencies or probabilities. Instead, we have a tendency (or bias) to search for the examples in memory; if they are easy to retrieve, we assume that they are common. To rephrase this in the language of the heuristic, events seem more likely to the extent that they are available to memory. This bias has been termed the  availability heuristic   (Kahneman and Tversky, 1974).

The fact that we use the availability heuristic does not automatically mean that our judgment is wrong. The reason we use heuristics in the first place is that they work fairly well in many cases (and, of course that they are easy to use). So, the easiest examples to think of sometimes are the most common ones. Is it more likely that a member of the U.S. Senate is a man or a woman? Most people have a much easier time generating examples of male senators. And as it turns out, the U.S. Senate has many more men than women (74 to 26 in 2020). In this case, then, the availability heuristic would lead you to make the correct judgment; it is far more likely that a senator would be a man.

In many other cases, however, the availability heuristic will lead us astray. This is because events can be memorable for many reasons other than their frequency. Section 5.2, Encoding Meaning, suggested that one good way to encode the meaning of some information is to form a mental image of it. Thus, information that has been pictured mentally will be more available to memory. Indeed, an event that is vivid and easily pictured will trick many people into supposing that type of event is more common than it actually is. Repetition of information will also make it more memorable. So, if the same event is described to you in a magazine, on the evening news, on a podcast that you listen to, and in your Facebook feed; it will be very available to memory. Again, the availability heuristic will cause you to misperceive the frequency of these types of events.

Most interestingly, information that is unusual is more memorable. Suppose we give you the following list of words to remember: box, flower, letter, platypus, oven, boat, newspaper, purse, drum, car. Very likely, the easiest word to remember would be platypus, the unusual one. The same thing occurs with memories of events. An event may be available to memory because it is unusual, yet the availability heuristic leads us to judge that the event is common. Did you catch that? In these cases, the availability heuristic makes us think the exact opposite of the true frequency. We end up thinking something is common because it is unusual (and therefore memorable). Yikes.

The misapplication of the availability heuristic sometimes has unfortunate results. For example, if you went to K-12 school in the US over the past 10 years, it is extremely likely that you have participated in lockdown and active shooter drills. Of course, everyone is trying to prevent the tragedy of another school shooting. And believe us, we are not trying to minimize how terrible the tragedy is. But the truth of the matter is, school shootings are extremely rare. Because the federal government does not keep a database of school shootings, the Washington Post has maintained their own running tally. Between 1999 and January 2020 (the date of the most recent school shooting with a death in the US at of the time this paragraph was written), the Post reported a total of 254 people died in school shootings in the US. Not 254 per year, 254 total. That is an average of 12 per year. Of course, that is 254 people who should not have died (particularly because many were children), but in a country with approximately 60,000,000 students and teachers, this is a very small risk.

But many students and teachers are terrified that they will be victims of school shootings because of the availability heuristic. It is so easy to think of examples (they are very available to memory) that people believe the event is very common. It is not. And there is a downside to this. We happen to believe that there is an enormous gun violence problem in the United States. According the the Centers for Disease Control and Prevention, there were 39,773 firearm deaths in the US in 2017. Fifteen of those deaths were in school shootings, according to the Post. 60% of those deaths were suicides. When people pay attention to the school shooting risk (low), they often fail to notice the much larger risk.

And examples like this are by no means unique. The authors of this book have been teaching psychology since the 1990’s. We have been able to make the exact same arguments about the misapplication of the availability heuristics and keep them current by simply swapping out for the “fear of the day.” In the 1990’s it was children being kidnapped by strangers (it was known as “stranger danger”) despite the facts that kidnappings accounted for only 2% of the violent crimes committed against children, and only 24% of kidnappings are committed by strangers (US Department of Justice, 2007). This fear overlapped with the fear of terrorism that gripped the country after the 2001 terrorist attacks on the World Trade Center and US Pentagon and still plagues the population of the US somewhat in 2020. After a well-publicized, sensational act of violence, people are extremely likely to increase their estimates of the chances that they, too, will be victims of terror. Think about the reality, however. In October of 2001, a terrorist mailed anthrax spores to members of the US government and a number of media companies. A total of five people died as a result of this attack. The nation was nearly paralyzed by the fear of dying from the attack; in reality the probability of an individual person dying was 0.00000002.

The availability heuristic can lead you to make incorrect judgments in a school setting as well. For example, suppose you are trying to decide if you should take a class from a particular math professor. You might try to make a judgment of how good a teacher she is by recalling instances of friends and acquaintances making comments about her teaching skill. You may have some examples that suggest that she is a poor teacher very available to memory, so on the basis of the availability heuristic you judge her a poor teacher and decide to take the class from someone else. What if, however, the instances you recalled were all from the same person, and this person happens to be a very colorful storyteller? The subsequent ease of remembering the instances might not indicate that the professor is a poor teacher after all.

Although the availability heuristic is obviously important, it is not the only judgment heuristic we use. Amos Tversky and Daniel Kahneman examined the role of heuristics in inductive reasoning in a long series of studies. Kahneman received a Nobel Prize in Economics for this research in 2002, and Tversky would have certainly received one as well if he had not died of melanoma at age 59 in 1996 (Nobel Prizes are not awarded posthumously). Kahneman and Tversky demonstrated repeatedly that people do not reason in ways that are consistent with the laws of probability. They identified several heuristic strategies that people use instead to make judgments about likelihood. The importance of this work for economics (and the reason that Kahneman was awarded the Nobel Prize) is that earlier economic theories had assumed that people do make judgments rationally, that is, in agreement with the laws of probability.

Another common heuristic that people use for making judgments is the  representativeness heuristic (Kahneman & Tversky 1973). Suppose we describe a person to you. He is quiet and shy, has an unassuming personality, and likes to work with numbers. Is this person more likely to be an accountant or an attorney? If you said accountant, you were probably using the representativeness heuristic. Our imaginary person is judged likely to be an accountant because he resembles, or is representative of the concept of, an accountant. When research participants are asked to make judgments such as these, the only thing that seems to matter is the representativeness of the description. For example, if told that the person described is in a room that contains 70 attorneys and 30 accountants, participants will still assume that he is an accountant.

inductive reasoning :  a type of reasoning in which we make judgments about likelihood from sets of evidence

inductively strong argument :  an inductive argument in which the beginning statements lead to a conclusion that is probably true

heuristic :  a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

availability heuristic :  judging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

representativeness heuristic:   judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

Type 1 thinking : fast, automatic, and emotional thinking.

Type 2 thinking : slow, effortful, and logical thinking.

  • What percentage of workplace homicides are co-worker violence?

Many people get these questions wrong. The answers are 10%; stairs; skin; 6%. How close were your answers? Explain how the availability heuristic might have led you to make the incorrect judgments.

  • Can you think of some other judgments that you have made (or beliefs that you have) that might have been influenced by the availability heuristic?

7.3 Problem Solving

  • Please take a few minutes to list a number of problems that you are facing right now.
  • Now write about a problem that you recently solved.
  • What is your definition of a problem?

Mary has a problem. Her daughter, ordinarily quite eager to please, appears to delight in being the last person to do anything. Whether getting ready for school, going to piano lessons or karate class, or even going out with her friends, she seems unwilling or unable to get ready on time. Other people have different kinds of problems. For example, many students work at jobs, have numerous family commitments, and are facing a course schedule full of difficult exams, assignments, papers, and speeches. How can they find enough time to devote to their studies and still fulfill their other obligations? Speaking of students and their problems: Show that a ball thrown vertically upward with initial velocity v0 takes twice as much time to return as to reach the highest point (from Spiegel, 1981).

