How to think like a programmer — lessons in problem solving

freeCodeCamp

By Richard Reis

If you’re interested in programming, you may well have seen this quote before:

“Everyone in this country should learn to program a computer, because it teaches you to think.” — Steve Jobs

You probably also wondered what does it mean, exactly, to think like a programmer? And how do you do it??

Essentially, it’s all about a more effective way for problem solving .

In this post, my goal is to teach you that way.

By the end of it, you’ll know exactly what steps to take to be a better problem-solver.

Why is this important?

Problem solving is the meta-skill.

We all have problems. Big and small. How we deal with them is sometimes, well…pretty random.

Unless you have a system, this is probably how you “solve” problems (which is what I did when I started coding):

  • Try a solution.
  • If that doesn’t work, try another one.
  • If that doesn’t work, repeat step 2 until you luck out.

Look, sometimes you luck out. But that is the worst way to solve problems! And it’s a huge, huge waste of time.

The best way involves a) having a framework and b) practicing it.

“Almost all employers prioritize problem-solving skills first. Problem-solving skills are almost unanimously the most important qualification that employers look for….more than programming languages proficiency, debugging, and system design. Demonstrating computational thinking or the ability to break down large, complex problems is just as valuable (if not more so) than the baseline technical skills required for a job.” — Hacker Rank ( 2018 Developer Skills Report )

Have a framework

To find the right framework, I followed the advice in Tim Ferriss’ book on learning, “ The 4-Hour Chef ”.

It led me to interview two really impressive people: C. Jordan Ball (ranked 1st or 2nd out of 65,000+ users on Coderbyte ), and V. Anton Spraul (author of the book “ Think Like a Programmer: An Introduction to Creative Problem Solving ”).

I asked them the same questions, and guess what? Their answers were pretty similar!

Soon, you too will know them.

Sidenote: this doesn’t mean they did everything the same way. Everyone is different. You’ll be different. But if you start with principles we all agree are good, you’ll get a lot further a lot quicker.

“The biggest mistake I see new programmers make is focusing on learning syntax instead of learning how to solve problems.” — V. Anton Spraul

So, what should you do when you encounter a new problem?

Here are the steps:

1. Understand

Know exactly what is being asked. Most hard problems are hard because you don’t understand them (hence why this is the first step).

How to know when you understand a problem? When you can explain it in plain English.

Do you remember being stuck on a problem, you start explaining it, and you instantly see holes in the logic you didn’t see before?

Most programmers know this feeling.

This is why you should write down your problem, doodle a diagram, or tell someone else about it (or thing… some people use a rubber duck ).

“If you can’t explain something in simple terms, you don’t understand it.” — Richard Feynman

Don’t dive right into solving without a plan (and somehow hope you can muddle your way through). Plan your solution!

Nothing can help you if you can’t write down the exact steps.

In programming, this means don’t start hacking straight away. Give your brain time to analyze the problem and process the information.

To get a good plan, answer this question:

“Given input X, what are the steps necessary to return output Y?”

Sidenote: Programmers have a great tool to help them with this… Comments!

Pay attention. This is the most important step of all.

Do not try to solve one big problem. You will cry.

Instead, break it into sub-problems. These sub-problems are much easier to solve.

Then, solve each sub-problem one by one. Begin with the simplest. Simplest means you know the answer (or are closer to that answer).

After that, simplest means this sub-problem being solved doesn’t depend on others being solved.

Once you solved every sub-problem, connect the dots.

Connecting all your “sub-solutions” will give you the solution to the original problem. Congratulations!

This technique is a cornerstone of problem-solving. Remember it (read this step again, if you must).

“If I could teach every beginning programmer one problem-solving skill, it would be the ‘reduce the problem technique.’ For example, suppose you’re a new programmer and you’re asked to write a program that reads ten numbers and figures out which number is the third highest. For a brand-new programmer, that can be a tough assignment, even though it only requires basic programming syntax. If you’re stuck, you should reduce the problem to something simpler. Instead of the third-highest number, what about finding the highest overall? Still too tough? What about finding the largest of just three numbers? Or the larger of two? Reduce the problem to the point where you know how to solve it and write the solution. Then expand the problem slightly and rewrite the solution to match, and keep going until you are back where you started.” — V. Anton Spraul

By now, you’re probably sitting there thinking “Hey Richard... That’s cool and all, but what if I’m stuck and can’t even solve a sub-problem??”

First off, take a deep breath. Second, that’s fair.

Don’t worry though, friend. This happens to everyone!

The difference is the best programmers/problem-solvers are more curious about bugs/errors than irritated.

In fact, here are three things to try when facing a whammy:

  • Debug: Go step by step through your solution trying to find where you went wrong. Programmers call this debugging (in fact, this is all a debugger does).
“The art of debugging is figuring out what you really told your program to do rather than what you thought you told it to do.”” — Andrew Singer
  • Reassess: Take a step back. Look at the problem from another perspective. Is there anything that can be abstracted to a more general approach?
“Sometimes we get so lost in the details of a problem that we overlook general principles that would solve the problem at a more general level. […] The classic example of this, of course, is the summation of a long list of consecutive integers, 1 + 2 + 3 + … + n, which a very young Gauss quickly recognized was simply n(n+1)/2, thus avoiding the effort of having to do the addition.” — C. Jordan Ball

Sidenote: Another way of reassessing is starting anew. Delete everything and begin again with fresh eyes. I’m serious. You’ll be dumbfounded at how effective this is.

  • Research: Ahh, good ol’ Google. You read that right. No matter what problem you have, someone has probably solved it. Find that person/ solution. In fact, do this even if you solved the problem! (You can learn a lot from other people’s solutions).

Caveat: Don’t look for a solution to the big problem. Only look for solutions to sub-problems. Why? Because unless you struggle (even a little bit), you won’t learn anything. If you don’t learn anything, you wasted your time.

Don’t expect to be great after just one week. If you want to be a good problem-solver, solve a lot of problems!

Practice. Practice. Practice. It’ll only be a matter of time before you recognize that “this problem could easily be solved with .”

How to practice? There are options out the wazoo!

Chess puzzles, math problems, Sudoku, Go, Monopoly, video-games, cryptokitties, bla… bla… bla….

In fact, a common pattern amongst successful people is their habit of practicing “micro problem-solving.” For example, Peter Thiel plays chess, and Elon Musk plays video-games.

“Byron Reeves said ‘If you want to see what business leadership may look like in three to five years, look at what’s happening in online games.’ Fast-forward to today. Elon [Musk], Reid [Hoffman], Mark Zuckerberg and many others say that games have been foundational to their success in building their companies.” — Mary Meeker ( 2017 internet trends report )

Does this mean you should just play video-games? Not at all.

But what are video-games all about? That’s right, problem-solving!

So, what you should do is find an outlet to practice. Something that allows you to solve many micro-problems (ideally, something you enjoy).

For example, I enjoy coding challenges. Every day, I try to solve at least one challenge (usually on Coderbyte ).

Like I said, all problems share similar patterns.

That’s all folks!

Now, you know better what it means to “think like a programmer.”

You also know that problem-solving is an incredible skill to cultivate (the meta-skill).

As if that wasn’t enough, notice how you also know what to do to practice your problem-solving skills!

Phew… Pretty cool right?

Finally, I wish you encounter many problems.

You read that right. At least now you know how to solve them! (also, you’ll learn that with every solution, you improve).

“Just when you think you’ve successfully navigated one obstacle, another emerges. But that’s what keeps life interesting.[…] Life is a process of breaking through these impediments — a series of fortified lines that we must break through. Each time, you’ll learn something. Each time, you’ll develop strength, wisdom, and perspective. Each time, a little more of the competition falls away. Until all that is left is you: the best version of you.” — Ryan Holiday ( The Obstacle is the Way )

Now, go solve some problems!

And best of luck ?

Special thanks to C. Jordan Ball and V. Anton Spraul . All the good advice here came from them.

Thanks for reading! If you enjoyed it, test how many times can you hit in 5 seconds. It’s great cardio for your fingers AND will help other people see the story.

freeCodeCamp Programming Tutorials: Python, JavaScript, Git & More

If you read this far, thank the author to show them you care. Say Thanks

Learn to code for free. freeCodeCamp's open source curriculum has helped more than 40,000 people get jobs as developers. Get started

code-practice

20 Code Challenges To Put What You’re Learning to the Test

Stephan-Miller.jpg?w=648

  • Share article on Twitter
  • Share article on Facebook
  • Share article on LinkedIn

Code challenges help you build problem-solving skills, better understand the programming language you use, and get to know algorithms you may not be familiar with. If you want to improve your skills in programming, there’s no better way than by writing code. In addition, coding challenges are convenient because they allow you to exercise your skills on a bite-sized problem and rarely require you to build a complete application, so you can usually complete them rather quickly.

Code challenges are also part of most coding interviews. Hiring managers may see the skills listed on your resume, and you may be able to talk like a programmer, but they also want to know that you can write code. By having you solve a coding challenge, they can assess your skills and be sure you can do the job. So working on coding challenges will also help you prepare for job interviews. We’ve collected 20 popular code challenges to get you started.

Learn something new for free

Intro to chatgpt, general programming challenges.

While most code challenges are small in scope, that doesn’t mean they won’t involve a complex solution, so it is best to choose a challenge that stretches your skills but isn’t completely out of your league. Below, we’ve ranked a few coding challenges by their complexity so you can find the best challenge for your skill level.

Basic code challenges

These are good beginner challenges. They may not actually show up in a coding interview, but everyone has to start somewhere. These challenges are good for practicing your skills at using a programming language.

  • Build a binary search tree .
  • Write a program that prints the numbers from 1 to 100. But for multiples of three, print Fizz instead of the number, and multiples of five, print Buzz. For numbers that are multiples of both three and five, print FizzBuzz .
  • Print Hello World in several different ways in a programming language .
  • Code in a new language .
  • Write a function that will take a given string and reverse the order of the words .
  • Write a function that will find the 50th number in the Fibonacci Sequence .
  • Write a function that tests if a number, n, is a prime number .

Intermediate code challenges

These code challenges are examples of what might be asked in interviews. There may be a big difference in difficulty compared to the basic challenges. If you get stuck on these, go back to the basics, practice more, and you will get there.

  • Write a function to check that a binary search tree is balanced .
  • Write a function to reverse the order of words that have punctuation and keep the punctuation in place .
  • Given two words (beginWord and endWord) and a dictionary’s word list, find the length of the shortest transformation sequence from beginWord to endWord .
  • Write a function that will find the nth number in the Fibonacci Sequence .
  • Write a function that will print out all prime numbers in a given string .

Hard code challenges

The point of these challenges is to challenge you, which will help you learn more. These will be similar to the type of work you’ll do on the job. Most of these challenges will be hard but use Big O notation and expect a certain type of performance. If you are struggling with these, search StackOverflow or Google for direction. Many developers have run into these types of problems and will help you find the solution. Just don’t cheat and copy the answer. What good would that do?

  • Write a function that inserts a list of n numbers into a binary search tree that runs at O(n log n) time .
  • Write a function to reverse the order of words with punctuation and keep the punctuation in place that runs at 0(n) time .
  • Write a function that will find the nth number in the Fibonacci Sequence and runs at O(n) time .
  • Write a function that tests if a number, n, is a prime number and a function that will print out all prime numbers in a given string as efficiently as possible .

Technology specific challenges

If you want to try some coding challenges that will test your skills on specific technologies, we have a few of those challenges.

