• Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

One-Tailed and Two-Tailed Hypothesis Tests Explained

By Jim Frost 61 Comments

Choosing whether to perform a one-tailed or a two-tailed hypothesis test is one of the methodology decisions you might need to make for your statistical analysis. This choice can have critical implications for the types of effects it can detect, the statistical power of the test, and potential errors.

In this post, you’ll learn about the differences between one-tailed and two-tailed hypothesis tests and their advantages and disadvantages. I include examples of both types of statistical tests. In my next post, I cover the decision between one and two-tailed tests in more detail.

What Are Tails in a Hypothesis Test?

First, we need to cover some background material to understand the tails in a test. Typically, hypothesis tests take all of the sample data and convert it to a single value, which is known as a test statistic. You’re probably already familiar with some test statistics. For example, t-tests calculate t-values . F-tests, such as ANOVA, generate F-values . The chi-square test of independence and some distribution tests produce chi-square values. All of these values are test statistics. For more information, read my post about Test Statistics .

These test statistics follow a sampling distribution. Probability distribution plots display the probabilities of obtaining test statistic values when the null hypothesis is correct. On a probability distribution plot, the portion of the shaded area under the curve represents the probability that a value will fall within that range.

The graph below displays a sampling distribution for t-values. The two shaded regions cover the two-tails of the distribution.

Plot that display critical regions in the two tails of the distribution.

Keep in mind that this t-distribution assumes that the null hypothesis is correct for the population. Consequently, the peak (most likely value) of the distribution occurs at t=0, which represents the null hypothesis in a t-test. Typically, the null hypothesis states that there is no effect. As t-values move further away from zero, it represents larger effect sizes. When the null hypothesis is true for the population, obtaining samples that exhibit a large apparent effect becomes less likely, which is why the probabilities taper off for t-values further from zero.

Related posts : How t-Tests Work and Understanding Probability Distributions

Critical Regions in a Hypothesis Test

In hypothesis tests, critical regions are ranges of the distributions where the values represent statistically significant results. Analysts define the size and location of the critical regions by specifying both the significance level (alpha) and whether the test is one-tailed or two-tailed.

Consider the following two facts:

  • The significance level is the probability of rejecting a null hypothesis that is correct.
  • The sampling distribution for a test statistic assumes that the null hypothesis is correct.

Consequently, to represent the critical regions on the distribution for a test statistic, you merely shade the appropriate percentage of the distribution. For the common significance level of 0.05, you shade 5% of the distribution.

Related posts : Significance Levels and P-values and T-Distribution Table of Critical Values

Two-Tailed Hypothesis Tests

Two-tailed hypothesis tests are also known as nondirectional and two-sided tests because you can test for effects in both directions. When you perform a two-tailed test, you split the significance level percentage between both tails of the distribution. In the example below, I use an alpha of 5% and the distribution has two shaded regions of 2.5% (2 * 2.5% = 5%).

When a test statistic falls in either critical region, your sample data are sufficiently incompatible with the null hypothesis that you can reject it for the population.

In a two-tailed test, the generic null and alternative hypotheses are the following:

  • Null : The effect equals zero.
  • Alternative :  The effect does not equal zero.

The specifics of the hypotheses depend on the type of test you perform because you might be assessing means, proportions, or rates.

Example of a two-tailed 1-sample t-test

Suppose we perform a two-sided 1-sample t-test where we compare the mean strength (4.1) of parts from a supplier to a target value (5). We use a two-tailed test because we care whether the mean is greater than or less than the target value.

To interpret the results, simply compare the p-value to your significance level. If the p-value is less than the significance level, you know that the test statistic fell into one of the critical regions, but which one? Just look at the estimated effect. In the output below, the t-value is negative, so we know that the test statistic fell in the critical region in the left tail of the distribution, indicating the mean is less than the target value. Now we know this difference is statistically significant.

Statistical output from a two-tailed 1-sample t-test.

We can conclude that the population mean for part strength is less than the target value. However, the test had the capacity to detect a positive difference as well. You can also assess the confidence interval. With a two-tailed hypothesis test, you’ll obtain a two-sided confidence interval. The confidence interval tells us that the population mean is likely to fall between 3.372 and 4.828. This range excludes the target value (5), which is another indicator of significance.

Advantages of two-tailed hypothesis tests

You can detect both positive and negative effects. Two-tailed tests are standard in scientific research where discovering any type of effect is usually of interest to researchers.

One-Tailed Hypothesis Tests

One-tailed hypothesis tests are also known as directional and one-sided tests because you can test for effects in only one direction. When you perform a one-tailed test, the entire significance level percentage goes into the extreme end of one tail of the distribution.

In the examples below, I use an alpha of 5%. Each distribution has one shaded region of 5%. When you perform a one-tailed test, you must determine whether the critical region is in the left tail or the right tail. The test can detect an effect only in the direction that has the critical region. It has absolutely no capacity to detect an effect in the other direction.

In a one-tailed test, you have two options for the null and alternative hypotheses, which corresponds to where you place the critical region.

You can choose either of the following sets of generic hypotheses:

  • Null : The effect is less than or equal to zero.
  • Alternative : The effect is greater than zero.

Plot that displays a single critical region for a one-tailed test.

  • Null : The effect is greater than or equal to zero.
  • Alternative : The effect is less than zero.

Plot that displays a single critical region in the left tail for a one-tailed test.

Again, the specifics of the hypotheses depend on the type of test you perform.

Notice how for both possible null hypotheses the tests can’t distinguish between zero and an effect in a particular direction. For example, in the example directly above, the null combines “the effect is greater than or equal to zero” into a single category. That test can’t differentiate between zero and greater than zero.

Example of a one-tailed 1-sample t-test

Suppose we perform a one-tailed 1-sample t-test. We’ll use a similar scenario as before where we compare the mean strength of parts from a supplier (102) to a target value (100). Imagine that we are considering a new parts supplier. We will use them only if the mean strength of their parts is greater than our target value. There is no need for us to differentiate between whether their parts are equally strong or less strong than the target value—either way we’d just stick with our current supplier.

Consequently, we’ll choose the alternative hypothesis that states the mean difference is greater than zero (Population mean – Target value > 0). The null hypothesis states that the difference between the population mean and target value is less than or equal to zero.

Statistical output for a one-tailed 1-sample t-test.

To interpret the results, compare the p-value to your significance level. If the p-value is less than the significance level, you know that the test statistic fell into the critical region. For this study, the statistically significant result supports the notion that the population mean is greater than the target value of 100.

Confidence intervals for a one-tailed test are similarly one-sided. You’ll obtain either an upper bound or a lower bound. In this case, we get a lower bound, which indicates that the population mean is likely to be greater than or equal to 100.631. There is no upper limit to this range.

A lower-bound matches our goal of determining whether the new parts are stronger than our target value. The fact that the lower bound (100.631) is higher than the target value (100) indicates that these results are statistically significant.

This test is unable to detect a negative difference even when the sample mean represents a very negative effect.

Advantages and disadvantages of one-tailed hypothesis tests

One-tailed tests have more statistical power to detect an effect in one direction than a two-tailed test with the same design and significance level. One-tailed tests occur most frequently for studies where one of the following is true:

  • Effects can exist in only one direction.
  • Effects can exist in both directions but the researchers only care about an effect in one direction. There is no drawback to failing to detect an effect in the other direction. (Not recommended.)

The disadvantage of one-tailed tests is that they have no statistical power to detect an effect in the other direction.

As part of your pre-study planning process, determine whether you’ll use the one- or two-tailed version of a hypothesis test. To learn more about this planning process, read 5 Steps for Conducting Scientific Studies with Statistical Analyses .

This post explains the differences between one-tailed and two-tailed statistical hypothesis tests. How these forms of hypothesis tests function is clear and based on mathematics. However, there is some debate about when you can use one-tailed tests. My next post explores this decision in much more depth and explains the different schools of thought and my opinion on the matter— When Can I Use One-Tailed Hypothesis Tests .

If you’re learning about hypothesis testing and like the approach I use in my blog, check out my Hypothesis Testing book! You can find it at Amazon and other retailers.

Cover image of my Hypothesis Testing: An Intuitive Guide ebook.

Share this:

two tailed hypothesis test hypotheses

Reader Interactions

' src=

August 23, 2024 at 1:28 pm

Thank so much. This is very helpfull

' src=

June 26, 2022 at 12:14 pm

Hi, Can help me with figuring out the null and alternative hypothesis of the following statement? Some claimed that the real average expenditure on beverage by general people is at least $10.

' src=

February 19, 2022 at 6:02 am

thank you for the thoroughly explanation, I’m still strugling to wrap my mind around the t-table and the relation between the alpha values for one or two tail probability and the confidence levels on the bottom (I’m understanding it so wrongly that for me it should be the oposite, like one tail 0,05 should correspond 95% CI and two tailed 0,025 should correspond to 95% because then you got the 2,5% on each side). In my mind if I picture the one tail diagram with an alpha of 0,05 I see the rest 95% inside the diagram, but for a one tail I only see 90% CI paired with a 5% alpha… where did the other 5% go? I tried to understand when you said we should just double the alpha for a one tail probability in order to find the CI but I still cant picture it. I have been trying to understand this. Like if you only have one tail and there is 0,05, shouldn’t the rest be on the other side? why is it then 90%… I know I’m missing a point and I can’t figure it out and it’s so frustrating…

' src=

February 23, 2022 at 10:01 pm

The alpha is the total shaded area. So, if the alpha = 0.05, you know that 5% of the distribution is shaded. The number of tails tells you how to divide the shaded areas. Is it all in one region (1-tailed) or do you split the shaded regions in two (2-tailed)?

So, for a one-tailed test with an alpha of 0.05, the 5% shading is all in one tail. If alpha = 0.10, then it’s 10% on one side. If it’s two-tailed, then you need to split that 10% into two–5% in both tails. Hence, the 5% in a one-tailed test is the same as a two-tailed test with an alpha of 0.10 because that test has the same 5% on one side (but there’s another 5% in the other tail).

It’s similar for CIs. However, for CIs, you shade the middle rather than the extremities. I write about that in one my articles about hypothesis testing and confidence intervals .

I’m not sure if I’m answering your question or not.

' src=

February 17, 2022 at 1:46 pm

I ran a post hoc Dunnett’s test alpha=0.05 after a significant Anova test in Proc Mixed using SAS. I want to determine if the means for treatment (t1, t2, t3) is significantly less than the means for control (p=pathogen). The code for the dunnett’s test is – LSmeans trt / diff=controll (‘P’) adjust=dunnett CL plot=control; I think the lower bound one tailed test is the correct test to run but I’m not 100% sure. I’m finding conflicting information online. In the output table for the dunnett’s test the mean difference between the control and the treatments is t1=9.8, t2=64.2, and t3=56.5. The control mean estimate is 90.5. The adjusted p-value by treatment is t1(p=0.5734), t2 (p=.0154) and t3(p=.0245). The adjusted lower bound confidence limit in order from t1-t3 is -38.8, 13.4, and 7.9. The adjusted upper bound for all test is infinity. The graphical output for the dunnett’s test in SAS is difficult to understand for those of us who are beginner SAS users. All treatments appear as a vertical line below the the horizontal line for control at 90.5 with t2 and t3 in the shaded area. For treatment 1 the shaded area is above the line for control. Looking at just the output table I would say that t2 and t3 are significantly lower than the control. I guess I would like to know if my interpretation of the outputs is correct that treatments 2 and 3 are statistically significantly lower than the control? Should I have used an upper bound one tailed test instead?