These are three very different situations, but we have called them all problems. What makes them all the same, despite the differences? A psychologist might define a  problem   as a situation with an initial state, a goal state, and a set of possible intermediate states. Somewhat more meaningfully, we might consider a problem a situation in which you are in here one state (e.g., daughter is always late), you want to be there in another state (e.g., daughter is not always late), and with no obvious way to get from here to there. Defined this way, each of the three situations we outlined can now be seen as an example of the same general concept, a problem. At this point, you might begin to wonder what is not a problem, given such a general definition. It seems that nearly every non-routine task we engage in could qualify as a problem. As long as you realize that problems are not necessarily bad (it can be quite fun and satisfying to rise to the challenge and solve a problem), this may be a useful way to think about it.

Can we identify a set of problem-solving skills that would apply to these very different kinds of situations? That task, in a nutshell, is a major goal of this section. Let us try to begin to make sense of the wide variety of ways that problems can be solved with an important observation: the process of solving problems can be divided into two key parts. First, people have to notice, comprehend, and represent the problem properly in their minds (called  problem representation ). Second, they have to apply some kind of solution strategy to the problem. Psychologists have studied both of these key parts of the process in detail.

When you first think about the problem-solving process, you might guess that most of our difficulties would occur because we are failing in the second step, the application of strategies. Although this can be a significant difficulty much of the time, the more important source of difficulty is probably problem representation. In short, we often fail to solve a problem because we are looking at it, or thinking about it, the wrong way.

problem :  a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

problem representation :  noticing, comprehending and forming a mental conception of a problem

Defining and Mentally Representing Problems in Order to Solve Them

So, the main obstacle to solving a problem is that we do not clearly understand exactly what the problem is. Recall the problem with Mary’s daughter always being late. One way to represent, or to think about, this problem is that she is being defiant. She refuses to get ready in time. This type of representation or definition suggests a particular type of solution. Another way to think about the problem, however, is to consider the possibility that she is simply being sidetracked by interesting diversions. This different conception of what the problem is (i.e., different representation) suggests a very different solution strategy. For example, if Mary defines the problem as defiance, she may be tempted to solve the problem using some kind of coercive tactics, that is, to assert her authority as her mother and force her to listen. On the other hand, if Mary defines the problem as distraction, she may try to solve it by simply removing the distracting objects.

As you might guess, when a problem is represented one way, the solution may seem very difficult, or even impossible. Seen another way, the solution might be very easy. For example, consider the following problem (from Nasar, 1998):

Two bicyclists start 20 miles apart and head toward each other, each going at a steady rate of 10 miles per hour. At the same time, a fly that travels at a steady 15 miles per hour starts from the front wheel of the southbound bicycle and flies to the front wheel of the northbound one, then turns around and flies to the front wheel of the southbound one again, and continues in this manner until he is crushed between the two front wheels. Question: what total distance did the fly cover?

Please take a few minutes to try to solve this problem.

Most people represent this problem as a question about a fly because, well, that is how the question is asked. The solution, using this representation, is to figure out how far the fly travels on the first leg of its journey, then add this total to how far it travels on the second leg of its journey (when it turns around and returns to the first bicycle), then continue to add the smaller distance from each leg of the journey until you converge on the correct answer. You would have to be quite skilled at math to solve this problem, and you would probably need some time and pencil and paper to do it.

If you consider a different representation, however, you can solve this problem in your head. Instead of thinking about it as a question about a fly, think about it as a question about the bicycles. They are 20 miles apart, and each is traveling 10 miles per hour. How long will it take for the bicycles to reach each other? Right, one hour. The fly is traveling 15 miles per hour; therefore, it will travel a total of 15 miles back and forth in the hour before the bicycles meet. Represented one way (as a problem about a fly), the problem is quite difficult. Represented another way (as a problem about two bicycles), it is easy. Changing your representation of a problem is sometimes the best—sometimes the only—way to solve it.

Unfortunately, however, changing a problem’s representation is not the easiest thing in the world to do. Often, problem solvers get stuck looking at a problem one way. This is called  fixation . Most people who represent the preceding problem as a problem about a fly probably do not pause to reconsider, and consequently change, their representation. A parent who thinks her daughter is being defiant is unlikely to consider the possibility that her behavior is far less purposeful.

Problem-solving fixation was examined by a group of German psychologists called Gestalt psychologists during the 1930’s and 1940’s. Karl Dunker, for example, discovered an important type of failure to take a different perspective called  functional fixedness . Imagine being a participant in one of his experiments. You are asked to figure out how to mount two candles on a door and are given an assortment of odds and ends, including a small empty cardboard box and some thumbtacks. Perhaps you have already figured out a solution: tack the box to the door so it forms a platform, then put the candles on top of the box. Most people are able to arrive at this solution. Imagine a slight variation of the procedure, however. What if, instead of being empty, the box had matches in it? Most people given this version of the problem do not arrive at the solution given above. Why? Because it seems to people that when the box contains matches, it already has a function; it is a matchbox. People are unlikely to consider a new function for an object that already has a function. This is functional fixedness.

Mental set is a type of fixation in which the problem solver gets stuck using the same solution strategy that has been successful in the past, even though the solution may no longer be useful. It is commonly seen when students do math problems for homework. Often, several problems in a row require the reapplication of the same solution strategy. Then, without warning, the next problem in the set requires a new strategy. Many students attempt to apply the formerly successful strategy on the new problem and therefore cannot come up with a correct answer.

The thing to remember is that you cannot solve a problem unless you correctly identify what it is to begin with (initial state) and what you want the end result to be (goal state). That may mean looking at the problem from a different angle and representing it in a new way. The correct representation does not guarantee a successful solution, but it certainly puts you on the right track.

A bit more optimistically, the Gestalt psychologists discovered what may be considered the opposite of fixation, namely  insight . Sometimes the solution to a problem just seems to pop into your head. Wolfgang Kohler examined insight by posing many different problems to chimpanzees, principally problems pertaining to their acquisition of out-of-reach food. In one version, a banana was placed outside of a chimpanzee’s cage and a short stick inside the cage. The stick was too short to retrieve the banana, but was long enough to retrieve a longer stick also located outside of the cage. This second stick was long enough to retrieve the banana. After trying, and failing, to reach the banana with the shorter stick, the chimpanzee would try a couple of random-seeming attempts, react with some apparent frustration or anger, then suddenly rush to the longer stick, the correct solution fully realized at this point. This sudden appearance of the solution, observed many times with many different problems, was termed insight by Kohler.

Lest you think it pertains to chimpanzees only, Karl Dunker demonstrated that children also solve problems through insight in the 1930s. More importantly, you have probably experienced insight yourself. Think back to a time when you were trying to solve a difficult problem. After struggling for a while, you gave up. Hours later, the solution just popped into your head, perhaps when you were taking a walk, eating dinner, or lying in bed.

fixation :  when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

functional fixedness :  a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

mental set :  a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

insight :  a sudden realization of a solution to a problem

Solving Problems by Trial and Error

Correctly identifying the problem and your goal for a solution is a good start, but recall the psychologist’s definition of a problem: it includes a set of possible intermediate states. Viewed this way, a problem can be solved satisfactorily only if one can find a path through some of these intermediate states to the goal. Imagine a fairly routine problem, finding a new route to school when your ordinary route is blocked (by road construction, for example). At each intersection, you may turn left, turn right, or go straight. A satisfactory solution to the problem (of getting to school) is a sequence of selections at each intersection that allows you to wind up at school.

If you had all the time in the world to get to school, you might try choosing intermediate states randomly. At one corner you turn left, the next you go straight, then you go left again, then right, then right, then straight. Unfortunately, trial and error will not necessarily get you where you want to go, and even if it does, it is not the fastest way to get there. For example, when a friend of ours was in college, he got lost on the way to a concert and attempted to find the venue by choosing streets to turn onto randomly (this was long before the use of GPS). Amazingly enough, the strategy worked, although he did end up missing two out of the three bands who played that night.