Web development code challenges

  • Build a web page for your favorite band . A fun challenge can be creating a webpage for your favorite musical artist. Start by using only static HTML , and if you want to challenge yourself, even more, add CSS and JavaScript . Then, for extra credit, build it in a front-end framework like React and make it an interactive experience.
  • Recreate a magazine layout using Semantic HTML and CSS Flexbox . It is not always that easy to recreate a design. This code challenge will really test your skills with HTML and CSS by having you recreate a design from scratch on your own. Once you are a working web developer, you will be doing this daily.
  • Build a static portfolio site . Once you finish the first two web development challenges listed here, you will have demonstrated your skills in web development. So why not take it a step further and show off those skills to the world or a potential employer by building a portfolio site? With this challenge, you will do just that. You can use HTML and CSS and, if you want, JavaScript. If you need help creating a portfolio, watch the video below for a step-by-step tutorial. And if you want to learn how to use JavaScript to make it interactive, check out Part 2 .

Financial data analysis code challenges

Maximize stock trading profit . This is reportedly a question asked in a Google interview and will test your skills in analyzing financial data . There are three levels to this challenge:

  • Basic: Given the daily values of a stock, write a program that will find how you can gain the most with a single buy-sell-trade.
  • Intermediate: Given the daily values of a stock over several days n , write a program that will find how you can gain the most with a combination of buy-sell trades.
  • Hard: Complete both the basic and intermediate algorithms in the most efficient way possible.

Code challenges are a great way to practice your coding skills or keep yourself from getting rusty. Building complete applications will also teach you a lot, but they can take time to finish. On the other hand, a coding challenge can be completed in an evening and will expose you to new algorithms and programming concepts. They are also part of many coding interviews, so completing a few can help you prepare for a job interview. For more details on the code challenges we have, check out Essential Information on Code Challenges .

Whether you’re looking to break into a new career, build your technical skills, or just code for fun, we’re here to help every step of the way. Check out our blog post about how to choose the best Codecademy plan for you to learn about our structured courses, professional certifications, interview prep resources, career services, and more.

Related courses

Learn to code with blockly, choosing a programming language, choosing a career in tech, subscribe for news, tips, and more, related articles.

Cybersecurity_Blog_F_Cybersecurity_Thumbnail_01.png?w=1024

4 In-Demand Cybersecurity Skills That Will Help Get You Hired

Seize the job opportunities in cybersecurity by learning these key technical skills.

What-Is-CoffeeScript-.png?w=1024

What Is CoffeeScript?

What is CoffeeScript, and is it worth learning? In this article, we explain how it changed the way we write both front-end and back-end JavaScript code.

Header-Image_2083x875-2.webp?w=1024

Context Switching Is Killing Your Productivity — 6 Tips for Focus

Context switching doesn’t just affect your productivity, it causes stress and frustration too. Here are some ways to manage interruptions at work.

6-Small-Wins-To-Celebrate-On-Your-Journey-To-Becoming-A-Professional-Developer-1.png?w=1024

7 Small Wins To Celebrate On Your Journey To Becoming A Professional Developer

Having an end goal is important, but so is celebrating your progress. Here are some milestones to look forward to as you learn how to code.

6-Most-Popular-Programming-Languages-for-Game-Development.png?w=1024

7 Most Popular Programming Languages for Game Development

Learn the best languages for game development and why developers choose to use them. Discover how our classes can get you started with game design.

7-Organizations-Helping-Girls---Women-Build-Careers-in-Tech-1.jpg?w=1024

8 Organizations Helping Girls & Women Build Careers in Tech

There’s a gender gap in tech — but it’s getting smaller thanks to organizations like these.

staying-accountable-coding-goals.png?w=1024

5 Ways to Stay Accountable to Your Learning Goals in 2024

Planning to learn to code in 2024? We’ve put together a list of 6 tips and resources to help you stay accountable to your coding goals this year.

Problem Solving

Foundations course, introduction.

Before we start digging into some pretty nifty JavaScript, we need to begin talking about problem solving : the most important skill a developer needs.

Problem solving is the core thing software developers do. The programming languages and tools they use are secondary to this fundamental skill.

From his book, “Think Like a Programmer” , V. Anton Spraul defines problem solving in programming as:

Problem solving is writing an original program that performs a particular set of tasks and meets all stated constraints.

The set of tasks can range from solving small coding exercises all the way up to building a social network site like Facebook or a search engine like Google. Each problem has its own set of constraints, for example, high performance and scalability may not matter too much in a coding exercise but it will be vital in apps like Google that need to service billions of search queries each day.

New programmers often find problem solving the hardest skill to build. It’s not uncommon for budding programmers to breeze through learning syntax and programming concepts, yet when trying to code something on their own, they find themselves staring blankly at their text editor not knowing where to start.

The best way to improve your problem solving ability is by building experience by making lots and lots of programs. The more practice you have the better you’ll be prepared to solve real world problems.

In this lesson we will walk through a few techniques that can be used to help with the problem solving process.

Lesson overview

This section contains a general overview of topics that you will learn in this lesson.

  • Explain the three steps in the problem solving process.
  • Explain what pseudocode is and be able to use it to solve problems.
  • Be able to break a problem down into subproblems.

Understand the problem

The first step to solving a problem is understanding exactly what the problem is. If you don’t understand the problem, you won’t know when you’ve successfully solved it and may waste a lot of time on a wrong solution .

To gain clarity and understanding of the problem, write it down on paper, reword it in plain English until it makes sense to you, and draw diagrams if that helps. When you can explain the problem to someone else in plain English, you understand it.

Now that you know what you’re aiming to solve, don’t jump into coding just yet. It’s time to plan out how you’re going to solve it first. Some of the questions you should answer at this stage of the process:

  • Does your program have a user interface? What will it look like? What functionality will the interface have? Sketch this out on paper.
  • What inputs will your program have? Will the user enter data or will you get input from somewhere else?
  • What’s the desired output?
  • Given your inputs, what are the steps necessary to return the desired output?

The last question is where you will write out an algorithm to solve the problem. You can think of an algorithm as a recipe for solving a particular problem. It defines the steps that need to be taken by the computer to solve a problem in pseudocode.

Pseudocode is writing out the logic for your program in natural language instead of code. It helps you slow down and think through the steps your program will have to go through to solve the problem.

Here’s an example of what the pseudocode for a program that prints all numbers up to an inputted number might look like:

This is a basic program to demonstrate how pseudocode looks. There will be more examples of pseudocode included in the assignments.

Divide and conquer

From your planning, you should have identified some subproblems of the big problem you’re solving. Each of the steps in the algorithm we wrote out in the last section are subproblems. Pick the smallest or simplest one and start there with coding.

It’s important to remember that you might not know all the steps that you might need up front, so your algorithm may be incomplete -— this is fine. Getting started with and solving one of the subproblems you have identified in the planning stage often reveals the next subproblem you can work on. Or, if you already know the next subproblem, it’s often simpler with the first subproblem solved.

Many beginners try to solve the big problem in one go. Don’t do this . If the problem is sufficiently complex, you’ll get yourself tied in knots and make life a lot harder for yourself. Decomposing problems into smaller and easier to solve subproblems is a much better approach. Decomposition is the main way to deal with complexity, making problems easier and more approachable to solve and understand.

In short, break the big problem down and solve each of the smaller problems until you’ve solved the big problem.

Solving Fizz Buzz

To demonstrate this workflow in action, let’s solve Fizz Buzz

Understanding the problem

Write a program that takes a user’s input and prints the numbers from one to the number the user entered. However, for multiples of three print Fizz instead of the number and for the multiples of five print Buzz . For numbers which are multiples of both three and five print FizzBuzz .

This is the big picture problem we will be solving. But we can always make it clearer by rewording it.

Write a program that allows the user to enter a number, print each number between one and the number the user entered, but for numbers that divide by 3 without a remainder print Fizz instead. For numbers that divide by 5 without a remainder print Buzz and finally for numbers that divide by both 3 and 5 without a remainder print FizzBuzz .

Does your program have an interface? What will it look like? Our FizzBuzz solution will be a browser console program, so we don’t need an interface. The only user interaction will be allowing users to enter a number.

What inputs will your program have? Will the user enter data or will you get input from somewhere else? The user will enter a number from a prompt (popup box).

What’s the desired output? The desired output is a list of numbers from 1 to the number the user entered. But each number that is divisible by 3 will output Fizz , each number that is divisible by 5 will output Buzz and each number that is divisible by both 3 and 5 will output FizzBuzz .

Writing the pseudocode

What are the steps necessary to return the desired output? Here is an algorithm in pseudocode for this problem:

Dividing and conquering

As we can see from the algorithm we developed, the first subproblem we can solve is getting input from the user. So let’s start there and verify it works by printing the entered number.

With JavaScript, we’ll use the “prompt” method.

The above code should create a little popup box that asks the user for a number. The input we get back will be stored in our variable answer .

We wrapped the prompt call in a parseInt function so that a number is returned from the user’s input.

With that done, let’s move on to the next subproblem: “Loop from 1 to the entered number”. There are many ways to do this in JavaScript. One of the common ways - that you actually see in many other languages like Java, C++, and Ruby - is with the for loop :

If you haven’t seen this before and it looks strange, it’s actually straightforward. We declare a variable i and assign it 1: the initial value of the variable i in our loop. The second clause, i <= answer is our condition. We want to loop until i is greater than answer . The third clause, i++ , tells our loop to increment i by 1 every iteration. As a result, if the user inputs 10, this loop would print numbers 1 - 10 to the console.

Most of the time, programmers find themselves looping from 0. Due to the needs of our program, we’re starting from 1

With that working, let’s move on to the next problem: If the current number is divisible by 3, then print Fizz .

We are using the modulus operator ( % ) here to divide the current number by three. If you recall from a previous lesson, the modulus operator returns the remainder of a division. So if a remainder of 0 is returned from the division, it means the current number is divisible by 3.

After this change the program will now output this when you run it and the user inputs 10:

The program is starting to take shape. The final few subproblems should be easy to solve as the basic structure is in place and they are just different variations of the condition we’ve already got in place. Let’s tackle the next one: If the current number is divisible by 5 then print Buzz .

When you run the program now, you should see this output if the user inputs 10:

We have one more subproblem to solve to complete the program: If the current number is divisible by 3 and 5 then print FizzBuzz .

We’ve had to move the conditionals around a little to get it to work. The first condition now checks if i is divisible by 3 and 5 instead of checking if i is just divisible by 3. We’ve had to do this because if we kept it the way it was, it would run the first condition if (i % 3 === 0) , so that if i was divisible by 3, it would print Fizz and then move on to the next number in the iteration, even if i was divisible by 5 as well.

With the condition if (i % 3 === 0 && i % 5 === 0) coming first, we check that i is divisible by both 3 and 5 before moving on to check if it is divisible by 3 or 5 individually in the else if conditions.

The program is now complete! If you run it now you should get this output when the user inputs 20:

  • Read How to Think Like a Programmer - Lessons in Problem Solving by Richard Reis.
  • Watch How to Begin Thinking Like a Programmer by Coding Tech. It’s an hour long but packed full of information and definitely worth your time watching.
  • Read this Pseudocode: What It Is and How to Write It article from Built In.

Knowledge check

The following questions are an opportunity to reflect on key topics in this lesson. If you can’t answer a question, click on it to review the material, but keep in mind you are not expected to memorize or master this knowledge.