' src=

November 10, 2021 at 1:00 am

Thanks Jim. Please help me understand how a two tailed testing can be used to minimize errors in research

' src=

July 1, 2021 at 9:19 am

Hi Jim, Thanks for posting such a thorough and well-written explanation. It was extremely useful to clear up some doubts.

' src=

May 7, 2021 at 4:27 pm

Hi Jim, I followed your instructions for the Excel add-in. Thank you. I am very new to statistics and sort of enjoy it as I enter week number two in my class. I am to select if three scenarios call for a one or two-tailed test is required and why. The problem is stated:

30% of mole biopsies are unnecessary. Last month at his clinic, 210 out of 634 had benign biopsy results. Is there enough evidence to reject the dermatologist’s claim?

Part two, the wording changes to “more than of 30% of biopsies,” and part three, the wording changes to “less than 30% of biopsies…”

I am not asking for the problem to be solved for me, but I cannot seem to find direction needed. I know the elements i am dealing with are =30%, greater than 30%, and less than 30%. 210 and 634. I just don’t know what to with the information. I can’t seem to find an example of a similar problem to work with.

May 9, 2021 at 9:22 pm

As I detail in this post, a two-tailed test tells you whether an effect exists in either direction. Or, is it different from the null value in either direction. For the first example, the wording suggests you’d need a two-tailed test to determine whether the population proportion is ≠ 30%. Whenever you just need to know ≠, it suggests a two-tailed test because you’re covering both directions.

For part two, because it’s in one direction (greater than), you need a one-tailed test. Same for part three but it’s less than. Look in this blog post to see how you’d construct the null and alternative hypotheses for these cases. Note that you’re working with a proportion rather than the mean, but the principles are the same! Just plug your scenario and the concept of proportion into the wording I use for the hypotheses.

I hope that helps!

' src=

April 11, 2021 at 9:30 am

Hello Jim, great website! I am using a statistics program (SPSS) that does NOT compute one-tailed t-tests. I am trying to compare two independent groups and have justifiable reasons why I only care about one direction. Can I do the following? Use SPSS for two-tailed tests to calculate the t & p values. Then report the p-value as p/2 when it is in the predicted direction (e.g , SPSS says p = .04, so I report p = .02), and report the p-value as 1 – (p/2) when it is in the opposite direction (e.g., SPSS says p = .04, so I report p = .98)? If that is incorrect, what do you suggest (hopefully besides changing statistics programs)? Also, if I want to report confidence intervals, I realize that I would only have an upper or lower bound, but can I use the CI’s from SPSS to compute that? Thank you very much!

April 11, 2021 at 5:42 pm

Yes, for p-values, that’s absolutely correct for both cases.

For confidence intervals, if you take one endpoint of a two-side CI, it becomes a one-side bound with half the confidence level.

Consequently, to obtain a one-sided bound with your desired confidence level, you need to take your desired significance level (e.g., 0.05) and double it. Then subtract it from 1. So, if you’re using a significance level of 0.05, double that to 0.10 and then subtract from 1 (1 – 0.10 = 0.90). 90% is the confidence level you want to use for a two-sided test. After obtaining the two-sided CI, use one of the endpoints depending on the direction of your hypothesis (i.e., upper or lower bound). That’s produces the one-sided the bound with the confidence level that you want. For our example, we calculated a 95% one-sided bound.

' src=

March 3, 2021 at 8:27 am

Hi Jim. I used the one-tailed(right) statistical test to determine an anomaly in the below problem statement: On a daily basis, I calculate the (mapped_%) in a common field between two tables.

The way I used the t-test is: On any particular day, I calculate the sample_mean, S.D and sample_count (n=30) for the last 30 days including the current day. My null hypothesis, H0 (pop. mean)=95 and H1>95 (alternate hypothesis). So, I calculate the t-stat based on the sample_mean, pop.mean, sample S.D and n. I then choose the t-crit value for 0.05 from my t-ditribution table for dof(n-1). On the current day if my abs.(t-stat)>t-crit, then I reject the null hypothesis and I say the mapped_pct on that day has passed the t-test.

I get some weird results here, where if my mapped_pct is as low as 6%-8% in all the past 30 days, the t-test still gets a “pass” result. Could you help on this? If my hypothesis needs to be changed.

I would basically look for the mapped_pct >95, if it worked on a static trigger. How can I use the t-test effectively in this problem statement?

' src=

December 18, 2020 at 8:23 pm

Hello Dr. Jim, I am wondering if there is evidence in one of your books or other source you could provide, which supports that it is OK not to divide alpha level by 2 in one-tailed hypotheses. I need the source for supporting evidence in a Portfolio exercise and couldn’t find one.

I am grateful for your reply and for your statistics knowledge sharing!

' src=

November 27, 2020 at 10:31 pm

If I did a one directional F test ANOVA(one tail ) and wanted to calculate a confidence interval for each individual groups (3) mean . Would I use a one tailed or two tailed t , within my confidence interval .

November 29, 2020 at 2:36 am

Hi Bashiru,

F-tests for ANOVA will always be one-tailed for the reasons I discuss in this post. To learn more about, read my post about F-tests in ANOVA .

For the differences between my groups, I would not use t-tests because the family-wise error rate quickly grows out of hand. To learn more about how to compare group means while controlling the familywise error rate, read my post about using post hoc tests with ANOVA . Typically, these are two-side intervals but you’d be able to use one-sided.

' src=

November 26, 2020 at 10:51 am

Hi Jim, I had a question about the formulation of the hypotheses. When you want to test if a beta = 1 or a beta = 0. What will be the null hypotheses? I’m having trouble with finding out. Because in most cases beta = 0 is the null hypotheses but in this case you want to test if beta = 0. so i’m having my doubts can it in this case be the alternative hypotheses or is it still the null hypotheses?

Kind regards, Noa

November 27, 2020 at 1:21 am

Typically, the null hypothesis represents no effect or no relationship. As an analyst, you’re hoping that your data have enough evidence to reject the null and favor the alternative.

Assuming you’re referring to beta as in regression coefficients, zero represents no relationship. Consequently, beta = 0 is the null hypothesis.

You might hope that beta = 1, but you don’t usually include that in your alternative hypotheses. The alternative hypothesis usually states that it does not equal no effect. In other words, there is an effect but it doesn’t state what it is.

There are some exceptions to the above but I’m writing about the standard case.

' src=

November 22, 2020 at 8:46 am

Your articles are a help to intro to econometrics students. Keep up the good work! More power to you!

' src=

November 6, 2020 at 11:25 pm

Hello Jim. Can you help me with these please?

Write the null and alternative hypothesis using a 1-tailed and 2-tailed test for each problem. (In paragraph and symbols)

A teacher wants to know if there is a significant difference in the performance in MAT C313 between her morning and afternoon classes.

It is known that in our university canteen, the average waiting time for a customer to receive and pay for his/her order is 20 minutes. Additional personnel has been added and now the management wants to know if the average waiting time had been reduced.

November 8, 2020 at 12:29 am

I cover how to write the hypotheses for the different types of tests in this post. So, you just need to figure which type of test you need to use. In your case, you want to determine whether the mean waiting time is less than the target value of 20 minutes. That’s a 1-sample t-test because you’re comparing a mean to a target value (20 minutes). You specifically want to determine whether the mean is less than the target value. So, that’s a one-tailed test. And, you’re looking for a mean that is “less than” the target.

So, go to the one-tailed section in the post and look for the hypotheses for the effect being less than. That’s the one with the critical region on the left side of the curve.

Now, you need include your own information. In your case, you’re comparing the sample estimate to a population mean of 20. The 20 minutes is your null hypothesis value. Use the symbol mu μ to represent the population mean.

You put all that together and you get the following:

Null: μ ≥ 20 Alternative: μ 0 to denote the null hypothesis and H 1 or H A to denote the alternative hypothesis if that’s what you been using in class.

' src=

October 17, 2020 at 12:11 pm

I was just wondering if you could please help with clarifying what the hypothesises would be for say income for gamblers and, age of gamblers. I am struggling to find which means would be compared.

October 17, 2020 at 7:05 pm

Those are both continuous variables, so you’d use either correlation or regression for them. For both of those analyses, the hypotheses are the following:

Null : The correlation or regression coefficient equals zero (i.e., there is no relationship between the variables) Alternative : The coefficient does not equal zero (i.e., there is a relationship between the variables.)

When the p-value is less than your significance level, you reject the null and conclude that a relationship exists.

' src=

October 17, 2020 at 3:05 am

I was ask to choose and justify the reason between a one tailed and two tailed test for dummy variables, how do I do that and what does it mean?

October 17, 2020 at 7:11 pm

I don’t have enough information to answer your question. A dummy variable is also known as an indicator variable, which is a binary variable that indicates the presence or absence of a condition or characteristic. If you’re using this variable in a hypothesis test, I’d presume that you’re using a proportions test, which is based on the binomial distribution for binary data.

Choosing between a one-tailed or two-tailed test depends on subject area issues and, possibly, your research objectives. Typically, use a two-tailed test unless you have a very good reason to use a one-tailed test. To understand when you might use a one-tailed test, read my post about when to use a one-tailed hypothesis test .

' src=

October 16, 2020 at 2:07 pm

In your one-tailed example, Minitab describes the hypotheses as “Test of mu = 100 vs > 100”. Any idea why Minitab says the null is “=” rather than “= or less than”? No ASCII character for it?

October 16, 2020 at 4:20 pm

I’m not entirely sure even though I used to work there! I know we had some discussions about how to represent that hypothesis but I don’t recall the exact reasoning. I suspect that it has to do with the conclusions that you can draw. Let’s focus on the failing to reject the null hypothesis. If the test statistic falls in that region (i.e., it is not significant), you fail to reject the null. In this case, all you know is that you have insufficient evidence to say it is different than 100. I’m pretty sure that’s why they use the equal sign because it might as well be one.

Mathematically, I think using ≤ is more accurate, which you can really see when you look at the distribution plots. That’s why I phrase the hypotheses using ≤ or ≥ as needed. However, in terms of the interpretation, the “less than” portion doesn’t really add anything of importance. You can conclude that its equal to 100 or greater than 100, but not less than 100.