Trial and error is not all bad, however. B.F. Skinner, a prominent behaviorist psychologist, suggested that people often behave randomly in order to see what effect the behavior has on the environment and what subsequent effect this environmental change has on them. This seems particularly true for the very young person. Picture a child filling a household’s fish tank with toilet paper, for example. To a child trying to develop a repertoire of creative problem-solving strategies, an odd and random behavior might be just the ticket. Eventually, the exasperated parent hopes, the child will discover that many of these random behaviors do not successfully solve problems; in fact, in many cases they create problems. Thus, one would expect a decrease in this random behavior as a child matures. You should realize, however, that the opposite extreme is equally counterproductive. If the children become too rigid, never trying something unexpected and new, their problem solving skills can become too limited.

Effective problem solving seems to call for a happy medium that strikes a balance between using well-founded old strategies and trying new ground and territory. The individual who recognizes a situation in which an old problem-solving strategy would work best, and who can also recognize a situation in which a new untested strategy is necessary is halfway to success.

Solving Problems with Algorithms and Heuristics

For many problems there is a possible strategy available that will guarantee a correct solution. For example, think about math problems. Math lessons often consist of step-by-step procedures that can be used to solve the problems. If you apply the strategy without error, you are guaranteed to arrive at the correct solution to the problem. This approach is called using an  algorithm , a term that denotes the step-by-step procedure that guarantees a correct solution. Because algorithms are sometimes available and come with a guarantee, you might think that most people use them frequently. Unfortunately, however, they do not. As the experience of many students who have struggled through math classes can attest, algorithms can be extremely difficult to use, even when the problem solver knows which algorithm is supposed to work in solving the problem. In problems outside of math class, we often do not even know if an algorithm is available. It is probably fair to say, then, that algorithms are rarely used when people try to solve problems.

Because algorithms are so difficult to use, people often pass up the opportunity to guarantee a correct solution in favor of a strategy that is much easier to use and yields a reasonable chance of coming up with a correct solution. These strategies are called  problem solving heuristics . Similar to what you saw in section 6.2 with reasoning heuristics, a problem solving heuristic is a shortcut strategy that people use when trying to solve problems. It usually works pretty well, but does not guarantee a correct solution to the problem. For example, one problem solving heuristic might be “always move toward the goal” (so when trying to get to school when your regular route is blocked, you would always turn in the direction you think the school is). A heuristic that people might use when doing math homework is “use the same solution strategy that you just used for the previous problem.”

By the way, we hope these last two paragraphs feel familiar to you. They seem to parallel a distinction that you recently learned. Indeed, algorithms and problem-solving heuristics are another example of the distinction between Type 1 thinking and Type 2 thinking.

Although it is probably not worth describing a large number of specific heuristics, two observations about heuristics are worth mentioning. First, heuristics can be very general or they can be very specific, pertaining to a particular type of problem only. For example, “always move toward the goal” is a general strategy that you can apply to countless problem situations. On the other hand, “when you are lost without a functioning gps, pick the most expensive car you can see and follow it” is specific to the problem of being lost. Second, all heuristics are not equally useful. One heuristic that many students know is “when in doubt, choose c for a question on a multiple-choice exam.” This is a dreadful strategy because many instructors intentionally randomize the order of answer choices. Another test-taking heuristic, somewhat more useful, is “look for the answer to one question somewhere else on the exam.”

You really should pay attention to the application of heuristics to test taking. Imagine that while reviewing your answers for a multiple-choice exam before turning it in, you come across a question for which you originally thought the answer was c. Upon reflection, you now think that the answer might be b. Should you change the answer to b, or should you stick with your first impression? Most people will apply the heuristic strategy to “stick with your first impression.” What they do not realize, of course, is that this is a very poor strategy (Lilienfeld et al, 2009). Most of the errors on exams come on questions that were answered wrong originally and were not changed (so they remain wrong). There are many fewer errors where we change a correct answer to an incorrect answer. And, of course, sometimes we change an incorrect answer to a correct answer. In fact, research has shown that it is more common to change a wrong answer to a right answer than vice versa (Bruno, 2001).

The belief in this poor test-taking strategy (stick with your first impression) is based on the  confirmation bias   (Nickerson, 1998; Wason, 1960). You first saw the confirmation bias in Module 1, but because it is so important, we will repeat the information here. People have a bias, or tendency, to notice information that confirms what they already believe. Somebody at one time told you to stick with your first impression, so when you look at the results of an exam you have taken, you will tend to notice the cases that are consistent with that belief. That is, you will notice the cases in which you originally had an answer correct and changed it to the wrong answer. You tend not to notice the other two important (and more common) cases, changing an answer from wrong to right, and leaving a wrong answer unchanged.

Because heuristics by definition do not guarantee a correct solution to a problem, mistakes are bound to occur when we employ them. A poor choice of a specific heuristic will lead to an even higher likelihood of making an error.

algorithm :  a step-by-step procedure that guarantees a correct solution to a problem

problem solving heuristic :  a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

confirmation bias :  people’s tendency to notice information that confirms what they already believe

An Effective Problem-Solving Sequence

You may be left with a big question: If algorithms are hard to use and heuristics often don’t work, how am I supposed to solve problems? Robert Sternberg (1996), as part of his theory of what makes people successfully intelligent (Module 8) described a problem-solving sequence that has been shown to work rather well:

  • Identify the existence of a problem.  In school, problem identification is often easy; problems that you encounter in math classes, for example, are conveniently labeled as problems for you. Outside of school, however, realizing that you have a problem is a key difficulty that you must get past in order to begin solving it. You must be very sensitive to the symptoms that indicate a problem.
  • Define the problem.  Suppose you realize that you have been having many headaches recently. Very likely, you would identify this as a problem. If you define the problem as “headaches,” the solution would probably be to take aspirin or ibuprofen or some other anti-inflammatory medication. If the headaches keep returning, however, you have not really solved the problem—likely because you have mistaken a symptom for the problem itself. Instead, you must find the root cause of the headaches. Stress might be the real problem. For you to successfully solve many problems it may be necessary for you to overcome your fixations and represent the problems differently. One specific strategy that you might find useful is to try to define the problem from someone else’s perspective. How would your parents, spouse, significant other, doctor, etc. define the problem? Somewhere in these different perspectives may lurk the key definition that will allow you to find an easier and permanent solution.
  • Formulate strategy.  Now it is time to begin planning exactly how the problem will be solved. Is there an algorithm or heuristic available for you to use? Remember, heuristics by their very nature guarantee that occasionally you will not be able to solve the problem. One point to keep in mind is that you should look for long-range solutions, which are more likely to address the root cause of a problem than short-range solutions.
  • Represent and organize information.  Similar to the way that the problem itself can be defined, or represented in multiple ways, information within the problem is open to different interpretations. Suppose you are studying for a big exam. You have chapters from a textbook and from a supplemental reader, along with lecture notes that all need to be studied. How should you (represent and) organize these materials? Should you separate them by type of material (text versus reader versus lecture notes), or should you separate them by topic? To solve problems effectively, you must learn to find the most useful representation and organization of information.
  • Allocate resources.  This is perhaps the simplest principle of the problem solving sequence, but it is extremely difficult for many people. First, you must decide whether time, money, skills, effort, goodwill, or some other resource would help to solve the problem Then, you must make the hard choice of deciding which resources to use, realizing that you cannot devote maximum resources to every problem. Very often, the solution to problem is simply to change how resources are allocated (for example, spending more time studying in order to improve grades).
  • Monitor and evaluate solutions.  Pay attention to the solution strategy while you are applying it. If it is not working, you may be able to select another strategy. Another fact you should realize about problem solving is that it never does end. Solving one problem frequently brings up new ones. Good monitoring and evaluation of your problem solutions can help you to anticipate and get a jump on solving the inevitable new problems that will arise.