  • What are the three stages in the problem solving process?
  • Why is it important to clearly understand the problem first?
  • What can you do to help get a clearer understanding of the problem?
  • What are some of the things you should do in the planning stage of the problem solving process?
  • What is an algorithm?
  • What is pseudocode?
  • What are the advantages of breaking a problem down and solving the smaller problems?

Additional resources

This section contains helpful links to related content. It isn’t required, so consider it supplemental.

  • Read the first chapter in Think Like a Programmer: An Introduction to Creative Problem Solving ( not free ). This book’s examples are in C++, but you will understand everything since the main idea of the book is to teach programmers to better solve problems. It’s an amazing book and worth every penny. It will make you a better programmer.
  • Watch this video on repetitive programming techniques .
  • Watch Jonathan Blow on solving hard problems where he gives sage advice on how to approach problem solving in software projects.

Support us!

The odin project is funded by the community. join us in empowering learners around the globe by supporting the odin project.

Codemonk

  • Basics of Input/Output
  • Time and Space Complexity
  • Basics of Implementation
  • Basics of Operators
  • Basics of Bit Manipulation
  • Recursion and Backtracking
  • Multi-dimensional
  • Basics of Stacks
  • Basics of Queues
  • Basics of Hash Tables
  • Singly Linked List
  • Binary/ N-ary Trees
  • Binary Search Tree
  • Heaps/Priority Queues
  • Trie (Keyword Tree)
  • Segment Trees
  • Fenwick (Binary Indexed) Trees
  • Suffix Trees
  • Suffix Arrays
  • Basics of Disjoint Data Structures
  • Linear Search
  • Binary Search
  • Ternary Search
  • Bubble Sort
  • Selection Sort
  • Insertion Sort
  • Counting Sort
  • Bucket Sort
  • Basics of Greedy Algorithms
  • Graph Representation
  • Breadth First Search
  • Depth First Search
  • Minimum Spanning Tree
  • Shortest Path Algorithms
  • Flood-fill Algorithm
  • Articulation Points and Bridges
  • Biconnected Components
  • Strongly Connected Components
  • Topological Sort
  • Hamiltonian Path
  • Maximum flow
  • Minimum Cost Maximum Flow
  • Basics of String Manipulation
  • String Searching
  • Z Algorithm
  • Manachar’s Algorithm
  • Introduction to Dynamic Programming 1
  • 2 Dimensional
  • State space reduction
  • Dynamic Programming and Bit Masking
  • Basic Number Theory-1
  • Basic Number Theory-2
  • Primality Tests
  • Totient Function
  • Basics of Combinatorics
  • Inclusion-Exclusion
  • Line Sweep Technique
  • Line Intersection using Bentley Ottmann Algorithm
  • Basic Probability Models and Rules
  • Bayes’ rules, Conditional probability, Chain rule
  • Discrete Random Variables
  • Continuous Random Variables
  • Practical Tutorial on Data Manipulation with Numpy and Pandas in Python
  • Beginners Guide to Regression Analysis and Plot Interpretations
  • Practical Guide to Logistic Regression Analysis in R
  • Practical Tutorial on Random Forest and Parameter Tuning in R
  • Practical Guide to Clustering Algorithms & Evaluation in R
  • Beginners Tutorial on XGBoost and Parameter Tuning in R
  • Deep Learning & Parameter Tuning with MXnet, H2o Package in R
  • Decision Tree
  • Simple Tutorial on Regular Expressions and String Manipulations in R
  • Practical Guide to Text Mining and Feature Engineering in R
  • Winning Tips on Machine Learning Competitions by Kazanova, Current Kaggle #3
  • Practical Machine Learning Project in Python on House Prices Data
  • Challenge #1 - Machine Learning
  • Challenge #3 - Machine Learning
  • Challenge #2 - Deep Learning
  • Transfer Learning Introduction
  • Input and Output
  • Python Variables
  • Conditionals
  • Expressions
  • Classes and Objects I
  • Classes and Objects II (Inheritance and Composition)
  • Errors and Exceptions
  • Iterators and Generators
  • Functional Programming
  • Higher Order Functions and Decorators
  • +1-650-461-4192
  • For sales enquiry [email protected]
  • For support [email protected]
  • Campus Ambassadors
  • Assessments
  • Learning and Development
  • Interview Prep
  • Engineering Blog
  • Privacy Policy
  • © 2024 HackerEarth All rights reserved
  • Terms of Service

Tutorial Playlist

Programming tutorial, your guide to the best backend languages for 2024, an ultimate guide that helps you to start learn coding 2024, what is backend development: the ultimate guide for beginners, all you need to know for choosing the first programming language to learn, here’s all you need to know about coding, decoding, and reasoning with examples, understanding what is xml: the best guide to xml and its concepts., an ultimate guide to learn the importance of low-code and no-code development, top frontend languages that you should know about, top 75+ frontend developer interview questions and answers, the ultimate guide to learn typescript generics, the most comprehensive guide for beginners to know ‘what is typescript’.

The Ultimate Guide on Introduction to Competitive Programming

Top 60+ TCS NQT Interview Questions and Answers for 2024

Most commonly asked logical reasoning questions in an aptitude test, everything you need to know about advanced typescript concepts, an absolute guide to build c hello world program, a one-stop solution guide to learn how to create a game in unity, what is nat significance of nat for translating ip addresses in the network model, data science vs software engineering: key differences, a real-time chat application typescript project using node.js as a server, what is raspberry pi here’s the best guide to get started, what is arduino here’s the best beginners guide to get started, arduino vs. raspberry pi: which is the better board, the perfect guide for all you need to learn about mean stack, software developer resume: a comprehensive guide, here’s everything all you need to know about the programming roadmap, an ultimate guide that helps you to develop and improve problem solving in programming, the top 10 awesome arduino projects of all time, pyspark rdd: everything you need to know about pyspark rdd, wipro interview questions and answers that you should know before going for an interview, how to use typescript with nodejs: the ultimate guide, what is rust programming language why is it so popular, software terminologies, an ultimate guide that helps you to develop and improve problem solving in programming.

Lesson 27 of 33 By Hemant Deshpande

An Ultimate Guide That Helps You to Develop and Improve Problem Solving in Programming

Table of Contents

Coding and Programming skills hold a significant and critical role in implementing and developing various technologies and software. They add more value to the future and development. These programming and coding skills are essential for every person to improve problem solving skills. So, we brought you this article to help you learn and know the importance of these skills in the future. 

Want a Top Software Development Job? Start Here!

Want a Top Software Development Job? Start Here!

Topics covered in this problem solving in programming article are:

  • What is Problem Solving in Programming? 
  • Problem Solving skills in Programming
  • How does it impact your career ?
  • Steps involved in Problem Solving
  • Steps to improve Problem Solving in programming

What is Problem Solving in Programming?

Computers are used to solve various problems in day-to-day life. Problem Solving is an essential skill that helps to solve problems in programming. There are specific steps to be carried out to solve problems in computer programming, and the success depends on how correctly and precisely we define a problem. This involves designing, identifying and implementing problems using certain steps to develop a computer.

When we know what exactly problem solving in programming is, let us learn how it impacts your career growth.

How Does It Impact Your Career?

Many companies look for candidates with excellent problem solving skills. These skills help people manage the work and make candidates put more effort into the work, which results in finding solutions for complex problems in unexpected situations. These skills also help to identify quick solutions when they arise and are identified. 

People with great problem solving skills also possess more thinking and analytical skills, which makes them much more successful and confident in their career and able to work in any kind of environment. 

The above section gives you an idea of how problem solving in programming impacts your career and growth. Now, let's understand what problem solving skills mean.

Problem Solving Skills in Programming

Solving a question that is related to computers is more complicated than finding the solutions for other questions. It requires excellent knowledge and much thinking power. Problem solving in programming skills is much needed for a person and holds a major advantage. For every question, there are specific steps to be followed to get a perfect solution. By using those steps, it is possible to find a solution quickly.

The above section is covered with an explanation of problem solving in programming skills. Now let's learn some steps involved in problem solving.

Steps Involved in Problem Solving

Before being ready to solve a problem, there are some steps and procedures to be followed to find the solution. Let's have a look at them in this problem solving in programming article.

Basically, they are divided into four categories:

  • Analysing the problem
  • Developing the algorithm
  • Testing and debugging

Analysing the Problem

Every problem has a perfect solution; before we are ready to solve a problem, we must look over the question and understand it. When we know the question, it is easy to find the solution for it. If we are not ready with what we have to solve, then we end up with the question and cannot find the answer as expected. By analysing it, we can figure out the outputs and inputs to be carried out. Thus, when we analyse and are ready with the list, it is easy and helps us find the solution easily. 

Developing the Algorithm

It is required to decide a solution before writing a program. The procedure of representing the solution  in a natural language called an algorithm. We must design, develop and decide the final approach after a number of trials and errors, before actually writing the final code on an algorithm before we write the code. It captures and refines all the aspects of the desired solution.

Once we finalise the algorithm, we must convert the decided algorithm into a code or program using a dedicated programming language that is understandable by the computer to find a desired solution. In this stage, a wide variety of programming languages are used to convert the algorithm into code. 

Testing and Debugging

The designed and developed program undergoes several rigorous tests based on various real-time parameters and the program undergoes various levels of simulations. It must meet the user's requirements, which have to respond with the required time. It should generate all expected outputs to all the possible inputs. The program should also undergo bug fixing and all possible exception handling. If it fails to show the possible results, it should be checked for logical errors.

Industries follow some testing methods like system testing, component testing and acceptance testing while developing complex applications. The errors identified while testing are debugged or rectified and tested again until all errors are removed from the program.

The steps mentioned above are involved in problem solving in programming. Now let's see some more detailed information about the steps to improve problem solving in programming.

Steps to Improve Problem Solving in Programming

Right mindset.

The way to approach problems is the key to improving the skills. To find a solution, a positive mindset helps to solve problems quickly. If you think something is impossible, then it is hard to achieve. When you feel free and focus with a positive attitude, even complex problems will have a perfect solution.

Making Right Decisions

When we need to solve a problem, we must be clear with the solution. The perfect solution helps to get success in a shorter period. Making the right decisions in the right situation helps to find the perfect solution quickly and efficiently. These skills also help to get more command over the subject.

Keeping Ideas on Track

Ideas always help much in improving the skills; they also help to gain more knowledge and more command over things. In problem solving situations, these ideas help much and help to develop more skills. Give opportunities for the mind and keep on noting the ideas.

Learning from Feedbacks

A crucial part of learning is from the feedback. Mistakes help you to gain more knowledge and have much growth. When you have a solution for a problem, go for the feedback from the experienced or the professionals. It helps you get success within a shorter period and enables you to find other solutions easily.

Asking Questions

Questions are an incredible part of life. While searching for solutions, there are a lot of questions that arise in our minds. Once you know the question correctly, then you are able to find answers quickly. In coding or programming, we must have a clear idea about the problem. Then, you can find the perfect solution for it. Raising questions can help to understand the problem.

These are a few reasons and tips to improve problem solving in programming skills. Now let's see some major benefits in this article.

  • Problem solving in programming skills helps to gain more knowledge over coding and programming, which is a major benefit.
  • These problem solving skills also help to develop more skills in a person and build a promising career.
  • These skills also help to find the solutions for critical and complex problems in a perfect way.
  • Learning and developing problem solving in programming helps in building a good foundation.
  • Most of the companies are looking for people with good problem solving skills, and these play an important role when it comes to job opportunities 
Don't miss out on the opportunity to become a Certified Professional with Simplilearn's Post Graduate Program in Full Stack Web Development . Enroll Today!