' src=

October 15, 2020 at 5:46 am

Thank you so much for your timely feedback. It helps a lot

October 14, 2020 at 10:47 am

How can i use one tailed test at 5% alpha on this problem?

A manufacturer of cellular phone batteries claims that when fully charged, the mean life of his product lasts for 26 hours with a standard deviation of 5 hours. Mr X, a regular distributor, randomly picked and tested 35 of the batteries. His test showed that the average life of his sample is 25.5 hours. Is there a significant difference between the average life of all the manufacturer’s batteries and the average battery life of his sample?

October 14, 2020 at 8:22 pm

I don’t think you’d want to use a one-tailed test. The goal is to determine whether the sample is significantly different than the manufacturer’s population average. You’re not saying significantly greater than or less than, which would be a one-tailed test. As phrased, you want a two-tailed test because it can detect a difference in either direct.

It sounds like you need to use a 1-sample t-test to test the mean. During this test, enter 26 as the test mean. The procedure will tell you if the sample mean of 25.5 hours is a significantly different from that test mean. Similarly, you’d need a one variance test to determine whether the sample standard deviation is significantly different from the test value of 5 hours.

For both of these tests, compare the p-value to your alpha of 0.05. If the p-value is less than this value, your results are statistically significant.

' src=

September 22, 2020 at 4:16 am

Hi Jim, I didn’t get an idea that when to use two tail test and one tail test. Will you please explain?

September 22, 2020 at 10:05 pm

I have a complete article dedicated to that: When Can I Use One-Tailed Tests .

Basically, start with the assumption that you’ll use a two-tailed test but then consider scenarios where a one-tailed test can be appropriate. I talk about all of that in the article.

If you have questions after reading that, please don’t hesitate to ask!

' src=

July 31, 2020 at 12:33 pm

Thank you so so much for this webpage.

I have two scenarios that I need some clarification. I will really appreciate it if you can take a look:

So I have several of materials that I know when they are tested after production. My hypothesis is that the earlier they are tested after production, the higher the mean value I should expect. At the same time, the later they are tested after production, the lower the mean value. Since this is more like a “greater or lesser” situation, I should use one tail. Is that the correct approach?

On the other hand, I have several mix of materials that I don’t know when they are tested after production. I only know the mean values of the test. And I only want to know whether one mean value is truly higher or lower than the other, I guess I want to know if they are only significantly different. Should I use two tail for this? If they are not significantly different, I can judge based on the mean values of test alone. And if they are significantly different, then I will need to do other type of analysis. Also, when I get my P-value for two tail, should I compare it to 0.025 or 0.05 if my confidence level is 0.05?

Thank you so much again.

July 31, 2020 at 11:19 pm

For your first, if you absolutely know that the mean must be lower the later the material is tested, that it cannot be higher, that would be a situation where you can use a one-tailed test. However, if that’s not a certainty, you’re just guessing, use a two-tail test. If you’re measuring different items at the different times, use the independent 2-sample t-test. However, if you’re measuring the same items at two time points, use the paired t-test. If it’s appropriate, using the paired t-test will give you more statistical power because it accounts for the variability between items. For more information, see my post about when it’s ok to use a one-tailed test .

For the mix of materials, use a two-tailed test because the effect truly can go either direction.

Always compare the p-value to your full significance level regardless of whether it’s a one or two-tailed test. Don’t divide the significance level in half.

' src=

June 17, 2020 at 2:56 pm

Is it possible that we reach to opposite conclusions if we use a critical value method and p value method Secondly if we perform one tail test and use p vale method to conclude our Ho, then do we need to convert sig value of 2 tail into sig value of one tail. That can be done just by dividing it with 2

June 18, 2020 at 5:17 pm

The p-value method and critical value method will always agree as long as you’re not changing anything about how the methodology.

If you’re using statistical software, you don’t need to make any adjustments. The software will do that for you.

However, if you calculating it by hand, you’ll need to take your significance level and then look in the table for your test statistic for a one-tailed test. For example, you’ll want to look up 5% for a one-tailed test rather than a two-tailed test. That’s not as simple as dividing by two. In this article, I show examples of one-tailed and two-tailed tests for the same degrees of freedom. The t critical value for the two-tailed test is +/- 2.086 while for the one-sided test it is 1.725. It is true that probability associated with those critical values doubles for the one-tailed test (2.5% -> 5%), but the critical value itself is not half (2.086 -> 1.725). Study the first several graphs in this article to see why that is true.

For the p-value, you can take a two-tailed p-value and divide by 2 to determine the one-sided p-value. However, if you’re using statistical software, it does that for you.

' src=

June 11, 2020 at 3:46 pm

Hello Jim, if you have the time I’d be grateful if you could shed some clarity on this scenario:

“A researcher believes that aromatherapy can relieve stress but wants to determine whether it can also enhance focus. To test this, the researcher selected a random sample of students to take an exam in which the average score in the general population is 77. Prior to the exam, these students studied individually in a small library room where a lavender scent was present. If students in this group scored significantly above the average score in general population [is this one-tailed or two-tailed hypothesis?], then this was taken as evidence that the lavender scent enhanced focus.”

Thank you for your time if you do decide to respond.

June 11, 2020 at 4:00 pm

It’s unclear from the information provided whether the researchers used a one-tailed or two-tailed test. It could be either. A two-tailed test can detect effects in both directions, so it could definitely detect an average group score above the population score. However, you could also detect that effect using a one-tailed test if it was set up correctly. So, there’s not enough information in what you provided to know for sure. It could be either.

However, that’s irrelevant to answering the question. The tricky part, as I see it, is that you’re not entirely sure about why the scores are higher. Are they higher because the lavender scent increased concentration or are they higher because the subjects have lower stress from the lavender? Or, maybe it’s not even related to the scent but some other characteristic of the room or testing conditions in which they took the test. You just know the scores are higher but not necessarily why they’re higher.

I’d say that, no, it’s not necessarily evidence that the lavender scent enhanced focus. There are competing explanations for why the scores are higher. Also, it would be best do this as an experiment with a control and treatment group where subjects are randomly assigned to either group. That process helps establish causality rather than just correlation and helps rules out competing explanations for why the scores are higher.

By the way, I spend a lot of time on these issues in my Introduction to Statistics ebook .

' src=

June 9, 2020 at 1:47 pm

If a left tail test has an alpha value of 0.05 how will you find the value in the table

' src=

April 19, 2020 at 10:35 am

Hi Jim, My question is in regards to the results in the table in your example of the one-sample T (Two-Tailed) test. above. What about the P-value? The P-value listed is .018. I assuming that is compared to and alpha of 0.025, correct?

In regression analysis, when I get a test statistic for the predictive variable of -2.099 and a p-value of 0.039. Am I comparing the p-value to an alpha of 0.025 or 0.05? Now if I run a Bootstrap for coefficients analysis, the results say the sig (2-tail) is 0.098. What are the critical values and alpha in this case? I’m trying to reconcile what I am seeing in both tables.

Thanks for your help.

April 20, 2020 at 3:24 am

Hi Marvalisa,

For one-tailed tests, you don’t need to divide alpha in half. If you can tell your software to perform a one-tailed test, it’ll do all the calculations necessary so you don’t need to adjust anything. So, if you’re using an alpha of 0.05 for a one-tailed test and your p-value is 0.04, it is significant. The procedures adjust the p-values automatically and it all works out. So, whether you’re using a one-tailed or two-tailed test, you always compare the p-value to the alpha with no need to adjust anything. The procedure does that for you!

The exception would be if for some reason your software doesn’t allow you to specify that you want to use a one-tailed test instead of a two-tailed test. Then, you divide the p-value from a two-tailed test in half to get the p-value for a one tailed test. You’d still compare it to your original alpha.

For regression, the same thing applies. If you want to use a one-tailed test for a cofficient, just divide the p-value in half if you can’t tell the software that you want a one-tailed test. The default is two-tailed. If your software has the option for one-tailed tests for any procedure, including regression, it’ll adjust the p-value for you. So, in the normal course of things, you won’t need to adjust anything.

' src=

March 26, 2020 at 12:00 pm

Hey Jim, for a one-tailed hypothesis test with a .05 confidence level, should I use a 95% confidence interval or a 90% confidence interval? Thanks

March 26, 2020 at 5:05 pm

You should use a one-sided 95% confidence interval. One-sided CIs have either an upper OR lower bound but remains unbounded on the other side.

' src=

March 16, 2020 at 4:30 pm

This is not applicable to the subject but… When performing tests of equivalence, we look at the confidence interval of the difference between two groups, and we perform two one-sided t-tests for equivalence..

' src=

March 15, 2020 at 7:51 am

Thanks for this illustrative blogpost. I had a question on one of your points though.

By definition of H1 and H0, a two-sided alternate hypothesis is that there is a difference in means between the test and control. Not that anything is ‘better’ or ‘worse’.

Just because we observed a negative result in your example, does not mean we can conclude it’s necessarily worse, but instead just ‘different’.

Therefore while it enables us to spot the fact that there may be differences between test and control, we cannot make claims about directional effects. So I struggle to see why they actually need to be used instead of one-sided tests.

What’s your take on this?

March 16, 2020 at 3:02 am

Hi Dominic,

If you’ll notice, I carefully avoid stating better or worse because in a general sense you’re right. However, given the context of a specific experiment, you can conclude whether a negative value is better or worse. As always in statistics, you have to use your subject-area knowledge to help interpret the results. In some cases, a negative value is a bad result. In other cases, it’s not. Use your subject-area knowledge!

I’m not sure why you think that you can’t make claims about directional effects? Of course you can!

As for why you shouldn’t use one-tailed tests for most cases, read my post When Can I Use One-Tailed Tests . That should answer your questions.

' src=

May 10, 2019 at 12:36 pm

Your website is absolutely amazing Jim, you seem like the nicest guy for doing this and I like how there’s no ulterior motive, (I wasn’t automatically signed up for emails or anything when leaving this comment). I study economics and found econometrics really difficult at first, but your website explains it so clearly its been a big asset to my studies, keep up the good work!

May 10, 2019 at 2:12 pm

Thank you so much, Jack. Your kind words mean a lot!

' src=

April 26, 2019 at 5:05 am

Hy Jim I really need your help now pls

One-tailed and two- tailed hypothesis, is it the same or twice, half or unrelated pls

April 26, 2019 at 11:41 am

Hi Anthony,

I describe how the hypotheses are different in this post. You’ll find your answers.

' src=

February 8, 2019 at 8:00 am

Thank you for your blog Jim, I have a Statistics exam soon and your articles let me understand a lot!

February 8, 2019 at 10:52 am

You’re very welcome! I’m happy to hear that it’s been helpful. Best of luck on your exam!