Please note that this as  an  effective problem-solving sequence, not  the  effective problem solving sequence. Just as you can become fixated and end up representing the problem incorrectly or trying an inefficient solution, you can become stuck applying the problem-solving sequence in an inflexible way. Clearly there are problem situations that can be solved without using these skills in this order.

Additionally, many real-world problems may require that you go back and redefine a problem several times as the situation changes (Sternberg et al. 2000). For example, consider the problem with Mary’s daughter one last time. At first, Mary did represent the problem as one of defiance. When her early strategy of pleading and threatening punishment was unsuccessful, Mary began to observe her daughter more carefully. She noticed that, indeed, her daughter’s attention would be drawn by an irresistible distraction or book. Fresh with a re-representation of the problem, she began a new solution strategy. She began to remind her daughter every few minutes to stay on task and remind her that if she is ready before it is time to leave, she may return to the book or other distracting object at that time. Fortunately, this strategy was successful, so Mary did not have to go back and redefine the problem again.

Pick one or two of the problems that you listed when you first started studying this section and try to work out the steps of Sternberg’s problem solving sequence for each one.

a mental representation of a category of things in the world

an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

knowledge about one’s own cognitive processes; thinking about your thinking

individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

Thinking like a scientist in your everyday life for the purpose of drawing correct conclusions. It entails skepticism; an ability to identify biases, distortions, omissions, and assumptions; and excellent deductive and inductive reasoning, and problem solving skills.

a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

an inclination, tendency, leaning, or prejudice

a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

a set of statements in which the beginning statements lead to a conclusion

an argument for which true beginning statements guarantee that the conclusion is true

a type of reasoning in which we make judgments about likelihood from sets of evidence

an inductive argument in which the beginning statements lead to a conclusion that is probably true

fast, automatic, and emotional thinking

slow, effortful, and logical thinking

a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

udging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

noticing, comprehending and forming a mental conception of a problem

when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

a sudden realization of a solution to a problem

a step-by-step procedure that guarantees a correct solution to a problem

The tendency to notice and pay attention to information that confirms your prior beliefs and to ignore information that disconfirms them.

a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

Introduction to Psychology Copyright © 2020 by Ken Gray; Elizabeth Arnott-Hill; and Or'Shaundra Benson is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Critical Thinking and Problem-Solving Skills

  • First Online: 28 April 2022

Cite this chapter

chapter 15 critical thinking and problem solving

  • Heather Negley 2  

553 Accesses

Critical thinking is a type of systematic thinking that is used to solve problems using logic. The first step is to gather the information needed to help you solve your problem. You start by analyzing and evaluating sources for authority to give you the best shot at finding something truthful and unbiased. Watch Out For information overload. Access to information is easier than ever these days, and it is easy to get overwhelmed by it all. As you conduct your research, keep your information organized by filtering, synthesizing, and distilling it. And keep your effort timeboxed. Start broad enough to obtain a wide berth, like a fisherman casting a large net into an ocean. This helps find multiple points of view. But don’t spend more time than necessary. Practicing collecting what is sufficient to answer your questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reitz, Joan. Online Dictionary for Library and Information Science: Accessed 11/07/2021

Author information

Authors and affiliations.

Fairfax, VA, USA

Heather Negley

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature

About this chapter

Negley, H. (2022). Critical Thinking and Problem-Solving Skills. In: The Salesforce Consultant’s Guide. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-7960-1_13

Download citation

DOI : https://doi.org/10.1007/978-1-4842-7960-1_13

Published : 28 April 2022

Publisher Name : Apress, Berkeley, CA

Print ISBN : 978-1-4842-7959-5

Online ISBN : 978-1-4842-7960-1

eBook Packages : Professional and Applied Computing Professional and Applied Computing (R0) Apress Access Books

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

International Journal of Learning, Teaching and Educational Research

  • Announcements
  • Editorial Board
  • Submit a Paper
  • Publication Ethics
  • ##PAPER TEMPLATE##
  • ##Retraction Policy##

Project-Based Learning in Fostering Creative Thinking and Mathematical Problem-Solving Skills: Evidence from Primary Education in Indonesia

The interdependence between the Project-Based Learning (PjBL) Model and the growth and enhancement of Creative Thinking and Mathematical Problem Solving Skills in Elementary Schools is unquestionable nowadays. Prior studies have yet to discover concrete evidence regarding the interdependence being discussed. This study highlighted cognitive abilities related to creative thinking and mathematics problem-solving by implementing the Project-Based Learning Model. This research was a quasi-experiment with a pretest-posttest control group design involving 43 students in the sixth grade of two elementary schools; data was collected through test and classroom observation, and then the data was analyzed using Multivariate Analysis of Variance (MANOVA). Conversely, students exposed to project-based learning models exhibit higher skill levels in creative thinking and problem-solving than those instructed using conventional learning models. The project-based learning model significantly impacted elementary school children’s creative thinking and mathematics problem-solving skills. These findings suggest that the Project-Based Learning Model is acceptable for instructors seeking to foster creativity in teaching mathematics at the primary school level in Indonesia or other countries with comparable settings.

https://doi.org/10.26803/ijlter.23.8.15

Adijaya, M. A., Widiana, I. W., Parwata, I. G. L. A., & Antara, I. G. W. S. (2023). Bloom’s taxonomy revision-oriented learning activities to improve procedural capabilities and learning outcomes. International Journal of Educational Methodology, 9(1), 261–270. https://doi.org/10.12973/ijem.9.1.261

Albab, U., Budiyono, & Indriati, D. (2020). Metacognition skills and higher order thinking skills (HOTS) in mathematics. Journal of Physics: Conference Series, 1613(1), Article 012017. https://doi.org/10.1088/1742-6596/1613/1/012017

Almulla, M. A. (2020). The effectiveness of the project-based learning (PBL) approach as a way to engage students in learning. SAGE Open, 10(3), 1–15. https://doi.org/10.1177/2158244020938702

Amerstorfer, C. M., & Münster-Kistner, C. F. V. (2021). Student perceptions of academic engagement and student-teacher relationships in problem-based learning. Frontiers in Psychology, 12, 1–18. https://doi.org/10.3389/fpsyg.2021.713057

Arends, R. I. (2013). Learning to teach (9th ed.). McGraw-Hill.

Arici, F. (2023). An examination of the effectiveness of problem-based learning method supported by augmented reality in science education. Journal of Computer Assisted Learning, 39(2), 446–476. https://doi.org/10.1111/jcal.12752

Astuti, P., Qohar, A., & Hidayanto, E. (2019). Proses berpikir siswa dalam menyelesaikan soal higher order thinking skills berdasarkan pemahaman konseptual dan prosedural [Students’ thinking process in solving higher order thinking skills questions based on conceptual and procedural understanding]. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 4(1), 117. https://doi.org/10.17977/jptpp.v4i1.11910

Astutik, S., Mahardika, I. K., Indrawati, Sudarti, & Supeno. (2020). HOTS student worksheet to identification of scientific creativity skill, critical thinking skill and creative thinking skill in physics learning. Journal of Physics: Conference Series, 1465(1), Article 012075. https://doi.org/10.1088/1742-6596/1465/1/012075

Aziz, A. A. M. A. (2021). The development of the HOTS mathematical problem-solving framework using the Bar model strategy: A need analysis. Review of International Geographical Education Online, 11(4), 972–981. https://doi.org/10.33403/rigeo.8006811

Babakr, Z. H., Mohamedamin, P., & Kakamad, K. (2019). Piaget’s cognitive developmental theory: Critical review. Education Quarterly Reviews, 2(3), 517–524. https://doi.org/10.31014/aior.1993.02.03.84

Benraghda, A. (2022). Self-assessment as a self-regulated learning approach in English oral presentations: College students’ choices and perceptions. Cogent Education, 9(1), Article 2123472. https://doi.org/10.1080/2331186X.2022.2123472