Problem solving in programming skills is important in this modern world; these skills build a great career and hold a great advantage. This article on problem solving in programming provides you with an idea of how it plays a massive role in the present world. In this problem solving in programming article, the skills and the ways to improve more command on problem solving in programming are mentioned and explained in a proper way.

If you are looking to advance in your career. Simplilearn provides training and certification courses on various programming languages - Python , Java , Javascript , and many more. Check out our Full Stack Developer - MERN Stack course that will help you excel in your career.

If you have any questions for us on the problem solving in programming article. Do let us know in the comments section below; we have our experts answer it right away.

Find our Full Stack Developer - MERN Stack Online Bootcamp in top cities:

NameDatePlace
Cohort starts on 18th Sep 2024,
Weekend batch
Your City
Cohort starts on 9th Oct 2024,
Weekend batch
Your City
Cohort starts on 30th Oct 2024,
Weekend batch
Your City

About the Author

Hemant Deshpande

Hemant Deshpande, PMP has more than 17 years of experience working for various global MNC's. He has more than 10 years of experience in managing large transformation programs for Fortune 500 clients across verticals such as Banking, Finance, Insurance, Healthcare, Telecom and others. During his career he has worked across the geographies - North America, Europe, Middle East, and Asia Pacific. Hemant is an internationally Certified Executive Coach (CCA/ICF Approved) working with corporate leaders. He also provides Management Consulting and Training services. He is passionate about writing and regularly blogs and writes content for top websites. His motto in life - Making a positive difference.

Recommended Resources

Your One-Stop Solution to Understand Coin Change Problem

Your One-Stop Solution to Understand Coin Change Problem

Combating the Global Talent Shortage Through Skill Development Programs

Combating the Global Talent Shortage Through Skill Development Programs

What Is Problem Solving? Steps, Techniques, and Best Practices Explained

What Is Problem Solving? Steps, Techniques, and Best Practices Explained

One Stop Solution to All the Dynamic Programming Problems

One Stop Solution to All the Dynamic Programming Problems

The Ultimate Guide on Introduction to Competitive Programming

The Ultimate Guide to Top Front End and Back End Programming Languages for 2021

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

UNIT 1: How to Think Like an Engineer.

Learning objectives.

  • Explain what we mean by “Computational Thinking”.
  • Describe the problem being solved in a computational algorithm.
  • Explain the process for generating computational algorithms.
  • Generate and test algorithms to solve computational problems.
  • Evaluate computational algorithms for exactness, correctness, termination, generalizability and understandability.
  • Explain the role of programming in the field of Informatics.

Introduction

The goal of this book is to teach you to solve computational problems and to think like an engineer. Computational problems are problems that can be solved by the use of computations (a computation is what you do when you calculate something). Engineers are people who solve problems – they invent, design, analyze, build and test “things” to fulfill objectives and requirements. The single most important skill for you to learn is problem solving. Problem solving means the ability to formulate problems, think creatively about solutions, and express a solution clearly and accurately. As it turns out, the process of learning to program is an excellent opportunity to practice problem-solving skills.

This book strives to prepare you to write well-designed computer programs that solve interesting problems involving data.

Computational Thinking

image

Figure 1: “The seven components to computational thinking”(www.ignitemyfutureinschool.org/about)

Computational Thinking is the thought processes involved in understanding a problem and expressing its solution in a way that a computer can effectively carry out. Computational thinking involves solving problems, designing systems, and understanding human behavior (e.g. what the user needs or wants) – thinking like an engineer. Computational thinking is a fundamental skill for everyone, not just for programmers because computational thinking is what comes before any computing technology. [1]

Computer science is the study of computation — what can be computed and how to compute it whereas computational thinking is:

Conceptualizing , not programming. Computer science is not only computer programming. Thinking like a computer scientist means more than being able to program a computer. It requires thinking at multiple levels of abstraction;

Fundamental , not rote skill. A fundamental skill is something every human being must know to function in modern society. Rote means a mechanical routine;

A way that humans, not computers, think . Computational thinking is a way humans solve problems; it is not trying to get humans to think like computers. Computers are dull and boring; humans are clever and imaginative. We humans make computers exciting. Equipped with computing devices, we use our cleverness to tackle problems we would not dare take on before the age of computing and build systems with functionality limited only by our imaginations;

Complements and combines mathematical and engineering thinking . Computer science inherently draws on mathematical thinking, given that, like all sciences, its formal foundations rest on mathematics. Computer science inherently draws on engineering thinking, given that we build systems that interact with the real world;

Ideas , not artifacts. It’s not just the software and hardware artifacts we produce that will be physically present everywhere and touch our lives all the time, it will be the computational concepts we use to approach and solve problems, manage our daily lives, and communicate and interact with other people;

For everyone, everywhere . Computational thinking will be a reality when it is so integral to human endeavors it disappears as an explicit philosophy. [2]

programming for problem solving

Figure 2 “Are you happy?” by Typcut http://www.typcut.com/headup/are-you-happy

An algorithm specifies a series of steps that perform a particular computation or task. Throughout this book we’ll examine a number of different algorithms to solve a variety of computational problems.

Algorithms resemble recipes. Recipes tell you how to accomplish a task by performing a number of steps. For example, to bake a cake the steps are: preheat the oven; mix flour, sugar, and eggs thoroughly; pour into a baking pan; set the timer and bake until done.

However, “algorithm” is a technical term with a more specific meaning than “recipe”, and calling something an algorithm means that the following properties are all true:

  • An algorithm is an unambiguous description that makes clear what has to be implemented in order to solve the problem. In a recipe, a step such as “Bake until done” is ambiguous because it doesn’t explain what “done” means. A more explicit description such as “Bake until the cheese begins to bubble” is better. In a computational algorithm, a step such as “Choose a large number” is vague: what is large? 1 million, 1 billion, or 100? Does the number have to be different each time, or can the same number be used again?
  • An algorithm expects a defined set of inputs. For example, it might require two numbers where both numbers are greater than zero. Or it might require a word, or a list customer names.
  • An algorithm produces a defined set of outputs. It might output the larger of the two numbers, an all-uppercase version of a word, or a sorted version of the list of names.
  • An algorithm is guaranteed to terminate and produce a result, always stopping after a finite time. If an algorithm could potentially run forever, it wouldn’t be very useful because you might never get an answer.
  • Must be general for any input it is given. Algorithms solve general problems (determine if a password is valid); they are of little use if they only solve a specific problem (determine if ‘comp15’ is a valid password)
  • It is at the right level of detail…..the person or device executing the instruction know how to accomplish the instruction without any extra information.

Once we know it’s possible to solve a problem with an algorithm, a natural question is whether the algorithm is the best possible one. Can the problem be solved more quickly or efficiently?

The first thing you need to do before designing an algorithm is to understand completely the problem given. Read the problem’s description carefully, then read it again. Try sketching out by hand some examples of how the problem can be solved. Finally consider any special cases and design your algorithm to address them.

An algorithm does not solve a problem rather it gives you a series of steps that, if executed correctly, will result in a solution to a problem.

An Example Algorithm

Let us look at a very simple algorithm called find_max.

Problem : Given a list of positive numbers, return the largest number on the list.

Inputs : A list of positive numbers. This list must contain at least one number. (Asking for the largest number in a list of no numbers is not a meaningful question.)

Outputs : A number, which will be the largest number in the list.

Algorithm :

  • Accept a list of positive numbers; set to nums_list
  • Set max_number to 0.
  • If the number is larger, set max_number to the larger number.
  • max_number is now set to the largest number in the list of positive numbers, nums_list.

Does this meet the criteria for being an algorithm?

  • Is it unambiguous? Yes. Each step of the algorithm consists of uncomplicated operations, and translating each step into programming code is straight forward.
  • Does it have defined inputs and outputs? Yes.
  • Is it guaranteed to terminate? Yes. The list nums_list is of finite length, so after looking at every element of the list the algorithm will stop.
  • Is it general for any input? Yes. A list of any set of positive numbers works.
  • Does it produce the correct result? Yes. When tested, the results are what are expected

[3] Figure 3: Example Algotithm

Verifying your Algorithm

How do we know if an algorithm is unambiguous, correct, comes to an end, is general AND is at the right level of detail? We must test the algorithm. Testing means verifying that the algorithm does what we expect it to do. In our ‘bake a cake’ example we know our algorithm is ‘working’ if, in the end, we get something that looks, smells and tastes like a cake.

programming for problem solving

Figure 4 “ Keyboard ” by Geralt is licensed under CC 2

Your first step should be to carefully read through EACH step of the algorithm to check for ambiguity and if there is any information missing. To ensure that the algorithm is correct, terminates and is general for any input we devise ‘test cases’ for the algorithm.

A test case is a set of inputs, conditions, and expected results developed for a particular computational problem to be solved. A test case is really just a question that you ask of the algorithm (e.g. if my list is the three numbers 2, 14, and 11 does the algorithm return the number 14?). The point of executing the test is to make sure the algorithm is correct, that it terminates and is general for any input.

Good (effective) test cases:

  • are easy to understand and execute
  • are created with the user in mind (what input mistakes will be made? what are the preconditions?)
  • make no assumptions (you already know what it is supposed to do)
  • consider the boundaries for a specified range of values.

Let us look at the example algorithm from the previous section. The input for the algorithm is ‘a list of positive numbers’. To make it easy to understand and execute keep the test lists short. The preconditions are that the list only contains numbers and these numbers must be positive so include a test with a ‘non-number’ (i.e. a special character or a letter) and a test with a negative number. The boundaries for the list are zero and the highest positive number so include a test with zero and a large positive number. That is it! Here is an example of three different test cases.

1

List: 44, 14, 0, 1521, 89, 477

1521

2

List: 18, 4, 72, *, 31

Error (or no result)

3

List: 22, -9, 52

Error (or no result)

Manually, you should step through your algorithm using each of the three test cases, making sure that the algorithm does indeed terminate and that you get your expected result. As our algorithms and programs become more complex, skilled programmers often break each test case into individual steps of the algorithm/program and indicate what the expected result of each step should be. When you write a detailed test case, you don’t necessarily need to specify the expected result for each test step if the result is obvious.

In computer programming we accept a problem to solve and develop an algorithm that can serve as a general solution. Once we have such a solution, we can use our computer to automate the execution. Programming is a skill that allows a competent programmer to take an algorithm and represent it in a notation (a program) that can be followed by a computer. These programs are written in programming languages (such as Python). Writing a correct and valid algorithm to solve a computational problem is key to writing good code. Learn to Think First and coding will come naturally!

Computational problem solving does not simply involve the act of computer programming. It is a process, with programming being only one of the steps. Before a program is written, a design for the program must be developed (the algorithm). And before a design can be developed, the problem to be solved must be well understood. Once written, the program must be thoroughly tested. These steps are outlined in Figure 5.

programming for problem solving

Figure 5: Process of Computational Problem Solving

Values and Variables

A value is one of the basic things computer programs works with, like a password or a number of errors.

Values belong to different types: 21 is an integer (like the number of errors), and ‘comp15’ is a string of characters (like the password). Python lets you give names to values giving us the ability to generalize our algorithms.