' src=

January 12, 2019 at 7:06 am

Hi Jim, When you say target value is 5. Do you mean to say the population mean is 5 and we are trying to validate it with the help of sample mean 4.1 using Hypo tests ?.. If it is so.. How can we measure a population parameter as 5 when it is almost impossible o measure a population parameter. Please clarify

January 12, 2019 at 6:57 pm

When you set a target for a one-sample test, it’s based on a value that is important to you. It’s not a population parameter or anything like that. The example in this post uses a case where we need parts that are stronger on average than a value of 5. We derive the value of 5 by using our subject area knowledge about what is required for a situation. Given our product knowledge for the hypothetical example, we know it should be 5 or higher. So, we use that in the hypothesis test and determine whether the population mean is greater than that target value.

When you perform a one-sample test, a target value is optional. If you don’t supply a target value, you simply obtain a confidence interval for the range of values that the parameter is likely to fall within. But, sometimes there is meaningful number that you want to test for specifically.

I hope that clarifies the rational behind the target value!

' src=

November 15, 2018 at 8:08 am

I understand that in Psychology a one tailed hypothesis is preferred. Is that so

November 15, 2018 at 11:30 am

No, there’s no overall preference for one-tailed hypothesis tests in statistics. That would be a study-by-study decision based on the types of possible effects. For more information about this decision, read my post: When Can I Use One-Tailed Tests?

' src=

November 6, 2018 at 1:14 am

I’m grateful to you for the explanations on One tail and Two tail hypothesis test. This opens my knowledge horizon beyond what an average statistics textbook can offer. Please include more examples in future posts. Thanks

November 5, 2018 at 10:20 am

Thank you. I will search it as well.

Stan Alekman

November 4, 2018 at 8:48 pm

Jim, what is the difference between the central and non-central t-distributions w/respect to hypothesis testing?

November 5, 2018 at 10:12 am

Hi Stan, this is something I will need to look into. I know central t-distribution is the common Student t-distribution, but I don’t have experience using non-central t-distributions. There might well be a blog post in that–after I learn more!

' src=

November 4, 2018 at 7:42 pm

this is awesome.

Comments and Questions Cancel reply

two tailed hypothesis test hypotheses

Hypothesis Testing for Means & Proportions

  •   1  
  • |   2  
  • |   3  
  • |   4  
  • |   5  
  • |   6  
  • |   7  
  • |   8  
  • |   9  
  • |   10  

On This Page sidebar

Hypothesis Testing: Upper-, Lower, and Two Tailed Tests

Type i and type ii errors.

Learn More sidebar

All Modules

More Resources sidebar

Z score Table

t score Table

The procedure for hypothesis testing is based on the ideas described above. Specifically, we set up competing hypotheses, select a random sample from the population of interest and compute summary statistics. We then determine whether the sample data supports the null or alternative hypotheses. The procedure can be broken down into the following five steps.  

  • Step 1. Set up hypotheses and select the level of significance α.

H 0 : Null hypothesis (no change, no difference);  

H 1 : Research hypothesis (investigator's belief); α =0.05

 

Upper-tailed, Lower-tailed, Two-tailed Tests

The research or alternative hypothesis can take one of three forms. An investigator might believe that the parameter has increased, decreased or changed. For example, an investigator might hypothesize:  

: μ > μ , where μ is the comparator or null value (e.g., μ =191 in our example about weight in men in 2006) and an increase is hypothesized - this type of test is called an ; : μ < μ , where a decrease is hypothesized and this is called a ; or : μ ≠ μ where a difference is hypothesized and this is called a .  

The exact form of the research hypothesis depends on the investigator's belief about the parameter of interest and whether it has possibly increased, decreased or is different from the null value. The research hypothesis is set up by the investigator before any data are collected.

 

  • Step 2. Select the appropriate test statistic.  

The test statistic is a single number that summarizes the sample information.   An example of a test statistic is the Z statistic computed as follows:

When the sample size is small, we will use t statistics (just as we did when constructing confidence intervals for small samples). As we present each scenario, alternative test statistics are provided along with conditions for their appropriate use.

  • Step 3.  Set up decision rule.  

The decision rule is a statement that tells under what circumstances to reject the null hypothesis. The decision rule is based on specific values of the test statistic (e.g., reject H 0 if Z > 1.645). The decision rule for a specific test depends on 3 factors: the research or alternative hypothesis, the test statistic and the level of significance. Each is discussed below.

  • The decision rule depends on whether an upper-tailed, lower-tailed, or two-tailed test is proposed. In an upper-tailed test the decision rule has investigators reject H 0 if the test statistic is larger than the critical value. In a lower-tailed test the decision rule has investigators reject H 0 if the test statistic is smaller than the critical value.  In a two-tailed test the decision rule has investigators reject H 0 if the test statistic is extreme, either larger than an upper critical value or smaller than a lower critical value.
  • The exact form of the test statistic is also important in determining the decision rule. If the test statistic follows the standard normal distribution (Z), then the decision rule will be based on the standard normal distribution. If the test statistic follows the t distribution, then the decision rule will be based on the t distribution. The appropriate critical value will be selected from the t distribution again depending on the specific alternative hypothesis and the level of significance.  
  • The third factor is the level of significance. The level of significance which is selected in Step 1 (e.g., α =0.05) dictates the critical value.   For example, in an upper tailed Z test, if α =0.05 then the critical value is Z=1.645.  

The following figures illustrate the rejection regions defined by the decision rule for upper-, lower- and two-tailed Z tests with α=0.05. Notice that the rejection regions are in the upper, lower and both tails of the curves, respectively. The decision rules are written below each figure.

Rejection Region for Upper-Tailed Z Test (H : μ > μ ) with α=0.05

The decision rule is: Reject H if Z 1.645.

 

 

α

Z

0.10

1.282

0.05

1.645

0.025

1.960

0.010

2.326

0.005

2.576

0.001

3.090

0.0001

3.719

Standard normal distribution with lower tail at -1.645 and alpha=0.05

Rejection Region for Lower-Tailed Z Test (H 1 : μ < μ 0 ) with α =0.05

The decision rule is: Reject H 0 if Z < 1.645.

a

Z

0.10

-1.282

0.05

-1.645

0.025

-1.960

0.010

-2.326

0.005

-2.576

0.001

-3.090

0.0001

-3.719

Standard normal distribution with two tails

Rejection Region for Two-Tailed Z Test (H 1 : μ ≠ μ 0 ) with α =0.05

The decision rule is: Reject H 0 if Z < -1.960 or if Z > 1.960.

0.20

1.282

0.10

1.645

0.05

1.960

0.010

2.576

0.001

3.291

0.0001

3.819

The complete table of critical values of Z for upper, lower and two-tailed tests can be found in the table of Z values to the right in "Other Resources."

Critical values of t for upper, lower and two-tailed tests can be found in the table of t values in "Other Resources."

  • Step 4. Compute the test statistic.  

Here we compute the test statistic by substituting the observed sample data into the test statistic identified in Step 2.

  • Step 5. Conclusion.  

The final conclusion is made by comparing the test statistic (which is a summary of the information observed in the sample) to the decision rule. The final conclusion will be either to reject the null hypothesis (because the sample data are very unlikely if the null hypothesis is true) or not to reject the null hypothesis (because the sample data are not very unlikely).  

If the null hypothesis is rejected, then an exact significance level is computed to describe the likelihood of observing the sample data assuming that the null hypothesis is true. The exact level of significance is called the p-value and it will be less than the chosen level of significance if we reject H 0 .

Statistical computing packages provide exact p-values as part of their standard output for hypothesis tests. In fact, when using a statistical computing package, the steps outlined about can be abbreviated. The hypotheses (step 1) should always be set up in advance of any analysis and the significance criterion should also be determined (e.g., α =0.05). Statistical computing packages will produce the test statistic (usually reporting the test statistic as t) and a p-value. The investigator can then determine statistical significance using the following: If p < α then reject H 0 .  

 

 

  • Step 1. Set up hypotheses and determine level of significance

H 0 : μ = 191 H 1 : μ > 191                 α =0.05

The research hypothesis is that weights have increased, and therefore an upper tailed test is used.

  • Step 2. Select the appropriate test statistic.

Because the sample size is large (n > 30) the appropriate test statistic is

  • Step 3. Set up decision rule.  

In this example, we are performing an upper tailed test (H 1 : μ> 191), with a Z test statistic and selected α =0.05.   Reject H 0 if Z > 1.645.

We now substitute the sample data into the formula for the test statistic identified in Step 2.  

We reject H 0 because 2.38 > 1.645. We have statistically significant evidence at a =0.05, to show that the mean weight in men in 2006 is more than 191 pounds. Because we rejected the null hypothesis, we now approximate the p-value which is the likelihood of observing the sample data if the null hypothesis is true. An alternative definition of the p-value is the smallest level of significance where we can still reject H 0 . In this example, we observed Z=2.38 and for α=0.05, the critical value was 1.645. Because 2.38 exceeded 1.645 we rejected H 0 . In our conclusion we reported a statistically significant increase in mean weight at a 5% level of significance. Using the table of critical values for upper tailed tests, we can approximate the p-value. If we select α=0.025, the critical value is 1.96, and we still reject H 0 because 2.38 > 1.960. If we select α=0.010 the critical value is 2.326, and we still reject H 0 because 2.38 > 2.326. However, if we select α=0.005, the critical value is 2.576, and we cannot reject H 0 because 2.38 < 2.576. Therefore, the smallest α where we still reject H 0 is 0.010. This is the p-value. A statistical computing package would produce a more precise p-value which would be in between 0.005 and 0.010. Here we are approximating the p-value and would report p < 0.010.                  

In all tests of hypothesis, there are two types of errors that can be committed. The first is called a Type I error and refers to the situation where we incorrectly reject H 0 when in fact it is true. This is also called a false positive result (as we incorrectly conclude that the research hypothesis is true when in fact it is not). When we run a test of hypothesis and decide to reject H 0 (e.g., because the test statistic exceeds the critical value in an upper tailed test) then either we make a correct decision because the research hypothesis is true or we commit a Type I error. The different conclusions are summarized in the table below. Note that we will never know whether the null hypothesis is really true or false (i.e., we will never know which row of the following table reflects reality).

Table - Conclusions in Test of Hypothesis

 

is True

Correct Decision

Type I Error

is False

Type II Error

Correct Decision

In the first step of the hypothesis test, we select a level of significance, α, and α= P(Type I error). Because we purposely select a small value for α, we control the probability of committing a Type I error. For example, if we select α=0.05, and our test tells us to reject H 0 , then there is a 5% probability that we commit a Type I error. Most investigators are very comfortable with this and are confident when rejecting H 0 that the research hypothesis is true (as it is the more likely scenario when we reject H 0 ).