Cammies, C., Cunningham, J. A., & Pike, R. K. (2022). Not all Bloom and gloom: Assessing constructive alignment, higher order cognitive skills, and their influence on students’ perceived learning within the practical components of an undergraduate biology course. Journal of Biological Education, 58(3), 588–608. https://doi.org/10.1080/00219266.2022.2092191

Chen, J., Kolmos, A., & Du, X. (2021). Forms of implementation and challenges of PBL in engineering education: A review of literature. European Journal of Engineering Education, 46(1), 90–115. https://doi.org/10.1080/03043797.2020.1718615

Cheng, L., Wang, M., Chen, Y., Niu, W., Hong, M., & Zhu, Y. (2022). Design my music instrument: A project-based science, technology, engineering, arts, and mathematics program on the development of creativity. Frontiers in Psychology, 12, 1–8. https://doi.org/10.3389/fpsyg.2021.763948

C?r?t, D. K., & Aydemir, S. (2023). Online scratch activities during the COVID-19 pandemic: Computational and creative thinking. International Journal of Evaluation and Research in Education, 12(4), 2111–2120. https://doi.org/10.11591/ijere.v12i4.24938

Cook, S. C. (2020). Schema-based instruction for mathematical word problem solving: An evidence-based review for students with learning disabilities. Learning Disability Quarterly, 43(2), 75–87. https://doi.org/10.1177/0731948718823080

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE Publication.

Cruz, S., Lencastre, J. A., & Viseu, F. (2023). Heuristics and usability testing of a project-based learning online course: A case study with structural mathematical concepts. International Journal of Instruction, 16(3), 465–488. https://doi.org/10.29333/iji.2023.16325a

Diego-Mantecon, J. M., Prodromou, T., Lavicza, Z., Blanco, T. F., & Ortiz-Laso, Z. (2021). An attempt to evaluate STEAM project-based instruction from a school mathematics perspective. ZDM – Mathematics Education, 53(5), 1137–1148. https://doi.org/10.1007/s11858-021-01303-9

Edwar, E., Putri, R. I. I., Zulkardi, Z., & Darmawijoyo, D. (2023). Developing a workshop model for high school mathematics teachers constructing HOTS questions through the Pendidikan Matematika Realistik Indonesia approach. Journal on Mathematics Education, 14(4), 603–626. https://doi.org/10.22342/jme.v14i4.pp603-626

Gunawardena, M. (2021). Scaffolding students’ critical thinking: A process not an end game. Thinking Skills and Creativity, 41, Article 100848. https://doi.org/10.1016/j.tsc.2021.100848

Guo, P., Saab, N., Post, L. S., & Admiraal, W. (2020). A review of project-based learning in higher education: Student outcomes and measures. International Journal of Educational Research, 102, Article 101586. https://doi.org/10.1016/j.ijer.2020.101586

Handayani, A. D., & Iswantiningtyas, V. (2020). Javanese traditional games as a teaching and learning media to socialize and introduce mathematics since early age. Journal of Physics: Conference Series, 1521(3), 1–7. https://doi.org/10.1088/1742-6596/1521/3/032008

Hawari, A. D. M., & Noor, A. I. M. (2020). Project based learning pedagogical design in STEAM art education. Asian Journal of University Education, 16(3), 102–111. https://doi.org/10.24191/ajue.v16i3.11072

Hidayati, Y. M., Ngalim, A., Sutama, Arifin, Z., Abidin, Z., & Rahmawati, E. (2020). Level of combinatorial thinking in solving mathematical problems. Journal for the Education of Gifted Young Scientists, 8(3), 1231–1243. https://doi.org/10.17478/JEGYS.751038

Hujjatusnaini, N. (2020). The effect of blended project-based learning integrated with 21st-century skills on pre-service biology teachers’ higher-order thinking skills. Jurnal Pendidikan IPA Indonesia, 11(1), 104–118. https://doi.org/10.15294/jpii.v11i1.27148

Irdalisa, I., Zulherman, Z., Elvianasti, M., Widodo, W. S., & Hanum, E. (2024). Effectiveness of project-based learning on STEAM-based student’s worksheet analysis with ecoprint technique. International Journal of Educational Methodology, 10(1), 123–135. https://doi.org/10.12973/ijem.10.1.923

Jiang, B., & Li, Z. (2021). Effect of Scratch on computational thinking skills of Chinese primary school students. Journal of Computers in Education, 8(4), 505–525. https://doi.org/10.1007/s40692-021-00190-z

Jiang, Y., Xu, N., Xu, S., & Wang, S. (2022). The enlightenment of Piaget’s theory to Chinese primary school education. Advances in Social Science, Education and Humanities Research, 670, 878–882. https://doi.org/10.2991/assehr.k.220704.158

Junianto, J., & Wijaya, A. (2019). Developing students’ mathematical literacy through problem based learning. Journal of Physics: Conference Series, 1320(1), Article 012035. IOP Publishing. https://doi.org/10.1088/1742-6596/1320/1/012035

Karan, E. (2022). Enhancing students’ problem-solving skills through project-based learning. Journal of Problem Based Learning in Higher Education, 10(1), 74–87. https://doi.org/10.54337/ojs.jpblhe.v10i1.6887

Kemendikbudristek. (2023). Laporan PISA Kemendikbudristek [PISA report of the Ministry of Education and Culture]. PISA 2022 Dan Pemulihan Pembelajaran Indonesia (pp. 1–25). https://balaibahasariau.kemdikbud.go.id/wpcontent/uploads/2023/12/LAPORAN-PISA-KEMENDIKBUDRISTEK.pdf

Khalid, M., Saad, S., Hamid, S. R. A., Abdullah, M. R., Ibrahim, H., & Shahrill, M. (2020). Enhancing creativity and problem solving skills through creative problem solving in teaching mathematics. Creativity Studies, 13(2), 270–291. https://doi.org/10.3846/cs.2020.11027

Kharisma, F. N., Susilowati, S. M. E., & Ridlo, S. (2019). The effective learning models in developing problem-solving skills. KnE Social Sciences, 3(18), 595–604 https://doi.org/10.18502/kss.v3i18.4750

Kim, H. W., & Kim, M. K. (2021). A case study of children’s interaction types and learning motivation in small group project-based learning activities in a mathematics classroom. Eurasia Journal of Mathematics, Science and Technology Education, 17(12), em2051. https://doi.org/10.29333/ejmste/11415

Kurniawan, E. S., Mundilarto, M., & Istiyono, E. (2024). Improving student higher order thinking skills using Synectic-HOTS-oriented learning model. International Journal of Evaluation and Research in Education, 13(2), 1132–1140. https://doi.org/10.11591/ijere.v13i2.25002

Lafmejani, A. Q. (2022). Cognitive evolution of the “Human” concept and its adaptation to Piaget’s theory. Caspian Journal of Neurological Sciences, 8(4), 222–233. https://doi.org/10.32598/CJNS.4.31.355.1

Lazi?, B. D., KneĹľevi?, J. B., & Mari?i?, S. M. (2021). The influence of project-based learning on student achievement in elementary mathematics education. South African Journal of Education, 41(3), Article 1909. https://doi.org/10.15700/saje.v41n3a1909

Leasa, M. (2020). The effect of learning styles on the critical thinking skills in natural science learning of elementary school students. Elementary Education Online, 19(4), 2086–2097. https://doi.org/10.17051/ilkonline.2020.763449

Lee, J. S., & Galindo, E. (2021). Examining project-based learning successes and challenges of mathematics preservice teachers in a teacher residency program: Learning by doing. Interdisciplinary Journal of Problem-Based Learning, 15(1), 1–20. https://doi.org/10.14434/ijpbl.v15i1.28786

Li, Z. (2022). Assessment of scientific thinking and creativity in an electronic educational environment. International Journal of Science Education, 44(3), 463–486. https://doi.org/10.1080/09500693.2022.2032863