One of the most powerful features of a programming language is the ability to use variables. A variable is simply a name that refers to a value as shown below,

variable is assigned the value 21
 variable is assigned the value ‘comp15’

Whenever the variable errors appears in a calculation the current value of the variable is used.

variable is assigned the value 21
variable is assigned the value of 21+1 (22)

We need some way of storing information (i.e. the number of errors or the password) and manipulate them as well. This is where variables come into the picture. Variables are exactly what the name implies – their value can vary, i.e., you can store anything using a variable. Variables are just parts of your computer’s memory where you store some information. Unlike literal constants, you need some method of accessing these variables and hence you give them names.

Programmers generally choose names for their variables that are meaningful and document what the variable is used for. It is a good idea to begin variable names with a lowercase letter . The underscore character (_) can appear in a name and is often used in names with multiple words.

What is a program?

image

Figure 6: “ Python Code ” by nyuhuhuu is licensed under CC-BY 2.0

A program is a sequence of instructions that specifies how to perform a computation. The computation might be something mathematical, such as solving a system of mathematical equations or finding the roots of a polynomial, but it can also be a symbolic computation, such as searching and replacing text in a document or something graphical, like processing user input on an ATM device.

The details look different in different computer programming languages, but there are some low-level conceptual patterns (constructs) that we use to write all programs. These constructs are not just for Python programs, they are a part of every programming language.

input Get data from the “outside world”. This might be reading data from a file, or even some kind of sensor like a microphone or GPS. In our initial algorithms and programs, our input will come from the user typing data on the keyboard.

output Display the results of the program on a screen or store them in a file or perhaps write them to a device like a speaker to play music or speak text.

sequential execution Perform statements one after another in the order they are encountered in the script.

conditional execution Checks for certain conditions and then executes or skips a sequence of statements.

repeated execution Perform some set of statements repeatedly, usually with some variation.

reuse Write a set of instructions once and give them a name and then reuse those instructions as needed throughout your program.

Believe it or not, that’s pretty much all there is to it. Every computer application you’ve ever used, no matter how complicated, is made up of constructs that look pretty much like these. So you can think of programming as the process of breaking a large, complex task into smaller and smaller subtasks until the subtasks are simple enough to be performed with one of these basic constructs. The “art” of writing a program is composing and weaving these basic elements together many times over to produce something that is useful to its users.

Computational Problem Design using the Basic Programming Constructs

The key to better algorithm design and thus to programming lies in limiting the control structure to only three constructs as shown below.

  • The Sequence structure (sequential execution)
  • The Decision, Selection or Control structure (conditional execution)
  • Repetition or Iteration Structure (repeated execution)

image

Figure 7: the 3 Programming Constructs

  Let us look at some examples for the sequential control and the selection control.

Sequential Control Example

The following algorithm is an example of sequential control .

Problem : Given two numbers, return the sum and the product of the two numbers.

Inputs : Two numbers.

Outputs : The sum and the product.

  • display “Input two numbers”
  • accept number1, accept number2
  • sum = number1 + number2
  • print “The sum is “, sum
  • product = number1 * number2
  • print “The product is “, product
  • Is it guaranteed to terminate? Yes. Sequential control, by its nature, always ends.
  • Is it general for any input? Yes. Any two numbers work in this design.
  • Does it produce the correct result? Yes. When tested, the results are what are expected.

Here is an example of three different test cases that are used to verify the algorithm.

1

numbers 0 and 859

sum is 859
product is 0

2

numbers -5 and 10

sum is 5
product is -50

3

numbers 12 and 3

sum is 15
product is 36

Selection Control Examples

The following two algorithms are examples of selection control which uses the ‘IF’ statement in most programming languages.

Problem : Given two numbers, the user chooses to either multiply, add or subtract the two numbers. Return the value of the chosen calculation.

Inputs : Two numbers and calculation option.

Outputs : The value of the chosen calculation.

The relational (or comparison) operators used in selection control are:

= is equal to [in Python the operator is ==]

> is greater than

< is less than

>= is greater than or equal

<= is less than or equal

<> is not equal to [in Python the operator is !=]

  • display “choose one of the following”
  • display “m for multiply”
  • display “a for add”
  • display “s for subtract”
  • accept choice
  • display “input two numbers you want to use”
  • accept number1, number2
  • if choice = m then answer= number1 * number2
  • if choice = a then answer= number1 + number2
  • if choice = s then answer= number1 -number212. if choice is not m, a, or s then answer is NONE
  • display answer
  • Is it guaranteed to terminate? Yes. The input is of finite length, so after accepting the user’s choice and the two numbers the algorithm will stop.
  • Is it general for any input? Yes. Any two numbers work in this design and only a choice of a’m’, ‘a’, or ‘s’ will result in numeric output.

1

choice ‘a’
numbers -12 and 32

answer is 20
terminate

2

choice ‘s’
numbers -2012 and 0

answer is 2012
terminate

3

choice ‘**’
numbers 8 and 4

answer is NONE
terminate

This example uses an extension of the simple selection control structure we just saw and is referred to as the ‘IF-ELSE’ structure.

Problem : Accept from the user a positive integer value representing a salary amount, return tax due based on the salary amount.

Inputs : One positive integer number.

Outputs : The calculated tax amount.

= is equal to  [in Python the operator is ==]

<> is not equal to  [in Python the operator is !=]

  • accept salary
  • If salary < 50000 then
  • Tax = 0 Else
  • If salary > 50000 AND salary < 100000 then
  • Tax = 50000 * 0.05 Else
  • Tax = 100000 * 0.30
  • display Tax
  • Is it guaranteed to terminate? Yes. The input is of finite length, so after accepting the user’s number, even if it is negative, the algorithm will stop.
  • Is it general for any input? Yes. Any number entered in this design will work.

1

salary of 0

tax is 0
terminate

2

salary of 75000

tax is 2500
terminate

3

salary of 120000

tax is 30000
terminate

Iterative Control Examples

The third programming control is the iterative or, also referred to as, the repetition structure. This control structure causes certain steps to be repeated in a sequence a specified number of times or until a condition is met. This is what is called a ‘loop’ in programming

In all programming languages there are generally two options: an indefinite loop (the Python ‘WHILE’ programming statement) and a definite loop (the Python ‘FOR’ programming statement). We can use these two constructs, WHILE and FOR, for iterations or loops in our algorithms.

Note for Reader: A definite loop is where we know exactly the number of times the loop’s body will be executed. Definite iteration is usually best coded as a Python for loop. An indefinite loop is where we do not know before entering the body of the loop the exact number of iterations the loop will perform. The loop just keeps going until some condition is met. A while statement is used in this case.

The following algorithm is an example of iterative control using WHILE .

Problem : Print each keyboard character the users types in until the user chooses the ‘q’ (for ‘quit’) character.

Inputs : A series of individual characters.

Outputs : Each character typed in by the user.

  • initialize (set) letter = ‘a’
  • WHILE letter <> ‘q’
  • ACCEPT letter
  • DISPLAY “The character you typed is”, letter
  • Is it guaranteed to terminate? Yes. The input is of finite length, so after accepting the user’s keyboard character, even if it is not a letter, the algorithm will stop.
  • Is it general for any input? Yes. Any keyboard character entered in this design will work.

1

letter ‘z’

The character you typed is z.
Ask for another letter.

2

letter ‘8’

The character you typed is 8
Ask for another letter.

3

letter ‘q’

The character you typed is q.
Terminate.

The following algorithm is an example of iterative control using FOR . This statement is used when the number of iterations is known in advance.

Problem : Ask the user how many words they want to enter then print the words entered by the user.

Inputs : Number of words to be entered; this value must be a positive integer greater than zero. Individual words.

Outputs : Each word typed in by the user.

  • accept num_words (must be at least one)
  • repeat num_words times (FOR 1 to num_words)
  • accept word
  • DISPLAY “The word you entered is”, word
  • Is it guaranteed to terminate? Yes. The input is of finite length, so after accepting the user’s number of words to enter and any characters typed on the keyboard, even if it is not a ‘word’ per say, the algorithm will stop.
  • Is it general for any input? Yes. Any positive integer greater than zero and any size ‘word’ will work.

Here is an example of two different test cases that are used to verify the algorithm.

1

num_words 1
word ‘code’

The word you entered is ‘code’.
Terminate.

2

num_words 3
word ‘coding’

word ‘is’


word ‘fun’

The word you entered is ‘coding’.
Ask for another word.

The word you entered is ‘is’.
Ask for another word.

The word you entered is ‘fun’.
Terminate.

The Role of Programming in the Field of Informatics

image

Figure8: iPhone apps by Jaap Arriens/NurPhoto via Getty Images (abcnews.go.com)

You see computer programming in use every day. When you use Google or your smartphone, or watch a movie with special effects, there is programing at work. When you order a product over the Internet, there is code in the web site, in the cryptography used to keep your credit card number secure, and in the way that UPS routes their delivery vehicle to get your order to you as quickly as possible.

Programming is indeed important to an informatics professional as they are interested in finding solutions for a wide variety of computational problems involving data.

When you Google the words “pie recipe,” Google reports that it finds approximately 38 million pages, ranked in order of estimated relevance and usefulness. Facebook has approximately 1 billion active users who generate over 3 billion comments and “Likes” each day. GenBank, a national database of DNA sequences used by biologists and medical researchers studying genetic diseases, has over 100 million genetic sequences with over 100 billion DNA base pairs. According to the International Data Corporation, by 2020 the digital universe – the data we create and copy annually – will reach 44 zettabytes, or 44 trillion gigabytes.

image

Figure 9: The Digital Universe ( www.emc.com/leadership/digital-universe/2014iview/images )

  Doing meaningful things with data is challenging, even if we’re not dealing with millions or billions of things. In this book, we will be working with smaller sets of data. But much of what we’ll do will be applicable to very large amounts of data too.

Unit Summary

Computational Thinking is the thought processes involved in formulating a problem and expressing its solution in a way that a computer—human or machine—can effectively carry out.

Computational Thinking is what comes before any computing technology—thought of by a human, knowing full well the power of automation.

Writing a correct and valid algorithm to solve a computational problem is key to writing good code.

  • What are the inputs?
  • What are the outputs (or results)?
  • Can we break the problem into parts?
  • Think about the connections between the input & output.
  • Consider designing ‘backwards’.
  • Have you seen the problem before? In a slightly different form?
  • Can you solve part of the problem?
  • Did you use all the inputs?
  • Can you test it on a variety of inputs?
  • Can you think of how you might write the algorithm differently if you had to start again?
  • Does it solve the problem? Does it meet all the requirements? Is the output correct?
  • Does it terminate?
  • Is it general for all cases?