When we run a test of hypothesis and decide not to reject H 0 (e.g., because the test statistic is below the critical value in an upper tailed test) then either we make a correct decision because the null hypothesis is true or we commit a Type II error. Beta (β) represents the probability of a Type II error and is defined as follows: β=P(Type II error) = P(Do not Reject H 0 | H 0 is false). Unfortunately, we cannot choose β to be small (e.g., 0.05) to control the probability of committing a Type II error because β depends on several factors including the sample size, α, and the research hypothesis. When we do not reject H 0 , it may be very likely that we are committing a Type II error (i.e., failing to reject H 0 when in fact it is false). Therefore, when tests are run and the null hypothesis is not rejected we often make a weak concluding statement allowing for the possibility that we might be committing a Type II error. If we do not reject H 0 , we conclude that we do not have significant evidence to show that H 1 is true. We do not conclude that H 0 is true.

Lightbulb icon signifying an important idea

 The most common reason for a Type II error is a small sample size.

return to top | previous page | next page

Content ©2017. All Rights Reserved. Date last modified: November 6, 2017. Wayne W. LaMorte, MD, PhD, MPH

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Crit Care Med
  • v.23(Suppl 3); 2019 Sep

An Introduction to Statistics: Understanding Hypothesis Testing and Statistical Errors

Priya ranganathan.

1 Department of Anesthesiology, Critical Care and Pain, Tata Memorial Hospital, Mumbai, Maharashtra, India

2 Department of Surgical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India

The second article in this series on biostatistics covers the concepts of sample, population, research hypotheses and statistical errors.

How to cite this article

Ranganathan P, Pramesh CS. An Introduction to Statistics: Understanding Hypothesis Testing and Statistical Errors. Indian J Crit Care Med 2019;23(Suppl 3):S230–S231.

Two papers quoted in this issue of the Indian Journal of Critical Care Medicine report. The results of studies aim to prove that a new intervention is better than (superior to) an existing treatment. In the ABLE study, the investigators wanted to show that transfusion of fresh red blood cells would be superior to standard-issue red cells in reducing 90-day mortality in ICU patients. 1 The PROPPR study was designed to prove that transfusion of a lower ratio of plasma and platelets to red cells would be superior to a higher ratio in decreasing 24-hour and 30-day mortality in critically ill patients. 2 These studies are known as superiority studies (as opposed to noninferiority or equivalence studies which will be discussed in a subsequent article).

SAMPLE VERSUS POPULATION

A sample represents a group of participants selected from the entire population. Since studies cannot be carried out on entire populations, researchers choose samples, which are representative of the population. This is similar to walking into a grocery store and examining a few grains of rice or wheat before purchasing an entire bag; we assume that the few grains that we select (the sample) are representative of the entire sack of grains (the population).

The results of the study are then extrapolated to generate inferences about the population. We do this using a process known as hypothesis testing. This means that the results of the study may not always be identical to the results we would expect to find in the population; i.e., there is the possibility that the study results may be erroneous.

HYPOTHESIS TESTING

A clinical trial begins with an assumption or belief, and then proceeds to either prove or disprove this assumption. In statistical terms, this belief or assumption is known as a hypothesis. Counterintuitively, what the researcher believes in (or is trying to prove) is called the “alternate” hypothesis, and the opposite is called the “null” hypothesis; every study has a null hypothesis and an alternate hypothesis. For superiority studies, the alternate hypothesis states that one treatment (usually the new or experimental treatment) is superior to the other; the null hypothesis states that there is no difference between the treatments (the treatments are equal). For example, in the ABLE study, we start by stating the null hypothesis—there is no difference in mortality between groups receiving fresh RBCs and standard-issue RBCs. We then state the alternate hypothesis—There is a difference between groups receiving fresh RBCs and standard-issue RBCs. It is important to note that we have stated that the groups are different, without specifying which group will be better than the other. This is known as a two-tailed hypothesis and it allows us to test for superiority on either side (using a two-sided test). This is because, when we start a study, we are not 100% certain that the new treatment can only be better than the standard treatment—it could be worse, and if it is so, the study should pick it up as well. One tailed hypothesis and one-sided statistical testing is done for non-inferiority studies, which will be discussed in a subsequent paper in this series.

STATISTICAL ERRORS

There are two possibilities to consider when interpreting the results of a superiority study. The first possibility is that there is truly no difference between the treatments but the study finds that they are different. This is called a Type-1 error or false-positive error or alpha error. This means falsely rejecting the null hypothesis.

The second possibility is that there is a difference between the treatments and the study does not pick up this difference. This is called a Type 2 error or false-negative error or beta error. This means falsely accepting the null hypothesis.

The power of the study is the ability to detect a difference between groups and is the converse of the beta error; i.e., power = 1-beta error. Alpha and beta errors are finalized when the protocol is written and form the basis for sample size calculation for the study. In an ideal world, we would not like any error in the results of our study; however, we would need to do the study in the entire population (infinite sample size) to be able to get a 0% alpha and beta error. These two errors enable us to do studies with realistic sample sizes, with the compromise that there is a small possibility that the results may not always reflect the truth. The basis for this will be discussed in a subsequent paper in this series dealing with sample size calculation.

Conventionally, type 1 or alpha error is set at 5%. This means, that at the end of the study, if there is a difference between groups, we want to be 95% certain that this is a true difference and allow only a 5% probability that this difference has occurred by chance (false positive). Type 2 or beta error is usually set between 10% and 20%; therefore, the power of the study is 90% or 80%. This means that if there is a difference between groups, we want to be 80% (or 90%) certain that the study will detect that difference. For example, in the ABLE study, sample size was calculated with a type 1 error of 5% (two-sided) and power of 90% (type 2 error of 10%) (1).

Table 1 gives a summary of the two types of statistical errors with an example

Statistical errors

(a) Types of statistical errors
: Null hypothesis is
TrueFalse
Null hypothesis is actuallyTrueCorrect results!Falsely rejecting null hypothesis - Type I error
FalseFalsely accepting null hypothesis - Type II errorCorrect results!
(b) Possible statistical errors in the ABLE trial
There is difference in mortality between groups receiving fresh RBCs and standard-issue RBCsThere difference in mortality between groups receiving fresh RBCs and standard-issue RBCs
TruthThere is difference in mortality between groups receiving fresh RBCs and standard-issue RBCsCorrect results!Falsely rejecting null hypothesis - Type I error
There difference in mortality between groups receiving fresh RBCs and standard-issue RBCsFalsely accepting null hypothesis - Type II errorCorrect results!

In the next article in this series, we will look at the meaning and interpretation of ‘ p ’ value and confidence intervals for hypothesis testing.

Source of support: Nil

Conflict of interest: None

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

two tailed hypothesis test hypotheses

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved August 30, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

Two Tailed Test: Definition, Examples

Hypothesis Testing > Two Tailed Test

What is a Two Tailed Test?

two tailed test

A two tailed test tells you that you’re finding the area in the middle of a distribution. In other words, your rejection region (the place where you would reject the null hypothesis ) is in both tails.

For example, let’s say you were running a z test with an alpha level of 5% (0.05). In a one tailed test, the entire 5% would be in a single tail. But with a two tailed test, that 5% is split between the two tails, giving you 2.5% (0.025) in each tail.

Need help with a homework question? Check out our tutoring page!

Two Tailed T Test

Image: ETSU.edu

You may want to compare a sample mean to a given value of x with a t test . Let’s say your null hypothesis is that the mean is equal to 10 (μ = 10). A two tailed t test will test:

  • Is the mean greater than 10?
  • Is the mean less than 10?

If you choose an alpha level of 5%, and the f statistic is in the top 2.5% or bottom 2.5% of the probability distribution, then there is a significant difference in the means. That situation will also result in a p-value of less than 0.05. A small p-value gives you a reason to reject the null hypothesis .

Two tailed F test

To learn more watch the video below or keep reading.

two tailed hypothesis test hypotheses

Can’t see the video? Click here to watch it on YouTube.

An f test tells you if two population variances are equal. A two tailed f test is the standard type of f test which will tell you if the variances are equal or not equal. The two tailed version of test will test if one variance is greater than, or less than, the other variance. This is in comparison to the one tailed f test , which is used when you only want to test if one variance is greater than the other or that one variance is less than the other (but not both).

Everitt, B. S.; Skrondal, A. (2010), The Cambridge Dictionary of Statistics , Cambridge University Press. Gonick, L. (1993). The Cartoon Guide to Statistics . HarperPerennial.

  • Search Search Please fill out this field.

What Is a Two-Tailed Test?

Understanding a two-tailed test, special considerations, two-tailed vs. one-tailed test.

  • Two-Tailed Test FAQs
  • Corporate Finance
  • Financial Analysis

What Is a Two-Tailed Test? Definition and Example

Adam Hayes, Ph.D., CFA, is a financial writer with 15+ years Wall Street experience as a derivatives trader. Besides his extensive derivative trading expertise, Adam is an expert in economics and behavioral finance. Adam received his master's in economics from The New School for Social Research and his Ph.D. from the University of Wisconsin-Madison in sociology. He is a CFA charterholder as well as holding FINRA Series 7, 55 & 63 licenses. He currently researches and teaches economic sociology and the social studies of finance at the Hebrew University in Jerusalem.

two tailed hypothesis test hypotheses

Investopedia / Joules Garcia

A two-tailed test, in statistics, is a method in which the critical area of a distribution is two-sided and tests whether a sample is greater than or less than a certain range of values. It is used in null-hypothesis testing and testing for statistical significance . If the sample being tested falls into either of the critical areas, the alternative hypothesis is accepted instead of the null hypothesis.

Key Takeaways

  • In statistics, a two-tailed test is a method in which the critical area of a distribution is two-sided and tests whether a sample is greater or less than a range of values.
  • It is used in null-hypothesis testing and testing for statistical significance.
  • If the sample being tested falls into either of the critical areas, the alternative hypothesis is accepted instead of the null hypothesis.
  • By convention two-tailed tests are used to determine significance at the 5% level, meaning each side of the distribution is cut at 2.5%.

A basic concept of inferential statistics is hypothesis testing , which determines whether a claim is true or not given a population parameter. A hypothesis test that is designed to show whether the mean of a sample is significantly greater than and significantly less than the mean of a population is referred to as a two-tailed test. The two-tailed test gets its name from testing the area under both tails of a normal distribution , although the test can be used in other non-normal distributions.

A two-tailed test is designed to examine both sides of a specified data range as designated by the probability distribution involved. The probability distribution should represent the likelihood of a specified outcome based on predetermined standards. This requires the setting of a limit designating the highest (or upper) and lowest (or lower) accepted variable values included within the range. Any data point that exists above the upper limit or below the lower limit is considered out of the acceptance range and in an area referred to as the rejection range.

There is no inherent standard about the number of data points that must exist within the acceptance range. In instances where precision is required, such as in the creation of pharmaceutical drugs, a rejection rate of 0.001% or less may be instituted. In instances where precision is less critical, such as the number of food items in a product bag, a rejection rate of 5% may be appropriate.

A two-tailed test can also be used practically during certain production activities in a firm, such as with the production and packaging of candy at a particular facility. If the production facility designates 50 candies per bag as its goal, with an acceptable distribution of 45 to 55 candies, any bag found with an amount below 45 or above 55 is considered within the rejection range.