Lin, X. (2021). Investigating the unique predictors of word-problem solving using meta-analytic structural equation modeling. Educational Psychology Review, 33(3), 1097?1124. https://doi.org/10.1007/s10648-020-09554-w

Liu, M. (2023). Bayesian optimization and ensemble learning algorithm combined method for deformation prediction of concrete dam. Structures, 54, 981–993. https://doi.org/10.1016/j.istruc.2023.05.136

Lu, X., & Kaiser, G. (2022). Creativity in students’ modelling competencies: Conceptualisation and measurement. Educational Studies in Mathematics, 109(2), 287–311. https://doi.org/10.1007/s10649-021-10055-y

MacLeod, M., & Veen, J. T. V. D. (2020). Scaffolding interdisciplinary project-based learning: A case study. European Journal of Engineering Education, 45(3), 363–377. https://doi.org/10.1080/03043797.2019.1646210

Marbán, J. M., Radwan, E., Radwan, A., & Radwan, W. (2021). Primary and secondary students’ usage of digital platforms for mathematics learning during the COVID19 outbreak: The case of the Gaza strip. Mathematics, 9(2), Article 110. https://doi.org/10.3390/math9020110

Menggo, S., Pramesti, P. D. M. Y., & Krismayani, N. W. (2023). Integrating project-based learning in preparing students’ interpersonal communication skills on speaking courses in Indonesia. International Journal of Learning, Teaching and Educational Research, 22(9), 219–240. https://doi.org/10.26803/ijlter.22.9.12

Meyer, M. W., & Norman, D. (2020). Changing design education for the 21st century. The Journal of Design, Economics, and Innovation, 6(1), 13–49. https://doi.org/10.1016/j.sheji.2019.12.002

Michalsky, T. (2024). Metacognitive scaffolding for preservice teachers’ self-regulated design of higher order thinking tasks. Heliyon, 10(2), e2480. https://doi.org/10.1016/j.heliyon.2024.e24280

Moma, L. (2015). Pengambangan instrumen kemampuan berpikir kreatif matematis untuk siswa SMP [Development of mathematical creative thinking instruments for junior high school students]. Delta-Pi: Jurnal Matematika Dan Pendidikan Matematika, 4(1), 27–41. https://doi.org/10.33387/dpi.v4i1.142

Morteza, T., & Moghaddam, M. Y. (2017). On the plausibility of Bloom’s higher order thinking strategies on learner autonomy: The paradigm shift. Asian-Pacific Journal of Second and Foreign Language Education, 2, Article 14. https://doi.org/10.1186/s40862-017-0037-8

Munar, A., Winarti, W., Nai’mah, N., Rezieka, D. G., & Aulia, A. (2022). Improving higher order thinking skill (HOTs) in early children using picture story book. AL-ISHLAH: Jurnal Pendidikan, 14(3), 4611–4618. https://doi.org/10.35445/alishlah.v14i3.2224

Muttaqin, H., Susanto, Hobri, & Tohir, M. (2021). Students’ creative thinking skills in solving mathematics higher order thinking skills (HOTs) problems based on online trading arithmetic. Journal of Physics: Conference Series, 1832(1), Article 012036. https://doi.org/10.1088/1742-6596/1832/1/012036

Ndiung, S., Sariyasa, Jehadus, E., & Apsari, R. A. (2021). The effect of treffinger creative learning model with the use RME principles on creative thinking skill and mathematics learning outcome. International Journal of Instruction, 14(2), 873–888. https://doi.org/10.29333/iji.2021.14249a

Newton, K. J. (2020). Mathematical flexibility: Aspects of a continuum and the role of prior knowledge. Journal of Experimental Education, 88(4), 503–515. https://doi.org/10.1080/00220973.2019.1586629

Nizaruddin, N., & Kusmaryono, I. (2023). Transforming students’ pseudo-thinking into real thinking in mathematical problem solving. International Journal of Educational Methodology, 9(3), 477–491. https://doi.org/10.12973/ijem.9.3.477

Nuryadin, A., Karlimah, K., Lidinillah, D. A. M., & Apriani, I. F. (2023). Blended learning after the pandemic: The flipped classroom as an alternative learning model for elementary classrooms. Participatory Educational Research, 10(3), 209–225. https://doi.org/10.17275/per.23.52.10.3

OECD (Organisation for Economic Co-operation and Development). (2024). PISA results 2022 (Volume III) – Factsheets: Indonesia. OECD. https://www.oecd.org/en/publications/pisa-results-2022-volume-iii-factsheets_041a90f1-en/indonesia_a7090b49-en.html

Pakpahan, F. H., & Saragih, M. (2022). Theory of cognitive development by Jean Piaget. Journal of Applied Linguistics, 2(2), 55–60. https://doi.org/10.52622/joal.v2i2.79

Palinussa, A. L. (2013). Students’ critical mathematical thinking skills and character: Experiments for junior high school students through realistic mathematics education culture-based. Journal on Mathematics Education, 4(1), 75–94. https://doi.org/10.22342/jme.4.1.566.75-94

Piaget, J. (1936). Origins of intelligence in the child. Routledge & Kegan Paul.

PISA. (2023). PISA 2022 results (Volume I and II) – Country notes: Indonesia. https://www.oecd.org/en/publications/pisa-2022-results-volume-i-and-ii-country-notes_ed6fbcc5-en/indonesia_c2e1ae0e-en.html

Prastiti, T. D., Tresnaningsih, S., Mairing, J. P., & Azkarahman, A. R. (2020). HOTS problem on function and probability: Does it impact to students’ mathematical literacy in Universitas Terbuka? Journal of Physics: Conference Series, 1613(1), Article 012003. https://doi.org/10.1088/1742-6596/1613/1/012003

Puccio, G., Lohiser, A., & Seemiller, C. (2021). Understanding convergent thinking: Developing effective critical thinking. In Creative problem solving: A 21st century workplace skill. SAGE Publications. https://doi.org/10.4135/9781071865637

Purwaningsih, E., Sari, A. M., Yuliati, L., Masjkur, K., Kurniawan, B. R., & Zahiri, M. A. (2020). Improving the problem-solving skills through the development of teaching materials with STEM-PjBL (science, technology, engineering, and mathematics-project based learning) model integrated with TPACK (technological pedagogical content knowledge). Journal of Physics: Conference Series, 1481(1), Article 012133. https://doi.org/10.1088/1742-6596/1481/1/012133

Putri, N., Rusdiana, D., & Suwarma, I. R. (2020). Enhanching physics students’ creative thinking skills using CBL model implemented in STEM in vocational school. Journal of Physics: Conference Series, 1521, Article 042045. https://doi.org/10.1088/1742-6596/1521/4/042045

Rahman, M. S., Juniati, D., & Manuharawati, M. (2023). The quality of mathematical proficiency in solving geometry problem: Difference cognitive independence and motivation. Pegem Journal of Education and Instruction, 13(3), 255–266. https://doi.org/10.47750/pegegog.13.03.27

Rehman, N., Zhang, W., Mahmood, A., Fareed, M. Z., & Batool, S. (2023). Fostering twenty-first century skills among primary school students through math project-based learning. Humanities and Social Sciences Communications, 10(1), Article 424. https://doi.org/10.1057/s41599-023-01914-5

Roble, D. B., Lomibao, L. S., & Luna, C. A. (2021). Developing students’ creative constructs in mathematics with problem-based (PB) and problem posing (PP) tasks. Canadian Journal of Family and Youth, 13(2), 82–94. https://doi.org/10.29173/cjfy29672

Rosidin, U., Suyatna, A., & Abdurrahman, A. (2019). A combined HOTS-based assessment/STEM learning model to improve secondary students’ thinking skills: A development and evaluation study. Journal for the Education of Gifted Young Scientists, 7(3), 435–448. https://doi.org/10.17478/jegys.518464