Practice Problems

  • Write about a process in your life (e.g. driving to the mall, walking to class, etc.) and estimate the number of steps necessary to complete the task. Would you consider this a complex or simple task? What happens if you scale that task (e.g. driving two states away to the mall)? Is your method the most efficient? Can you come up with a more efficient way?

image

  • Write an algorithm to find the average of 25 test grades out of a possible 100 points.
  • If you are given three sticks, you may or may not be able to arrange them in a triangle. For example, if one of the sticks is 12 inches long and the other two are one inch long, it is clear that you will not be able to get the short sticks to meet in the middle. For any three lengths, there is a simple test to see if it is possible to form a triangle: “If any of the three lengths is greater than the sum of the other two, then you cannot form a triangle. Otherwise, you can.”Write an algorithm that accepts three integers as arguments, and that displays either “Yes” or “No,” depending on whether you can or cannot form a triangle from sticks with the given lengths.
  • ROT13 is a weak form of encryption that involves “rotating” each letter in a word by 13 places. To rotate a letter means to shift it through the alphabet, wrapping around to the beginning if necessary, so ‘A’ shifted by 3 is ‘D’ and ‘Z’ shifted by 1 is ‘A’. Write an algorithm that accepts a word and an integer from the user, and that prints a new encrypted word that contains the letters from the original word “rotated” by the given amount (the integer input). For example, “cheer” rotated by 7 is “jolly” and “melon” rotated by −10 is “cubed.”
>= 0.9 A
>= 0.8 B
>= 0.7 C
>= 0.6 D
< 0.6 E
  • Write an algorithm which repeatedly accepts numbers until the user enters “done”. Once “done” is entered, display the total sum of all the numbers, the count of numbers entered, and the average of all the numbers.
  • Write an algorithm that sums a series of ten positive integers entered by the user excluding all numbers greater than 100. Display the final sum.
  • Wing, Jeannette M. "Computational thinking." Communications of the ACM 49.3 (2006): 33-35. ↵

programming for problem solving

Privacy Policy

PW Skills | Blog

75 Basic Programming Problems and Tutorials for Practice

' src=

Varun Saharawat is a seasoned professional in the fields of SEO and content writing. With a profound knowledge of the intricate aspects of these disciplines, Varun has established himself as a valuable asset in the world of digital marketing and online content creation.

Solving Basic Programming Problems is the key to achieve success in coding challenges. Students must practice these basic programming problems!

basic programming problems

Basic Programming Problems: Engaging in code challenges offers many benefits, serving as a dynamic tool to enhance problem-solving proficiency, deepen your comprehension of the programming language you work with, and acquaint yourself with diverse algorithms. If you aspire to elevate your programming skills, immersing yourself in coding is the most effective avenue.

The beauty of basic programming problems lies in their convenience—they provide a platform to hone your abilities through bite-sized problems, often eliminating the need to construct entire applications. This characteristic allows you to conquer these challenges swiftly, fostering a sense of accomplishment.

Moreover, code challenges are integral components of many coding interviews.

While your resume may showcase your skills and ability to articulate programming concepts, employers want to validate your practical coding capabilities. Tackling coding challenges during interviews becomes a testament to your proficiency and showcases your competence for the role.

Therefore, incorporating coding challenges into your routine sharpens your skills and is an invaluable preparation strategy for job interviews. To kickstart your coding journey, we have curated a collection of popular basic programming problems to pave the way for your continued growth.

Table of Contents

Recommended Technical Course

  • Full Stack Development Course
  • Generative AI Course
  • DSA C++ Course
  • Data Analytics Course
  • Python DSA Course
  • DSA Java Course

Basic Programming Problems Overview

Basic programming problems provide an essential foundation for individuals learning to code, offering a practical and hands-on approach to mastering fundamental concepts in programming.

These problems are designed to introduce beginners to the core coding principles, gradually building their problem-solving skills and comprehension of programming logic.

Whether you are a novice looking to embark on your coding journey or an experienced programmer aiming to reinforce your foundational knowledge, engaging with basic programming problems is a valuable practice.

These problems typically cover essential topics such as data types, loops, conditionals, functions, and basic algorithms, providing a well-rounded introduction to the key building blocks of programming.

The significance of basic programming problems extends beyond mere skill development; it serves as a stepping stone for individuals aspiring to pursue more advanced coding challenges and projects.

By grappling with these foundational problems, learners can cultivate a solid understanding of programming fundamentals, laying the groundwork for future exploration and mastery of more complex coding concepts. Basic programming problems are the cornerstone of a programmer’s educational journey, fostering a strong and resilient coding skill set.

Basic Programming Problems for Beginners

Starting your career in the programming field is  exciting and challenging. For beginners, mastering the basics is crucial, and what better way to do so than by solving basic programming problems ?

1 Hello World: Print “Hello, World!” to the console.
2 Sum of Two Numbers: Add two numbers and print the result.
3 Factorial of a Number: Calculate the factorial of a number.
4 Check Even or Odd: Determine if a number is even or odd.
5 Reverse a String: Reverse the characters in a given string.
6 Fibonacci Series: Generate the Fibonacci series.
7 Check Prime Number: Check if a number is prime.
8 Find Maximum Element: Find the maximum element in an array.
9 Palindrome Check: Check if a string is a palindrome.
10 Simple Calculator: Implement a basic calculator.
11 Find Minimum Element: Find the minimum element in an array.

Basic Programming Problems Java

Here are some of the basic programming problems JAVA :

1) Hello World:

public class HelloWorld {

    public static void main(String[] args) {

        System.out.println(“Hello, World!”);

2) The sum of Two Numbers:

Add two numbers and print the result.

public class Sum {

        int num1 = 5, num2 = 10, sum;

        sum = num1 + num2;

        System.out.println(“Sum: ” + sum);

3) Factorial of a Number:

Calculate the factorial of a number.

public class Factorial {

        int num = 5;

        long factorial = 1;

        for (int i = 1; i <= num; ++i) {

            factorial *= i;

        System.out.println(“Factorial: ” + factorial);

4) Check Even or Odd:

Determine if a number is even or odd.

public class EvenOdd {

        int num = 8;

        if (num % 2 == 0) {

            System.out.println(num + ” is even.”);

        } else {

            System.out.println(num + ” is odd.”);

5) Reverse a String:

Reverse the characters in a given string.

public class ReverseString {

        String str = “Hello”;

        StringBuilder reversed = new StringBuilder(str).reverse();

        System.out.println(“Reversed String: ” + reversed);

Here are some theory-based basic programming problems Java:

1) Differences Between C++ and Java

  • C++: Not platform-independent, follows “write once, compile anywhere.”
  • Java: Platform-independent byte code allows programs to run on any machine.

Languages Compatibility:

  • C++: Compatible with most high-level languages.
  • Java: Incompatible with most languages, comparable to C and C++.

Interaction with the Library:

  • C++: Direct access to native system libraries, suitable for system-level programming.
  • Java: Requires Java Native Interface or library access, not direct call support.

Characteristics:

  • C++: Combines features of procedural and object-oriented languages.
  • Java: Known for automatic garbage collection, lacks support for destructors.

Semantics of the Type:

  • C++: Consistent semantics for primitive and object types.
  • Java: Inconsistent semantics between primitive and object types and classes.

Compiler and Interpreter:

  • Java: Compiled and interpreted language, source code compiles into platform-independent bytecode.
  • C++: Purely compiled language, source program compiles into object code, further executed.

2) Features of the Java Programming Language:

  • Easy: Java is considered easy to learn, with fundamental Object-Oriented Programming (OOP) concepts.
  • Secured Feature: Java provides a secured feature, ensuring the development of virus-free and tamper-free systems.
  • OOP: Java follows Object-Oriented Programming, treating everything as an object.
  • Independent Platform: Java compiles into platform-independent bytecode, interpreted by the Virtual Machine.

3) ClassLoader in Java:

  • A ClassLoader in Java is a subsystem of the Java Virtual Machine responsible for loading class files during program execution.
  • It is the first to load the executable file and includes Bootstrap, Extension, and Application classloaders.

4) Differences Between Heap and Stack Memory in Java:

  • Stack Memory: Allocated to each individual program. Fixed memory space.
  • Heap Memory: Not assigned to Java code initially but available during runtime. Used as needed by the Java code.

Embark on a transformative journey with our comprehensive course, “ Decode Java+DSA 1.0 ,” meticulously designed to empower you with the skills needed to excel in programming. This course seamlessly integrates Core Java and Data Structures and Algorithms (DSA), offering a holistic learning experience that lays a robust foundation for your programming journey.

Key Features:

  • Comprehensive Java Coverage: Delve into the intricacies of Core Java, unraveling the language’s syntax, features, and object-oriented programming concepts. From basic constructs to advanced topics, this course ensures a thorough understanding of Java.
  • Powerful Problem-Solving with DSA: Unlock the potential of Data Structures and Algorithms to efficiently solve complex problems. Acquire the essential tools and strategies to approach real-world challenges with confidence and precision.
  • Hands-On Learning: Immerse yourself in practical, hands-on exercises that reinforce theoretical concepts. Through coding exercises and projects, you’ll apply your knowledge, fostering a deeper understanding of both Java and DSA.
  • Expert Guidance: Benefit from expert guidance provided by seasoned instructors with extensive industry experience. Learn industry best practices and gain insights into the practical applications of Java and DSA.

Who Should Enroll:

  • Programming Enthusiasts
  • Students Pursuing Computer Science or Related Fields
  • Professionals Seeking to Strengthen Core Java and DSA Skills

Upon completion of “ Decode Java+DSA 1.0 ,” by PW you’ll emerge as a proficient programmer equipped with the skills to tackle diverse programming challenges. Whether you’re aiming to kickstart your programming career, enhance your academic pursuits, or upskill for professional growth, this course is your gateway to mastering Java and DSA. Elevate your programming prowess and embark on a journey of continuous learning and innovation.

Basic Programming Problems in C

The table below shows the basic programming problems in C :

1.

Hello World

Print “Hello, World!” to the console. Output: Hello, World!
2.

Sum of Two Numbers

Take two numbers and print their sum. Input: 5, 7; Output: 12
3.

Factorial Calculation

Calculate and print the factorial of a number. Input: 5; Output: 120
4.

Check Even or Odd

Determine if a number is even or odd. Input: 8; Output: Even
5.

Swap Two Numbers

Take two numbers and swap their values. Input: 3, 7; Output: 7, 3
6.

Prime Number Check

Check if a number is prime or not. Input: 11; Output: Prime
7.

Reverse a Number

Reverse the digits of a number. Input: 123; Output: 321
8.

Palindrome Check

Check if a number is a palindrome. Input: 121; Output: Palindrome
9.

Fibonacci Series

Print Fibonacci series. Input: 5; Output: 0, 1, 1, 2, 3
10.

Leap Year Check

Check if a year is a leap year. Input: 2020; Output: Leap Year

Put your learning into action with hands-on projects that simulate real-world scenarios with Decode Full Stack Web Dev 1.0 by PW . From designing responsive user interfaces to implementing robust server-side functionalities, you’ll gain practical experience that enhances your proficiency.

Learn essential tools like Git for version control, ensuring collaborative and efficient development. Explore deployment strategies to showcase your applications to the world, covering platforms like Heroku.

Who Should Enroll

  • Aspiring Web Developers 
  • Computer Science Students 
  • Professionals Transitioning to Web Development 
  • Entrepreneurs Looking to Build Web Applications

Basic Programming Problems in Python

In addition to introducing you to Python’s syntax and structure, tackling basic programming problems in Python helps you improve your problem-solving skills. With tasks ranging from basic logic puzzles to intricate algorithmic difficulties, these issues offer an interactive method of learning Python and put you on the route to becoming a skilled programmer.