To confirm the packaging mechanisms are properly calibrated to meet the expected output, random sampling may be taken to confirm accuracy. A simple random sample takes a small, random portion of the entire population to represent the entire data set, where each member has an equal probability of being chosen.

For the packaging mechanisms to be considered accurate, an average of 50 candies per bag with an appropriate distribution is desired. Additionally, the number of bags that fall within the rejection range needs to fall within the probability distribution limit considered acceptable as an error rate. Here, the null hypothesis would be that the mean is 50 while the alternate hypothesis would be that it is not 50.

If, after conducting the two-tailed test, the z-score falls in the rejection region, meaning that the deviation is too far from the desired mean, then adjustments to the facility or associated equipment may be required to correct the error. Regular use of two-tailed testing methods can help ensure production stays within limits over the long term.

Be careful to note if a statistical test is one- or two-tailed as this will greatly influence a model's interpretation.

When a hypothesis test is set up to show that the sample mean would be only higher than the population mean, this is referred to as a  one-tailed test . A formulation of this hypothesis would be, for example, that "the returns on an investment fund would be  at least  x%." One-tailed tests could also be set up to show that the sample mean could be only less than the population mean. The key difference from a two-tailed test is that in a two-tailed test, the sample mean could be different from the population mean by being  either  higher or lower than it.

If the sample being tested falls into the one-sided critical area, the alternative hypothesis will be accepted instead of the null hypothesis. A one-tailed test is also known as a directional hypothesis or directional test.

A two-tailed test, on the other hand, is designed to examine both sides of a specified data range to test whether a sample is greater than or less than the range of values.

Example of a Two-Tailed Test

As a hypothetical example, imagine that a new  stockbroker , named XYZ, claims that their brokerage fees are lower than that of your current stockbroker, ABC) Data available from an independent research firm indicates that the mean and standard deviation of all ABC broker clients are $18 and $6, respectively.

A sample of 100 clients of ABC is taken, and brokerage charges are calculated with the new rates of XYZ broker. If the mean of the sample is $18.75 and the sample standard deviation is $6, can any inference be made about the difference in the average brokerage bill between ABC and XYZ broker?

  • H 0 : Null Hypothesis: mean = 18
  • H 1 : Alternative Hypothesis: mean <> 18 (This is what we want to prove.)
  • Rejection region: Z <= - Z 2.5  and Z>=Z 2.5  (assuming 5% significance level, split 2.5 each on either side).
  • Z = (sample mean – mean) / (std-dev / sqrt (no. of samples)) = (18.75 – 18) / (6/(sqrt(100)) = 1.25

This calculated Z value falls between the two limits defined by: - Z 2.5  = -1.96 and Z 2.5  = 1.96.

This concludes that there is insufficient evidence to infer that there is any difference between the rates of your existing broker and the new broker. Therefore, the null hypothesis cannot be rejected. Alternatively, the p-value = P(Z< -1.25)+P(Z >1.25) = 2 * 0.1056 = 0.2112 = 21.12%, which is greater than 0.05 or 5%, leads to the same conclusion.

How Is a Two-Tailed Test Designed?

A two-tailed test is designed to determine whether a claim is true or not given a population parameter. It examines both sides of a specified data range as designated by the probability distribution involved. As such, the probability distribution should represent the likelihood of a specified outcome based on predetermined standards.

What Is the Difference Between a Two-Tailed and One-Tailed Test?

A two-tailed hypothesis test is designed to show whether the sample mean is significantly greater than  or  significantly less than the mean of a population. The two-tailed test gets its name from testing the area under both tails (sides) of a normal distribution. A one-tailed hypothesis test, on the other hand, is set up to show only one test; that the sample mean would be higher than the population mean, or, in a separate test, that the sample mean would be lower than the population mean.

What Is a Z-score?

A Z-score numerically describes a value's relationship to the mean of a group of values and is measured in terms of the number of standard deviations from the mean. If a Z-score is 0, it indicates that the data point's score is identical to the mean score whereas Z-scores of 1.0 and -1.0 would indicate values one standard deviation above or below the mean. In most large data sets, 99% of values have a Z-score between -3 and 3, meaning they lie within three standard deviations above and below the mean.

San Jose State University. " 6: Introduction to Null Hypothesis Significance Testing ."

two tailed hypothesis test hypotheses

  • Terms of Service
  • Editorial Policy
  • Privacy Policy

two tailed hypothesis test hypotheses

  • The Open University
  • Accessibility hub
  • Guest user / Sign out
  • Study with The Open University

My OpenLearn Profile

Personalise your OpenLearn profile, save your favourite content and get recognition for your learning

About this free course

Become an ou student, download this course, share this free course.

Data analysis: hypothesis testing

Start this free course now. Just create an account and sign in. Enrol and complete the course for a free statement of participation or digital badge if available.

4 One-tailed vs two-tailed test

To gain a deeper understanding of how to conduct a hypothesis test, this section will delve into the concepts of one-tailed and two-tailed tests. These tests are vital tools in statistical hypothesis testing, and the decision of which test to employ depends on the research question and hypothesis under examination. It is crucial to give careful thought to the suitable type of test to ensure that the hypothesis is thoroughly tested and precise conclusions are derived from the data. This section will elaborate on this topic in greater detail.

To commence, complete the following activity pertaining to the formulation of null and alternative hypotheses. This exercise may be somewhat challenging, but it serves as an excellent introduction to upcoming discussions – don’t be concerned if you find it difficult!

Activity 3 Hypotheses setting

Read the following statements and then develop a null hypothesis and an alternative hypothesis.

‘It is believed that OU students need to set aside no longer than, on average, 15 hours to study an entire session of an OU course. However, a researcher believes that OU students spend longer studying an entire session of an OU course.’

H 0 : OU students spend, on average, no more than 15 hours studying an entire session of OU course.

H a : OU students spend, on average, more than 15 hours studying an entire session of OU course.

They can also be written as:

H 0 : µ ≤ 15 hours studies

H a : µ > 15 hours studies

µ is a symbol for a population mean. Remember, H 0 and H a are always opposites.

Did you identify any differences between the hypotheses you developed in Activity 1 and Activity 3? The set of hypotheses in Activity 1 has an equal (=) or not equal (≠) supposition (sign) in the statement. However, in Activity 3, the set of hypotheses has less than or equal to (≤) and greater than (>) supposition (sign) in the statement. This creates different conditions that lead to acceptance or rejection of the null hypothesis.

Previous

two tailed hypothesis test hypotheses

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

S.3.1 hypothesis testing (critical value approach).

The critical value approach involves determining "likely" or "unlikely" by determining whether or not the observed test statistic is more extreme than would be expected if the null hypothesis were true. That is, it entails comparing the observed test statistic to some cutoff value, called the " critical value ." If the test statistic is more extreme than the critical value, then the null hypothesis is rejected in favor of the alternative hypothesis. If the test statistic is not as extreme as the critical value, then the null hypothesis is not rejected.

Specifically, the four steps involved in using the critical value approach to conducting any hypothesis test are:

  • Specify the null and alternative hypotheses.
  • Using the sample data and assuming the null hypothesis is true, calculate the value of the test statistic. To conduct the hypothesis test for the population mean μ , we use the t -statistic \(t^*=\frac{\bar{x}-\mu}{s/\sqrt{n}}\) which follows a t -distribution with n - 1 degrees of freedom.
  • Determine the critical value by finding the value of the known distribution of the test statistic such that the probability of making a Type I error — which is denoted \(\alpha\) (greek letter "alpha") and is called the " significance level of the test " — is small (typically 0.01, 0.05, or 0.10).
  • Compare the test statistic to the critical value. If the test statistic is more extreme in the direction of the alternative than the critical value, reject the null hypothesis in favor of the alternative hypothesis. If the test statistic is less extreme than the critical value, do not reject the null hypothesis.

Example S.3.1.1

Mean gpa section  .

In our example concerning the mean grade point average, suppose we take a random sample of n = 15 students majoring in mathematics. Since n = 15, our test statistic t * has n - 1 = 14 degrees of freedom. Also, suppose we set our significance level α at 0.05 so that we have only a 5% chance of making a Type I error.

Right-Tailed

The critical value for conducting the right-tailed test H 0 : μ = 3 versus H A : μ > 3 is the t -value, denoted t \(\alpha\) , n - 1 , such that the probability to the right of it is \(\alpha\). It can be shown using either statistical software or a t -table that the critical value t 0.05,14 is 1.7613. That is, we would reject the null hypothesis H 0 : μ = 3 in favor of the alternative hypothesis H A : μ > 3 if the test statistic t * is greater than 1.7613. Visually, the rejection region is shaded red in the graph.

t distribution graph for a t value of 1.76131

Left-Tailed

The critical value for conducting the left-tailed test H 0 : μ = 3 versus H A : μ < 3 is the t -value, denoted -t ( \(\alpha\) , n - 1) , such that the probability to the left of it is \(\alpha\). It can be shown using either statistical software or a t -table that the critical value -t 0.05,14 is -1.7613. That is, we would reject the null hypothesis H 0 : μ = 3 in favor of the alternative hypothesis H A : μ < 3 if the test statistic t * is less than -1.7613. Visually, the rejection region is shaded red in the graph.

t-distribution graph for a t value of -1.76131

There are two critical values for the two-tailed test H 0 : μ = 3 versus H A : μ ≠ 3 — one for the left-tail denoted -t ( \(\alpha\) / 2, n - 1) and one for the right-tail denoted t ( \(\alpha\) / 2, n - 1) . The value - t ( \(\alpha\) /2, n - 1) is the t -value such that the probability to the left of it is \(\alpha\)/2, and the value t ( \(\alpha\) /2, n - 1) is the t -value such that the probability to the right of it is \(\alpha\)/2. It can be shown using either statistical software or a t -table that the critical value -t 0.025,14 is -2.1448 and the critical value t 0.025,14 is 2.1448. That is, we would reject the null hypothesis H 0 : μ = 3 in favor of the alternative hypothesis H A : μ ≠ 3 if the test statistic t * is less than -2.1448 or greater than 2.1448. Visually, the rejection region is shaded red in the graph.

t distribution graph for a two tailed test of 0.05 level of significance

Statistics Tutorial

Descriptive statistics, inferential statistics, stat reference, statistics - hypothesis testing a mean (two tailed).

A population mean is an average of value a population.

Hypothesis tests are used to check a claim about the size of that population mean.

Hypothesis Testing a Mean

The following steps are used for a hypothesis test:

  • Check the conditions
  • Define the claims
  • Decide the significance level
  • Calculate the test statistic

For example:

  • Population : Nobel Prize winners
  • Category : Age when they received the prize.

And we want to check the claim:

"The average age of Nobel Prize winners when they received the prize is not 60"

By taking a sample of 30 randomly selected Nobel Prize winners we could find that:

  • The mean age in the sample (\(\bar{x}\)) is 62.1
  • The standard deviation of age in the sample (\(s\)) is 13.46

From this sample data we check the claim with the steps below.