Rusilowati, A., Negoro, R. A., Aji, A. P., & Subali, B. (2023). Development of waves critical thinking test: Physics essay test for high school student. European Journal of Educational Research, 12(4), 1781–1794. https://doi.org/10.12973/eu-jer.12.4.1781

Safie, N., & Zakaria, S. (2023). Examining the effectiveness of thinking maps usage by analysing students’ achievement in mathematics subject. Journal of Advanced Research in Applied Sciences and Engineering Technology, 31(1), 197–209. https://doi.org/10.37934/ARASET.31.1.197209

Sahudra, T. M., Ary, K. K., Ramadhani, D., Asnawi, A., & Handrianto, C. (2021). The impact of project-based flipped learning model on the technological pedagogical content knowledge skill of prospective teachers. Sustainability (Switzerland), 13(5), Article 2606. https://doi.org/10.3390/su13052606

Saldo, I. J. P., & Walag, A. M. P. (2020). Utilizing problem-based and project-based learning in developing students’ communication and collaboration skills in physics. American Journal of Educational Research, 8(5), 232–237. https://doi.org/10.12691/education-8-5-1

Samsudin, M. A., Jamali, S. M., Zain, A. N. M., & Ebrahim, N. A. (2020). The effect of STEM project based learning on self-efficacy among high-school physics students. Journal of Turkish Science Education, 17(1), 94–108. https://doi.org/10.36681/tused.2020.15

Schindler, M., & Bakker, A. (2020). Affective field during collaborative problem posing and problem solving: A case study. Educational Studies in Mathematics, 105(3), 303?324. https://doi.org/10.1007/s10649-020-09973-0

Schleicher, A. (2018). PISA 2018 insights and interpretations. OECD. Available at https://www.oecd.org/content/dam/oecd/en/about/programmes/edu/pisa/publications/national-reports/pisa-2018/PISA%202018%20Insights%20and%20Interpretations%20FINAL%20PDF.pdf

Serin, H. (2023). Teaching mathematics: The role of project-based learning. International Journal of Social Sciences & Educational Studies, 10(2), Article 28. https://doi.org/10.23918/ijsses.v10i2p378

Setianingsih, R., Sa’dijah, C., As’ari, A. R., & Muksar, M. (2017). Investigating fifth-grade students’ construction of mathematical knowledge through classroom discussion. International Electronic Journal of Mathematics Education, 12(4), 383–396. https://doi.org/10.29333/iejme/619

Shidqi, L., Trisniawati, T., & Rhosyida, N. (2023). The development of kobatar learning media for learning mathematics in elementary school. Advances in Mobile Learning Educational Research, 3(2), 886–892. https://doi.org/10.25082/amler.2023.02.015

Simonton, K. L. (2021). Project-based learning and its potential in physical education: An instructional model inquiry. Curriculum Studies in Health and Physical Education, 12(1), 36–52. https://doi.org/10.1080/25742981.2020.1862683

Sofiyan, S., Amalia, R., & Suwardi, A. B. (2020). Development of mathematical teaching materials based on project-based learning to improve students’ HOTS and character. Journal of Physics: Conference Series, 1460(1), Article 012006. https://doi.org/10.1088/1742-6596/1460/1/012006

Son, A. L., Darhim, D., & Fatimah, S. (2020). Students’ mathematical problem-solving ability based on teaching models intervention and cognitive style. Journal on Mathematics Education, 11(2), 209–222. https://doi.org/10.22342/jme.11.2.10744.209-222

Suanto, E., Maat, S. M., & Zakaria, E. (2023). The effectiveness of the implementation of three dimensions geometry KARA module on higher order thinking skills (HOTS) and motivation. International Journal of Instruction, 16(3), 95–116. https://doi.org/10.29333/iji.2023.1636a

Sukkeewan, P., Songkram, N., & Nasongkhla, J. (2024). Development and validation of a reliable and valid assessment tool for measuring innovative thinking in vocational students. International Journal of Educational Methodology, 10(1), 35–44. https://doi.org/10.12973/ijem.10.1.835

Suratno, S., Wahono, B., Chang, C. Y., Retnowati, A., & Yushardi, Y. (2020). Exploring a direct relationship between students’ problem-solving abilities and academic achievement: A STEM education at a coffee plantation area. Journal of Turkish Science Education, 17(2), 211–224. https://doi.org/10.36681/tused.2020.22

Syahriridani, M., Susilo, H., & Ibrohim, I. (2022). Developing problem based learning through lesson study. Journal of Learning Improvement and Lesson Study, 1(2), 15–22. https://doi.org/10.24036/jlils.v1i2.20

Syamsuddin, A., Juniati, D., & Siswono, T. Y. E. (2020). Understanding the problem solving strategy based on cognitive style as a tool to investigate reflective thinking process of prospective teacher. Universal Journal of Educational Research, 8(6), 2614?2620. https://doi.org/10.13189/ujer.2020.080644

Tamur, M., Ndiung, S., Nurjaman, A., & Jerito, P. (2020). Do differences in measured mathematical abilities moderate the effectiveness of the realistic mathematics education approach? Meta-analysis studies. Jurnal Math Educator Nusantara, 7(1), 13–26. https://doi.org/10.29407/jmen.v7i1.15736

Tanjung, H. S., Nababan, S. A., Sa’dijah, C., & Subanji, S. (2020). Development of assessment tools of critical thinking in mathematics in the context of HOTS. Advances in Mathematics: Scientific Journal, 9(10), 8659–8667. https://doi.org/10.37418/amsj.9.10.91

Tanujaya, B., Prahmana, R. C. I., & Mumu, J. (2021). Mathematics instruction to promote mathematics higher-order thinking skills of students in Indonesia: Moving forward. TEM Journal, 10(4), 1945–1954. https://doi.org/10.18421/TEM104-60

Vink, I. C. D., Hornstra, L., & Kroesbergen, E. H. (2023). Latent profile analysis of working memory: Relations with creativity and academic achievement. Creativity Research Journal, 1–17. https://doi.org/10.1080/10400419.2023.2183323

Wang, X. M. (2023). An online progressive peer assessment approach to project-based learning: A constructivist perspective. Educational Technology Research and Development, 71(5), 2073–2101. https://doi.org/10.1007/s11423-023-10257-6

Widiatsih, A., Wardani, D. A. R., Royhana, U., Djamali, F., & Septory, B. J. (2020). The development of mathematical problems based on higher order thinking skills (HOTS) on comparative material by implementing PBL and its effect on the teacher’s creative thinking skill. Journal of Physics: Conference Series, 1538(1), Article 012110. https://doi.org/10.1088/1742-6596/1538/1/012110

Widyaningsih, S. W., & Yusuf, I. (2019). The project-based learning model is based on simple teaching tools and critical thinking skills. Kasuari: Physics Education Journal (KPEJ), 1(1), 12–21. https://doi.org/10.37891/kpej.v1i1.33

Wijaya, T. T., Zhou, Y., Ware, A., & Hermita, N. (2021). Improving the creative thinking skills of the next generation of mathematics teachers using dynamic mathematics software. International Journal of Emerging Technologies in Learning, 16(13), 212–226. https://doi.org/10.3991/ijet.v16i13.21535

Zubaidah, S., Fuad, N. M., Mahanal, S., & Suarsini, E. (2017). Improving creative thinking skills of students through differentiated science inquiry integrated with a mind map. Journal of Turkish Science Education, 14(4), 77–91. https://doi.org/10.12973/tused.10214a

Zulyusri, Z., Elfira, I., Lufri, L., & Santosa, T. A. (2023). Literature study: Utilization of the PjBL model in science education to improve creativity and critical thinking skills. Jurnal Penelitian Pendidikan IPA, 9(1), 133–143. https://doi.org/10.29303/jppipa.v9i1.2555