Hello World Write a program that prints “Hello, World!” to the console.
Variables and Data Types Create variables of different data types (integers, floats, strings) and perform basic operations on them.
Conditional Statements Use if, elif, and else statements to implement basic conditional logic.
Loops Implement loops (for, while) to iterate through lists, perform a certain action, or solve iterative problems.
Lists and Arrays Manipulate lists and arrays: create, access, modify, and traverse elements.
Functions Define and call functions with parameters and return values.
File Handling Read from and write to files, handle exceptions for file operations.
Exception Handling Use try, except, finally blocks to handle exceptions and errors gracefully.
Basic Algorithms Implement basic algorithms such as sorting (e.g., bubble sort) searching (e.g., linear search)
Recursion Solve problems using recursive functions.
Object-Oriented Programming (OOP) Create classes, objects, and methods; implement inheritance and encapsulation.
Regular Expressions Use regular expressions for pattern matching and text manipulation.
List Comprehensions Write concise and expressive code using list comprehensions.
Lambda Functions Define anonymous functions using lambda expressions.
Error Handling and Logging Handle errors effectively and implement logging for debugging.
Basic Input/Output Take user input and display output using input() and print().
Virtual Environment and Packages Create virtual environments and install external packages using pip.

Basic Programming Problems in Javascript

Whether you aim to enhance your web development skills or explore the vast world of JavaScript applications, these problems cater to beginners, guiding them through the foundational aspects of programming in this versatile language. Below table showcases the basic programming problems in Javascript :

Hello World Write a program that prints “Hello, World!” to the console.
Variables and Data Types Create variables of different data types (numbers, strings, booleans) and perform basic operations on them.
Conditional Statements Use if, else if, and else statements to implement basic conditional logic.
Loops Implement loops (for, while) to iterate through arrays, perform a certain action, or solve iterative problems.
Arrays Manipulate arrays: create, access, modify, and iterate through elements.
Functions Define and call functions with parameters and return values.
Error Handling Use try, catch, and finally blocks to handle exceptions and errors gracefully.
Callbacks and Asynchronous Programming Understand and implement callbacks, handle asynchronous operations using callbacks.
Promises Use promises to handle asynchronous operations and manage asynchronous code more effectively.
JSON Parse and stringify JSON data.
DOM Manipulation Interact with the Document Object Model (DOM) to dynamically update HTML and respond to user events.
Event Handling Handle browser events such as click, submit, etc., using event listeners.
AJAX and Fetch API Make asynchronous HTTP requests using the Fetch API or XMLHttpRequest.
Local Storage and Cookies Store and retrieve data locally using local storage and cookies.
Basic Algorithms Implement basic algorithms such as sorting (e.g., bubble sort) and searching (e.g., linear search).
Recursion Solve problems using recursive functions.
Object-Oriented Programming (OOP) Create objects, classes, and methods; implement inheritance and encapsulation.
ES6 Features Use ES6 features such as arrow functions, destructuring, template literals, and the let/const keywords.
Promises and Async/Await Refactor asynchronous code using promises and the async/await syntax.

Embark on a transformative learning experience with our comprehensive course, “Building MicroServices in Java for Cloud .”

Key Highlights

  • Microservices Fundamentals: Gain a solid understanding of microservices architecture, learning how to decompose large applications into smaller, independently deployable services. Explore the principles and benefits that drive the adoption of microservices in modern software development.
  • Java for Microservices : Leverage the power of Java to build robust microservices. Explore Java frameworks and libraries that facilitate the development of scalable and efficient microservices, ensuring seamless integration with cloud platforms.
  • Communication Strategies: Delve into various communication patterns and protocols essential for microservices interactions. Learn about RESTful APIs, messaging queues, and other communication mechanisms used to establish seamless communication between microservices.
  • Software Developers and Engineers
  • System Architects
  • Cloud Enthusiasts
  • Java Developers Exploring Microservices

Basic Programming Problems and Solutions

Here are 10 basic programming problems along with their solutions:

  • Hello World:

Problem: Write a program that prints “Hello, World!” to the console.

Solution (Python):

print(“Hello, World!”)

  • Sum of Two Numbers:

Problem: Write a program that inputs two numbers and prints their sum.

Solution (Java):

import java.util.Scanner;

public class SumOfTwoNumbers {

        Scanner scanner = new Scanner(System.in);

        System.out.print(“Enter first number: “);

        int num1 = scanner.nextInt();

        System.out.print(“Enter second number: “);

        int num2 = scanner.nextInt();

        int sum = num1 + num2;

  • Factorial of a Number:

Problem: Write a program to calculate the factorial of a given number.

Solution (C++):

#include <iostream>

using namespace std;

int factorial(int n) {

    if (n == 0 || n == 1)

        return 1;

        return n * factorial(n – 1);

int main() {

    int num;

    cout << “Enter a number: “;

    cin >> num;

    cout << “Factorial: ” << factorial(num) << endl;

    return 0;

  • Check Even or Odd:

Problem: Write a program that checks if a given number is even or odd.

Solution (JavaScript):

let number = 7;

if (number % 2 === 0) {

    console.log(number + ” is even”);

    console.log(number + ” is odd”);

  • Reverse a String:

Problem: Write a program to reverse a given string.

original_string = “Hello, World!”

reversed_string = original_string[::-1]

print(“Reversed String:”, reversed_string)

  • Fibonacci Series:

Problem: Generate the Fibonacci series up to a specific limit.

public class FibonacciSeries {

        int limit = 10;

        int firstTerm = 0, secondTerm = 1;

        System.out.println(“Fibonacci Series up to ” + limit + ” terms:”);

        for (int i = 1; i <= limit; ++i) {

            System.out.print(firstTerm + “, “);

            int nextTerm = firstTerm + secondTerm;

            firstTerm = secondTerm;

            secondTerm = nextTerm;

  • Check Prime Number:

Problem: Write a program to check if a given number is prime.

def is_prime(number):

    if number > 1:

        for i in range(2, int(number / 2) + 1):

            if (number % i) == 0:

                return False

        else:

            return True

        return False

if is_prime(num):

    print(num, “is a prime number.”)

    print(num, “is not a prime number.”)

  • Find Maximum Element:

Problem: Write a program to find the maximum element in an array.

int findMax(int arr[], int size) {

    int max = arr[0];

    for (int i = 1; i < size; ++i) {

        if (arr[i] > max) {

            max = arr[i];

    return max;

    int numbers[] = {5, 8, 2, 10, 3};

    int size = sizeof(numbers) / sizeof(numbers[0]);

    cout << “Maximum Element: ” << findMax(numbers, size) << endl;

  • Palindrome Check:

Problem: Write a program to check if a given string is a palindrome.

public class PalindromeCheck {

        String str = “level”;

        String reversedStr = new StringBuilder(str).reverse().toString();

        if (str.equals(reversedStr)) {

            System.out.println(str + ” is a palindrome.”);

            System.out.println(str + ” is not a palindrome.”);

  • Count Vowels and Consonants:

Problem: Write a program to count the number of vowels and consonants in a given string.

text = “Hello, World!”

vowels = “AEIOU

Benefits of Solving Basic Programming Problems

Solving basic programming problems offers numerous benefits for individuals looking to enhance their programming skills. Here are some key advantages:

Skill Development:

  • Coding Proficiency: Regular problem-solving helps improve your coding skills and fluency in programming languages.
  • Algorithmic Thinking: It fosters the development of algorithmic thinking, enabling you to devise efficient solutions to various problems.

Logical Thinking:

  • Problem Decomposition: Breaking down problems into smaller components and solving them enhances logical thinking and problem-solving abilities.
  • Pattern Recognition: Regular problem-solving helps in recognizing patterns and similarities between different problems, leading to more efficient solutions.

Learning New Concepts:

  • Exposure to Diverse Topics: Programming problems often cover a wide range of concepts, exposing you to different areas of computer science and software development.
  • New Algorithms and Data Structures: Exploring various problems introduces you to new algorithms and data structures, expanding your knowledge base.

Preparation for Interviews:

  • Technical Interviews: Many technical interviews for programming roles involve solving algorithmic and coding problems. Regular practice prepares you for such interviews and boosts your confidence.
  • Coding Challenges: Familiarity with common coding challenges often encountered in interviews is an asset.

Building a Portfolio:

  • Showcasing Skills: Solving problems allows you to build a portfolio of solutions that you can showcase to potential employers or on coding platforms.
  • GitHub Contributions: Uploading your solutions to platforms like GitHub demonstrates your coding proficiency and problem-solving ability.

Enhanced Efficiency:

  • Code Optimization: Regular practice encourages optimization, leading to more efficient and cleaner code.
  • Time Complexity Awareness: Problem-solving helps in understanding and considering time complexity, contributing to the creation of scalable solutions.

Community Engagement:

  • Online Communities: Engaging in online coding communities allows you to discuss problems, learn from others, and gain insights into alternative solutions.
  • Peer Learning: Collaborating with peers on coding challenges can provide different perspectives and foster a collaborative learning environment.

Career Advancement:

  • Competitive Edge: Building strong problem-solving skills sets you apart in a competitive job market, enhancing your employability.
  • Adaptability: A wide range of problem-solving experiences makes you more adaptable to different tasks and projects.

Personal Satisfaction:

  • Sense of Achievement: Successfully solving programming problems brings a sense of accomplishment, boosting confidence and motivation.
  • Continuous Learning: It fosters a mindset of continuous learning, crucial in a rapidly evolving field like programming.

In summary, regular practice of solving basic programming problems contributes significantly to skill development, logical thinking, and overall proficiency in the field of programming.

For Latest Tech Related Information, Join Our Official Free Telegram Group : PW Skills Telegram Group

card-img

  • The Ultimate Web Development Toolkit: Essential Skills and Resources

programming for problem solving

Web development refers to the process of creating and maintaining websites, including the design, functionality, and content.

  • Bootstrap Icons – For Further Details, Explore the World of Bootstrap Icons

bootstrap icons

Bootstrap icons can be easily customized using CSS, allowing you to adjust properties such as color, size, and stroke to…

  • Basic HTML Tags: The Best Guide to HTML Tags

basic html tags

Basic HTML tags are super important in building blocks of the web page framework. Read this article to know more…

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

right adv

Related Articles

  • Web Pages – Examples, Types
  • Top Full Stack Developer Classes in Lucknow
  • How Do You Type DOCTYPE?
  • What is CSS? A Web Developer’s Guide
  • PW Skills Launched Offline Full Stack Developer Course Offline: Starting From June 30, 2024
  • List of All HTML Tags You’ll Find as a Web Developer in 2024!
  • Front And End Developer – What Does A Front-End Developer Do?

bottom banner

  • Data Science
  • Courses 2 Offers Active

Featured Sprints

Welcome to Java! Easy Max Score: 3 Success Rate: 97.04%

Java stdin and stdout i easy java (basic) max score: 5 success rate: 96.83%, java if-else easy java (basic) max score: 10 success rate: 91.38%, java stdin and stdout ii easy java (basic) max score: 10 success rate: 92.78%, java output formatting easy java (basic) max score: 10 success rate: 96.54%, java loops i easy java (basic) max score: 10 success rate: 97.66%, java loops ii easy java (basic) max score: 10 success rate: 97.32%, java datatypes easy java (basic) max score: 10 success rate: 93.70%, java end-of-file easy java (basic) max score: 10 success rate: 97.91%, java static initializer block easy java (basic) max score: 10 success rate: 96.12%, cookie support is required to access hackerrank.

Seems like cookies are disabled on this browser, please enable them to open this website

programming for problem solving

  • Computers & Technology

Sorry, there was a problem.

Kindle app logo image

Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required .

Read instantly on your browser with Kindle for Web.

Using your mobile phone camera - scan the code below and download the Kindle app.