1. Checking the Conditions

The conditions for calculating a confidence interval for a proportion are:

  • The sample is randomly selected
  • The population data is normally distributed
  • Sample size is large enough

A moderately large sample size, like 30, is typically large enough.

In the example, the sample size was 30 and it was randomly selected, so the conditions are fulfilled.

Note: Checking if the data is normally distributed can be done with specialized statistical tests.

2. Defining the Claims

We need to define a null hypothesis (\(H_{0}\)) and an alternative hypothesis (\(H_{1}\)) based on the claim we are checking.

The claim was:

In this case, the parameter is the mean age of Nobel Prize winners when they received the prize (\(\mu\)).

The null and alternative hypothesis are then:

Null hypothesis : The average age was 60.

Alternative hypothesis : The average age is not 60.

Which can be expressed with symbols as:

\(H_{0}\): \(\mu = 60 \)

\(H_{1}\): \(\mu \neq 60 \)

This is a ' two-tailed ' test, because the alternative hypothesis claims that the proportion is different from the null hypothesis.

If the data supports the alternative hypothesis, we reject the null hypothesis and accept the alternative hypothesis.

Advertisement

3. Deciding the Significance Level

The significance level (\(\alpha\)) is the uncertainty we accept when rejecting the null hypothesis in a hypothesis test.

The significance level is a percentage probability of accidentally making the wrong conclusion.

Typical significance levels are:

  • \(\alpha = 0.1\) (10%)
  • \(\alpha = 0.05\) (5%)
  • \(\alpha = 0.01\) (1%)

A lower significance level means that the evidence in the data needs to be stronger to reject the null hypothesis.

There is no "correct" significance level - it only states the uncertainty of the conclusion.

Note: A 5% significance level means that when we reject a null hypothesis:

We expect to reject a true null hypothesis 5 out of 100 times.

4. Calculating the Test Statistic

The test statistic is used to decide the outcome of the hypothesis test.

The test statistic is a standardized value calculated from the sample.

The formula for the test statistic (TS) of a population mean is:

\(\displaystyle \frac{\bar{x} - \mu}{s} \cdot \sqrt{n} \)

\(\bar{x}-\mu\) is the difference between the sample mean (\(\bar{x}\)) and the claimed population mean (\(\mu\)).

\(s\) is the sample standard deviation .

\(n\) is the sample size.

In our example:

The claimed (\(H_{0}\)) population mean (\(\mu\)) was \( 60 \)

The sample mean (\(\bar{x}\)) was \(62.1\)

The sample standard deviation (\(s\)) was \(13.46\)

The sample size (\(n\)) was \(30\)

So the test statistic (TS) is then:

\(\displaystyle \frac{62.1-60}{13.46} \cdot \sqrt{30} = \frac{2.1}{13.46} \cdot \sqrt{30} \approx 0.156 \cdot 5.477 = \underline{0.855}\)

You can also calculate the test statistic using programming language functions:

With Python use the scipy and math libraries to calculate the test statistic.

With R use built-in math and statistics functions to calculate the test statistic.

5. Concluding

There are two main approaches for making the conclusion of a hypothesis test:

  • The critical value approach compares the test statistic with the critical value of the significance level.
  • The P-value approach compares the P-value of the test statistic and with the significance level.

Note: The two approaches are only different in how they present the conclusion.

The Critical Value Approach

For the critical value approach we need to find the critical value (CV) of the significance level (\(\alpha\)).

For a population mean test, the critical value (CV) is a T-value from a student's t-distribution .

This critical T-value (CV) defines the rejection region for the test.

The rejection region is an area of probability in the tails of the standard normal distribution.

Because the claim is that the population proportion is different from 60, the rejection region is split into both the left and right tail:

The student's t-distribution is adjusted for the uncertainty from smaller samples.

This adjustment is called degrees of freedom (df), which is the sample size \((n) - 1\)

In this case the degrees of freedom (df) is: \(30 - 1 = \underline{29} \)

Choosing a significance level (\(\alpha\)) of 0.05, or 5%, we can find the critical T-value from a T-table , or with a programming language function:

Note: Because this is a two-tailed test the tail area (\(\alpha\)) needs to be split in half (divided by 2).

With Python use the Scipy Stats library t.ppf() function find the T-Value for an \(\alpha\)/2 = 0.025 at 29 degrees of freedom (df).

With R use the built-in qt() function to find the t-value for an \(\alpha\)/ = 0.025 at 29 degrees of freedom (df).

Using either method we can find that the critical T-Value is \(\approx \underline{-2.045}\)

For a two-tailed test we need to check if the test statistic (TS) is smaller than the negative critical value (-CV), or bigger than the positive critical value (CV).

If the test statistic is smaller than the negative critical value, the test statistic is in the rejection region .

If the test statistic is bigger than the positive critical value, the test statistic is in the rejection region .

When the test statistic is in the rejection region, we reject the null hypothesis (\(H_{0}\)).

Here, the test statistic (TS) was \(\approx \underline{0.855}\) and the critical value was \(\approx \underline{-2.045}\)

Here is an illustration of this test in a graph:

Since the test statistic is between the critical values we keep the null hypothesis.

This means that the sample data does not support the alternative hypothesis.

And we can summarize the conclusion stating:

The sample data does not support the claim that "The average age of Nobel Prize winners when they received the prize is not 60" at a 5% significance level .

The P-Value Approach

For the P-value approach we need to find the P-value of the test statistic (TS).

If the P-value is smaller than the significance level (\(\alpha\)), we reject the null hypothesis (\(H_{0}\)).

The test statistic was found to be \( \approx \underline{0.855} \)

For a population proportion test, the test statistic is a T-Value from a student's t-distribution .

Because this is a two-tailed test, we need to find the P-value of a T-value bigger than 0.855 and multiply it by 2 .

The student's t-distribution is adjusted according to degrees of freedom (df), which is the sample size \((30) - 1 = \underline{29}\)

We can find the P-value using a T-table , or with a programming language function:

With Python use the Scipy Stats library t.cdf() function find the P-value of a T-value bigger than 0.855 for a two tailed test at 29 degrees of freedom (df):

With R use the built-in pt() function find the P-value of a T-Value bigger than 0.855 for a two tailed test at 29 degrees of freedom (df):

Using either method we can find that the P-value is \(\approx \underline{0.3996}\)

This tells us that the significance level (\(\alpha\)) would need to be smaller 0.3996, or 39.96%, to reject the null hypothesis.

This P-value is bigger than any of the common significance levels (10%, 5%, 1%).

So the null hypothesis is kept at all of these significance levels.

The sample data does not support the claim that "The average age of Nobel Prize winners when they received the prize is not 60" at a 10%, 5%, or 1% significance level .

Calculating a P-Value for a Hypothesis Test with Programming

Many programming languages can calculate the P-value to decide outcome of a hypothesis test.

Using software and programming to calculate statistics is more common for bigger sets of data, as calculating manually becomes difficult.

The P-value calculated here will tell us the lowest possible significance level where the null-hypothesis can be rejected.

With Python use the scipy and math libraries to calculate the P-value for a two tailed hypothesis test for a mean.

Here, the sample size is 30, the sample mean is 62.1, the sample standard deviation is 13.46, and the test is for a mean different from 60.

With R use built-in math and statistics functions find the P-value for a two tailed hypothesis test for a mean.

Left-Tailed and Two-Tailed Tests

This was an example of a left tailed test, where the alternative hypothesis claimed that parameter is smaller than the null hypothesis claim.

You can check out an equivalent step-by-step guide for other types here:

  • Right-Tailed Test
  • Two-Tailed Test

Get Certified

COLOR PICKER

colorpicker

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail: [email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail: [email protected]

Top Tutorials

Top references, top examples, get certified.

Examples

Two Tailed Hypothesis

Ai generator.

two tailed hypothesis test hypotheses

In the vast realm of scientific inquiry, the two-tailed hypothesis holds a special place, serving as a compass for researchers exploring possibilities in two opposing directions. Instead of predicting a specific direction of the relationship between variables, it remains open to outcomes on both ends of the spectrum. Understanding how to craft such a hypothesis, enriched with insights and nuances, can elevate the robustness of one’s research. Delve into its world, discover thesis statement examples, learn the art of its formulation, and grasp tips to master its intricacies.

What is Two Tailed Hypothesis? – Definition

A two-tailed hypothesis, also known as a non-directional hypothesis , is a type of hypothesis used in statistical testing that predicts a relationship between variables without specifying the direction of the relationship. In other words, it tests for the possibility of the relationship in both directions. This approach is used when a researcher believes there might be a difference due to the experiment but doesn’t have enough preliminary evidence or basis to predict a specific direction of that difference.

What is an example of a Two Tailed hypothesis statement?

Let’s consider a study on the impact of a new teaching method on student performance:

Hypothesis Statement : The new teaching method will have an effect on student performance.

Notice that the hypothesis doesn’t specify whether the effect will be positive or negative (i.e., whether student performance will improve or decline). It’s open to both possibilities, making it a two-tailed hypothesis.

Two Tailed Hypothesis Statement Examples

The two-tailed hypothesis, an essential tool in research, doesn’t predict a specific directional outcome between variables. Instead, it posits that an effect exists, without specifying its nature. This approach offers flexibility, as it remains open to both positive and negative outcomes. Below are various examples from diverse fields to shed light on this versatile research method. You may also be interested to browse through our other  one-tailed hypothesis .