  • There are currently no refbacks.

e-ISSN: 1694-2116

p-ISSN: 1694-2493

IMAGES

  1. PPT

    chapter 15 critical thinking and problem solving

  2. Chapter 15 critical thinking and problem solving

    chapter 15 critical thinking and problem solving

  3. Critical Thinking & Problem Solving [Outline]

    chapter 15 critical thinking and problem solving

  4. Problem solving & critical thinking

    chapter 15 critical thinking and problem solving

  5. PPT

    chapter 15 critical thinking and problem solving

  6. What are the major steps to critical thinking as it relates to problem

    chapter 15 critical thinking and problem solving

VIDEO

  1. Thomas Calculus 15.3 (Q1-12)

  2. Accounting Chapter 15-3 Application

  3. Chapter 1: Undergraduate Project Writing

  4. Critical Thinking and Problem-Solving Skills for High School and College Students

  5. Calculus III: Chapter 15

  6. Complete Solution of Exercise 15.3, Chapter 15

COMMENTS

  1. Chapter 15- Critical Thinking and Problem Solving Flashcards

    a health care professional who has _____ applies the same rigorous standards of proof to his or her own knowledge and beliefs as he or she would apply to the knowledge and beliefs of others

  2. Chapter 15

    Psych ch 3. 15 terms. emersynn_fair. Preview. psych. 16 terms. agsulivan8. Preview. Study with Quizlet and memorize flashcards containing terms like Why is critical thinking and problem solving important?, What is critical thinking?, What are the four features in Effective Critical Thinking? and more.

  3. Chapter 15: Critical Thinking and Problem Solving Flashcards

    distractions. ______________ memory describes how the brain stores and retrieves information form short-term and long-term memory. working. Chapter 15: Critical Thinking and Problem Solving. Brainstorming. Click the card to flip 👆. encourages people to generate creative thoughts spontaneously, without stopping to analyze each idea. Click the ...

  4. Critical Thinking and Problem-Solving

    Critical thinking involves asking questions, defining a problem, examining evidence, analyzing assumptions and biases, avoiding emotional reasoning, avoiding oversimplification, considering other interpretations, and tolerating ambiguity. Dealing with ambiguity is also seen by Strohm & Baukus (1995) as an essential part of critical thinking ...

  5. 1.2: Problem Solving with Critical Thinking

    Problem-Solving with Critical Thinking. Critical thinking plays a vital role in problem-solving by enabling us to approach issues systematically and thoughtfully. Here are some examples of how critical thinking can be applied to problem-solving: Interpersonal Conflicts. When a roommate says unkind words, critical thinking helps us look beyond ...

  6. Chapter 15: Transfer, Problem Solving, and Critical Thinking

    Chapter 15: Transfer, Problem Solving, and Critical Thinking Critical Thinking In the Classroom Evaluating the accuracy, credibility, and worth of information and lines of reasoning. Reflective Logical Evidence-based The learner thinks critically to achieve a particular goal

  7. Problem-Solving with Critical Thinking

    Step 7: Evaluate progress. The final step when employing critical thinking to problem-solving is to evaluate the progress of the solution. Since critical thinking demands open-mindedness, analysis, and a willingness to change one's mind, it is important to monitor how well the solution has actually solved the problem in order to determine if ...

  8. Critical Thinking & Problem-Solving

    In fact, critical thinking and problem-solving go hand-in-hand. They both refer to using knowledge, facts, and data to solve problems effectively, but with problem-solving, you are specifically identifying, selecting, and defending your solution. Applying the strategies described in the action checklist below can help you utilize critical ...

  9. Chapter 15: Critical Thinking and Problem Solving

    the role of critical thinking in problem solving in organizations. the role of critical thinking in problem solving in organizations. by adebayo jimoh gmd/ceo odu'a investment company limited paper presented to the personnel psychology students association university of ibadan 14 th march, 2013. outline. introduction what is critical thinking

  10. Chapter Fifteen: Critical Thinking

    15 Chapter Fifteen: Critical Thinking Critical Thinking. Thinking comes naturally. You don't have to make it happen—it just does. ... In fact, critical thinking and problem-solving go hand-in-hand. They both refer to using knowledge, facts, and data to solve problems effectively. But with problem-solving, you are specifically identifying ...

  11. Chapter 15 Critical Thinking and Problem Solving *Dynamics*

    a problem solving technique that involves testing any numbers of solutions until one is found that solves a particular problem. working memory a concept that describes how the the brain stores and retrieves information from short-term and long-term memory.

  12. 50 Problem-Solving and Critical Thinking Examples

    These skills enable individuals to analyze complex situations, make informed decisions, and find innovative solutions. Here, we present 25 examples of problem-solving and critical thinking. problem-solving scenarios to help you cultivate and enhance these skills. Ethical dilemma: A company faces a situation where a client asks for a product ...

  13. Chapter 15-Critical thinking

    Ch. 15: Critical Thinking Definitions: Critical thinking:the ability to think in a systematic and logical manner with openness to question and reflect on the reasoning process Reflection: turning over a subject in your mind and thinking about it seriously Levels of Critical Thinking: Level 1: Basic requires conscious effort to apply critical thinking because you are task oriented thinking is ...

  14. 7 Module 7: Thinking, Reasoning, and Problem-Solving

    Module 7: Thinking, Reasoning, and Problem-Solving. This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure ...

  15. Critical Thinking and Problem-Solving Skills

    Critical thinking helps people solve problems systematically using facts and data. It involves going through a process of gathering information, analyzing, evaluating, and synthesizing the information to help solve problems in a timely manner. Logic plays a predominant role in critical thinking, because the goal of critical thinking is to solve ...

  16. Chapter 15 Critical Thinking in Nursing Practice

    good notes to practice chapter 15 critical thinking in nursing practice critical thinking is acquired through experience, commitment, and active curiosity. Skip to document. University; High School. ... such as problem solving and reflection to understand patient problems and create an individualized plan of care. ...

  17. Chapter 15 Critical Thinking (Study Guide) Flashcards

    Chapter 15 Critical Thinking (Study Guide) Describe the steps of critical thinking. Click the card to flip 👆. recognize that an issue exists, analyze info about issue, evaluate info and make conclusions. Click the card to flip 👆.

  18. PDF 13 Critical Thinking and Problem-Solving Skills

    3Critical Thinking and Problem-Solving SkillsCritical thinking is a type of systematic thin. ing that is used to solve problems using logic. The first step is to gather the in. ormation needed to help you solve your problem. You start by analyzing and evaluating sources for authority to give you the best. hot at finding something truthful a.

  19. Chapter 15- critical Thinking and Clinical Judgment Flashcards

    clinical thinking model (The 6 components of critical thinking in nursing judgement) 1.) critical thinking competence- such as diagnostic reasoning and clinical decision making ability. 2.) specific knowledge base- patient data, basic and nursing science, nursing and healthcare history. 3.) experience- personal, clinical practice, skill competence.

  20. Syllabus PHI-105-O503-20221114

    Last Updated: Nov 12, 2022, 11:39 AM. 21st Century Skills: Critical Thinking and Problem Solving. PHI-105 4 Credits Nov 14, 2022 - Jan 15, 2023. Course Description

  21. Project-Based Learning in Fostering Creative Thinking and Mathematical

    Conversely, students exposed to project-based learning models exhibit higher skill levels in creative thinking and problem-solving than those instructed using conventional learning models. The project-based learning model significantly impacted elementary school children's creative thinking and mathematics problem-solving skills.

  22. Chapter 15

    Explain the relationship between critical thinking and clinical judgment in nursing practice. A clinical judgment model contains the elements that allow you to make the right clinical decisions in every type of patient situation. Interpret the value of applying a clinical judgment model in nursing practice. When striving to make sound clinical ...