QR code to download the Kindle App

Image Unavailable

MATLAB: A Practical Introduction to Programming and Problem Solving

  • To view this video download Flash Player

programming for problem solving

Follow the author

Stormy Attaway

MATLAB: A Practical Introduction to Programming and Problem Solving 5th Edition

MATLAB: A Practical Introduction to Programming and Problem Solving , winner of TAA’s 2017 Textbook Excellence Award ("Texty"), guides the reader through both programming and built-in functions to easily exploit MATLAB's extensive capabilities for tackling engineering and scientific problems. Assuming no knowledge of programming, this book starts with programming concepts, such as variables, assignments, and selection statements, moves on to loops, and then solves problems using both the programming concept and the power of MATLAB. The fifth edition has been updated to reflect the functionality of the current version of MATLAB (R2018a), including the addition of local functions in scripts, the new string type, coverage of recently introduced functions to import data from web sites, and updates to the Live Editor and App Designer.

  • ISBN-10 0128154799
  • ISBN-13 978-0128154793
  • Edition 5th
  • Publisher Butterworth-Heinemann
  • Publication date August 31, 2018
  • Language English
  • Dimensions 7.5 x 1 x 9.5 inches
  • Print length 626 pages
  • See all details

Products related to this item

MATLAB and Simulink Crash Course for Engineers

Editorial Reviews

About the author, product details.

  • Publisher ‏ : ‎ Butterworth-Heinemann; 5th edition (August 31, 2018)
  • Language ‏ : ‎ English
  • Paperback ‏ : ‎ 626 pages
  • ISBN-10 ‏ : ‎ 0128154799
  • ISBN-13 ‏ : ‎ 978-0128154793
  • Item Weight ‏ : ‎ 2.35 pounds
  • Dimensions ‏ : ‎ 7.5 x 1 x 9.5 inches
  • #12 in Bioinformatics (Books)
  • #19 in Business Intelligence Tools
  • #91 in Introductory & Beginning Programming

About the author

Stormy attaway.

Discover more of the author’s books, see similar authors, read author blogs and more

How to Drive a Nuclear Reactor (Springer Praxis Books)

Customer reviews

  • 5 star 4 star 3 star 2 star 1 star 5 star 72% 14% 9% 1% 4% 72%
  • 5 star 4 star 3 star 2 star 1 star 4 star 72% 14% 9% 1% 4% 14%
  • 5 star 4 star 3 star 2 star 1 star 3 star 72% 14% 9% 1% 4% 9%
  • 5 star 4 star 3 star 2 star 1 star 2 star 72% 14% 9% 1% 4% 1%
  • 5 star 4 star 3 star 2 star 1 star 1 star 72% 14% 9% 1% 4% 4%

Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.

To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.

  • Sort reviews by Top reviews Most recent Top reviews

Top reviews from the United States

There was a problem filtering reviews right now. please try again later..

programming for problem solving

Top reviews from other countries

programming for problem solving

  • About Amazon
  • Investor Relations
  • Amazon Devices
  • Amazon Science
  • Sell products on Amazon
  • Sell on Amazon Business
  • Sell apps on Amazon
  • Become an Affiliate
  • Advertise Your Products
  • Self-Publish with Us
  • Host an Amazon Hub
  • › See More Make Money with Us
  • Amazon Business Card
  • Shop with Points
  • Reload Your Balance
  • Amazon Currency Converter
  • Amazon and COVID-19
  • Your Account
  • Your Orders
  • Shipping Rates & Policies
  • Returns & Replacements
  • Manage Your Content and Devices
 
 
 
   
  • Conditions of Use
  • Privacy Notice
  • Consumer Health Data Privacy Disclosure
  • Your Ads Privacy Choices

programming for problem solving

Subscribe to the PwC Newsletter

Join the community, edit social preview.

programming for problem solving

Add a new code entry for this paper

Remove a code repository from this paper, mark the official implementation from paper authors, add a new evaluation result row.

TASK DATASET MODEL METRIC NAME METRIC VALUE GLOBAL RANK REMOVE

Remove a task

Add a method, remove a method, edit datasets, an efficient integer programming model for solving the master planning problem of container vessel stowage.

15 Aug 2024  ·  Jaike van Twiller , Agnieszka Sivertsen , Rune M. Jensen , Kent H. Andersen · Edit social preview

A crucial role of container shipping is maximizing container uptake onto vessels, optimizing the efficiency of a fundamental part of the global supply chain. In practice, liner shipping companies include block stowage patterns that ensure that containers in above and below deck partitions of bays have the same destination. Despite preventing restows, increasing free space, and benefits for crane makespan and hydrostatics, this practical planning requirement is rarely included in stowage optimization models. In our paper, we introduce a novel 0-1 IP model that searches in the space of valid paired block stowage patterns, named template planning, which ensures sufficient vessel capacity and limits to crane makespan, trim, and bending moment. Our results show that template planning outperforms traditional allocation planning concerning optimality and runtime efficiency while preserving a sufficiently accurate representation of master planning constraints and objectives.

Code Edit Add Remove Mark official

IMAGES

  1. Six Steps to Solving a Programming Problem Infographic

    programming for problem solving

  2. How to improve programming problem-solving skills

    programming for problem solving

  3. Programming for Problem Solving

    programming for problem solving

  4. techex 2017: What's the best Methods to solve a problem

    programming for problem solving

  5. Programming and problem solving

    programming for problem solving

  6. Programming of Problem Solving [RTU]

    programming for problem solving

VIDEO

  1. Problem Solving In Programming

  2. Problem-Solving for Developers

  3. Problem Solving Techniques

  4. 5 Simple Steps for Solving Dynamic Programming Problems

  5. How to Solve Coding Problems (the best way to learn)

  6. Problem Solving in Programming

COMMENTS

  1. How to Solve Coding Problems with a Simple Four Step Method

    Learn a time-tested method for solving coding problems from the book How to Solve It by George Pólya. Follow the steps of understanding the problem, devising a plan, carrying out the plan, and looking back.

  2. Problems

    LeetCode provides a collection of problems for various topics and difficulty levels to help you prepare for coding interviews. You can filter by status, tags, difficulty, frequency, and company, and see the acceptance rate and solution of each problem.

  3. The 10 Most Popular Coding Challenge Websites [Updated for 2021]

    Learn how to solve coding challenges online and improve your problem solving skills with these 10 popular websites. Compare features, languages, difficulty levels, and examples of each website.

  4. Online Coding Practice Problems & Challenges

    Write queries in MySQL syntax. 80 Problems. Intermediate level. Practice over 5000+ problems in coding languages like Python, Java, JavaScript, C++, SQL and HTML. Start with beginner friendly challenges and solve hard problems as you become better. Use these practice problems and challenges to prove your coding skills.

  5. How to think like a programmer

    Learn how to break down complex problems into sub-problems, plan your solution, and debug your code. Follow the steps and examples from experts and improve your problem-solving skills.

  6. Basic Programming Problems

    Learn programming by solving a variety of basic problems that cover fundamental concepts and techniques. This guide provides practice, explanations, and benefits of mastering the basics for aspiring coders.

  7. Programming Fundamentals

    Learn how to solve programming problems using a powerful process called the Seven Steps. This course covers algorithms, programming language concepts, and C programming details.

  8. Programming Tutorial

    Learn how to program and solve problems with this comprehensive guide. Find out what is programming, how to choose your first language, how to set up your development environment, and how to avoid common mistakes.

  9. 20 Code Challenges To Put What You're Learning to the Test

    Code challenges help you improve your problem-solving skills, learn new languages and algorithms, and prepare for coding interviews. Find out how to choose the right challenge for your level and practice with examples of web development, data analysis, and more.

  10. Problem Solving

    Learn how to solve problems in programming by following the three steps: understand, plan and divide. See examples of pseudocode, decomposition and Fizz Buzz exercise.

  11. Programming Tutorials and Practice Problems

    HackerEarth helps you hire and upskill developers based on skills, not resumes. Learn how to create coding tests, interviews, and hackathons with data-driven insights and AI-powered evaluation.

  12. How to Develop Problem Solving Skills in Programming

    Learn how to develop and improve problem solving skills in programming with this ultimate guide. Find out the steps involved, the impact on your career, and the tips to improve your skills.

  13. UNIT 1: How to Think Like an Engineer.

    Computational Thinking is the thought processes involved in understanding a problem and expressing its solution in a way that a computer can effectively carry out. Computational thinking involves solving problems, designing systems, and understanding human behavior (e.g. what the user needs or wants) - thinking like an engineer. Computational ...

  14. 75 Basic Programming Problems and Tutorials for Practice

    Basic Programming Problems: Engaging in code challenges offers many benefits, serving as a dynamic tool to enhance problem-solving proficiency, deepen your comprehension of the programming language you work with, and acquaint yourself with diverse algorithms. If you aspire to elevate your programming skills, immersing yourself in coding is the most effective avenue.

  15. Programming Problems

    Welcome to Programming Problems! Join us as we explore the exciting world of problem-solving and competitive programming. From data structures to algorithms, we provide tutorials, examples, and ...

  16. How to think like a programmer

    Problem-solving skills are almost unanimously the most important qualification that employers look for….more than programming languages proficiency, debugging, and system design.

  17. Practice

    Solve Problem. Platform to practice programming problems. Solve company interview questions and improve your coding intellect.

  18. 10,000+ Coding Practice Challenges // Edabit

    functional_programming. math. numbers. Very Easy. Add to bookmarks. Add to collection. Basketball Points. You are counting points for a basketball game, given the amount of 2-pointers scored and 3-pointers scored, find the final points for the team and return that value. Examples points(1, 1) 5 points(7, 5) 29 points(38, 8) 100 Notes N/A

  19. 10 Steps to Solving a Programming Problem

    Either way is fine as long as you are writing it out line-by-line and understand the logic on each line. Refer back to the problem to make sure you are on track. 5. Translate pseudocode into code and debug. When you have your pseudocode ready, translate each line into real code in the language you are working on.

  20. Solve Java

    Join over 23 million developers in solving code challenges on HackerRank, one of the best ways to prepare for programming interviews.

  21. 3 Tips to Solve Problems Like an Expert

    Interactive debugging. Log-file analysis. Unit and integration test. Analyze the bundle file if the problem is related to the web performance. 3. Use Spectrum Thinking Instead of Binary Thinking. Binary thinking is always putting things in terms of two alternatives that are usually mutually exclusive.

  22. Best Problem Solving Courses Online with Certificates [2024]

    In summary, here are 10 of our most popular problem solving courses. Effective Problem-Solving and Decision-Making: University of California, Irvine. Creative Thinking: Techniques and Tools for Success: Imperial College London. Solving Complex Problems: Macquarie University. Solving Problems with Creative and Critical Thinking: IBM.

  23. MATLAB: A Practical Introduction to Programming and Problem Solving 5th

    MATLAB: A Practical Introduction to Programming and Problem Solving, winner of TAA's 2017 Textbook Excellence Award ("Texty"), guides the reader through both programming and built-in functions to easily exploit MATLAB's extensive capabilities for tackling engineering and scientific problems.Assuming no knowledge of programming, this book starts with programming concepts, such as variables ...

  24. 800+ Java Practice Challenges // Edabit

    How Edabit Works. This is an introduction to how challenges on Edabit work. In the Code tab above you'll see a starter function that looks like this: public static boolean returnTrue () { } All you have to do is type return true; between the curly braces { } and then click the Check button. If you did this correctly, the button will turn re ...

  25. An Efficient Integer Programming Model for Solving the Master Planning

    Upload an image to customize your repository's social media preview. Images should be at least 640×320px (1280×640px for best display).