  • Sleep and Cognitive Ability : Sleep duration affects cognitive performance in adults.
  • Dietary Fiber and Digestion : Consumption of dietary fiber influences digestion rates.
  • Exercise and Stress Levels : Engaging in physical activity impacts stress levels.
  • Vitamin C and Immunity : Intake of Vitamin C has an effect on immunity strength.
  • Noise Levels and Concentration : Ambient noise levels influence individual concentration ability.
  • Artificial Sweeteners and Appetite : Consumption of artificial sweeteners affects appetite.
  • UV Light and Skin Health : Exposure to UV light influences skin health.
  • Coffee Intake and Sleep Quality : Consuming coffee has an effect on sleep quality.
  • Air Pollution and Respiratory Issues : Levels of air pollution impact respiratory health.
  • Meditation and Blood Pressure : Practicing meditation affects blood pressure readings.
  • Pet Ownership and Loneliness : Having a pet influences feelings of loneliness.
  • Green Spaces and Mental Wellbeing : Exposure to green spaces impacts mental health.
  • Music Tempo and Heart Rate : Listening to music of varying tempos affects heart rate.
  • Chocolate Consumption and Mood : Eating chocolate has an effect on mood.
  • Social Media Usage and Self-Esteem : The frequency of social media usage influences self-esteem.
  • E-reading and Eye Strain : Using e-readers affects eye strain levels.
  • Vegan Diets and Energy Levels : Following a vegan diet influences daily energy levels.
  • Carbonated Drinks and Tooth Decay : Consumption of carbonated drinks has an effect on tooth decay rates.
  • Distance Learning and Student Engagement : Engaging in distance learning impacts student involvement.
  • Organic Foods and Health Perceptions : Consuming organic foods influences perceptions of health.
  • Urban Living and Stress Levels : Living in urban environments affects stress levels.
  • Plant-Based Diets and Cholesterol : Adopting a plant-based diet impacts cholesterol levels.
  • Virtual Reality Training and Skill Acquisition : Using virtual reality for training influences the rate of skill acquisition.
  • Video Game Play and Hand-Eye Coordination : Playing video games has an effect on hand-eye coordination.
  • Aromatherapy and Sleep Quality : Using aromatherapy impacts the quality of sleep.
  • Bilingualism and Cognitive Flexibility : Being bilingual affects cognitive flexibility.
  • Microplastics and Marine Health : The presence of microplastics in oceans influences marine organism health.
  • Yoga Practice and Joint Health : Engaging in yoga has an effect on joint health.
  • Processed Foods and Metabolism : Consuming processed foods impacts metabolic rates.
  • Home Schooling and Social Skills : Being homeschooled influences the development of social skills.
  • Smartphone Usage and Attention Span : Regular smartphone use affects attention spans.
  • E-commerce and Consumer Trust : Engaging with e-commerce platforms influences levels of consumer trust.
  • Work-from-Home and Productivity : The practice of working from home has an effect on productivity levels.
  • Classical Music and Plant Growth : Exposing plants to classical music impacts their growth rate.
  • Public Transport and Community Engagement : Using public transport influences community engagement levels.
  • Digital Note-taking and Memory Retention : Taking notes digitally affects memory retention.
  • Acoustic Music and Relaxation : Listening to acoustic music impacts feelings of relaxation.
  • GMO Foods and Public Perception : Consuming GMO foods influences public perception of food safety.
  • LED Lights and Eye Comfort : Using LED lights affects visual comfort.
  • Fast Fashion and Consumer Satisfaction : Engaging with fast fashion brands influences consumer satisfaction levels.
  • Diverse Teams and Innovation : Working in diverse teams impacts the level of innovation.
  • Local Produce and Nutritional Value : Consuming local produce affects its nutritional value.
  • Podcasts and Language Acquisition : Listening to podcasts influences the speed of language acquisition.
  • Augmented Reality and Learning Efficiency : Using augmented reality in education has an effect on learning efficiency.
  • Museums and Historical Interest : Visiting museums impacts interest in history.
  • E-books vs. Physical Books and Reading Retention : The type of book, whether e-book or physical, affects memory retention from reading.
  • Biophilic Design and Worker Well-being : Implementing biophilic designs in office spaces influences worker well-being.
  • Recycled Products and Consumer Preference : Using recycled materials in products impacts consumer preferences.
  • Interactive Learning and Critical Thinking : Engaging in interactive learning environments affects the development of critical thinking skills.
  • High-Intensity Training and Muscle Growth : Participating in high-intensity training has an effect on muscle growth rate.
  • Pet Therapy and Anxiety Levels : Engaging with therapy animals influences anxiety levels.
  • 3D Printing and Manufacturing Efficiency : Implementing 3D printing in manufacturing affects production efficiency.
  • Electric Cars and Public Adoption Rates : Introducing more electric cars impacts the rate of public adoption.
  • Ancient Architectural Study and Modern Design Inspiration : Studying ancient architecture influences modern design inspirations.
  • Natural Lighting and Productivity : The amount of natural lighting in a workspace affects worker productivity.
  • Streaming Platforms and Traditional TV Viewing : The rise of streaming platforms has an effect on traditional TV viewing habits.
  • Handwritten Notes and Conceptual Understanding : Taking notes by hand influences the depth of conceptual understanding.
  • Urban Farming and Community Engagement : Implementing urban farming practices impacts levels of community engagement.
  • Influencer Marketing and Brand Loyalty : Collaborating with influencers affects brand loyalty among consumers.
  • Online Workshops and Skill Enhancement : Participating in online workshops influences skill enhancement.
  • Virtual Reality and Empathy Development : Using virtual reality experiences influences the development of empathy.
  • Gardening and Mental Well-being : Engaging in gardening activities affects overall mental well-being.
  • Drones and Wildlife Observation : The use of drones impacts the accuracy of wildlife observations.
  • Artificial Intelligence and Job Markets : The introduction of artificial intelligence in industries has an effect on job availability.
  • Online Reviews and Purchase Decisions : Reading online reviews influences purchase decisions for consumers.
  • Blockchain Technology and Financial Security : Implementing blockchain technology affects financial transaction security.
  • Minimalism and Life Satisfaction : Adopting a minimalist lifestyle influences levels of life satisfaction.
  • Microlearning and Long-term Retention : Engaging in microlearning practices impacts long-term information retention.
  • Virtual Teams and Communication Efficiency : Operating in virtual teams has an effect on the efficiency of communication.
  • Plant Music and Growth Rates : Exposing plants to specific music frequencies influences their growth rates.
  • Green Building Practices and Energy Consumption : Implementing green building designs affects overall energy consumption.
  • Fermented Foods and Gut Health : Consuming fermented foods impacts gut health.
  • Digital Art Platforms and Creative Expression : Using digital art platforms influences levels of creative expression.
  • Aquatic Therapy and Physical Rehabilitation : Engaging in aquatic therapy has an effect on the rate of physical rehabilitation.
  • Solar Energy and Utility Bills : Adopting solar energy solutions influences monthly utility bills.
  • Immersive Theatre and Audience Engagement : Experiencing immersive theatre performances affects audience engagement levels.
  • Podcast Popularity and Radio Listening Habits : The rise in podcast popularity impacts traditional radio listening habits.
  • Vertical Farming and Crop Yield : Implementing vertical farming techniques has an effect on crop yields.
  • DIY Culture and Craftsmanship Appreciation : The rise of DIY culture influences public appreciation for craftsmanship.
  • Crowdsourcing and Solution Innovation : Utilizing crowdsourcing methods affects the innovativeness of solutions derived.
  • Urban Beekeeping and Local Biodiversity : Introducing urban beekeeping practices impacts local biodiversity levels.
  • Digital Nomad Lifestyle and Work-Life Balance : Adopting a digital nomad lifestyle affects perceptions of work-life balance.
  • Virtual Tours and Tourism Interest : Offering virtual tours of destinations influences interest in real-life visits.
  • Neurofeedback Training and Cognitive Abilities : Engaging in neurofeedback training has an effect on various cognitive abilities.
  • Sensory Gardens and Stress Reduction : Visiting sensory gardens impacts levels of stress reduction.
  • Subscription Box Services and Consumer Spending : The popularity of subscription box services influences overall consumer spending patterns.
  • Makerspaces and Community Collaboration : Introducing makerspaces in communities affects collaboration levels among members.
  • Remote Work and Company Loyalty : Adopting long-term remote work policies impacts employee loyalty towards the company.
  • Upcycling and Environmental Awareness : Engaging in upcycling activities influences levels of environmental awareness.
  • Mixed Reality in Education and Engagement : Implementing mixed reality tools in education affects student engagement.
  • Microtransactions in Gaming and Player Commitment : The presence of microtransactions in video games impacts player commitment and longevity.
  • Floating Architecture and Sustainable Living : Adopting floating architectural solutions influences perceptions of sustainable living.
  • Edible Packaging and Waste Reduction : Introducing edible packaging in markets has an effect on overall waste reduction.
  • Space Tourism and Interest in Astronomy : The advent of space tourism influences the general public’s interest in astronomy.
  • Urban Green Roofs and Air Quality : Implementing green roofs in urban settings impacts the local air quality.
  • Smart Mirrors and Fitness Consistency : Using smart mirrors for workouts affects consistency in fitness routines.
  • Open Source Software and Technological Innovation : Promoting open-source software has an effect on the rate of technological innovation.
  • Microgreens and Nutrient Intake : Consuming microgreens influences nutrient intake.
  • Aquaponics and Sustainable Farming : Implementing aquaponic systems impacts perceptions of sustainable farming.
  • Esports Popularity and Physical Sport Engagement : The rise of esports affects engagement in traditional physical sports.

Two Tailed Hypothesis Statement Examples in Research

In academic research, a two-tailed hypothesis is versatile, not pointing to a specific direction of effect but remaining open to outcomes on both ends of the spectrum. Such hypothesis aim to determine if a particular variable affects another, without specifying how. Here are examples tailored to research scenarios.

  • Interdisciplinary Collaboration and Innovation : Engaging in interdisciplinary collaborations impacts the degree of innovation in research findings.
  • Open Access Journals and Citation Rates : Publishing in open-access journals influences the citation rates of the papers.
  • Research Grants and Publication Quality : Receiving larger research grants affects the quality of resulting publications.
  • Laboratory Environment and Data Accuracy : The physical conditions of a research laboratory impact the accuracy of experimental data.
  • Peer Review Process and Research Integrity : The stringency of the peer review process influences the overall integrity of published research.
  • Researcher Mobility and Knowledge Transfer : The mobility of researchers between institutions affects the rate of knowledge transfer.
  • Interdisciplinary Conferences and Networking Opportunities : Attending interdisciplinary conferences impacts the depth and breadth of networking opportunities.
  • Qualitative Methods and Research Depth : Incorporating qualitative methods in research affects the depth of findings.
  • Data Visualization Tools and Research Comprehension : Utilizing advanced data visualization tools influences the comprehension of complex research data.
  • Collaborative Tools and Research Efficiency : The adoption of modern collaborative tools impacts research efficiency and productivity.

Two Tailed Testing Hypothesis Statement Examples

In hypothesis testing , a two-tailed test examines the possibility of a relationship in both directions. Unlike one-tailed tests, it doesn’t anticipate a specific direction of the relationship. The following are examples that encapsulate this approach within varied testing scenarios.

  • Load Testing and Website Speed : Conducting load testing on a website influences its loading speed.
  • A/B Testing and Conversion Rates : Implementing A/B testing affects the conversion rates of a webpage.
  • Drug Efficacy Testing and Patient Recovery : Testing a new drug’s efficacy impacts patient recovery rates.
  • Usability Testing and User Engagement : Conducting usability testing on an app influences user engagement metrics.
  • Genetic Testing and Disease Prediction : Utilizing genetic testing affects the accuracy of disease prediction.
  • Water Quality Testing and Contaminant Levels : Performing water quality tests influences our understanding of contaminant levels.
  • Battery Life Testing and Device Longevity : Conducting battery life tests impacts claims about device longevity.
  • Product Safety Testing and Recall Rates : Implementing rigorous product safety tests affects the rate of product recalls.
  • Emissions Testing and Pollution Control : Undertaking emissions testing on vehicles influences pollution control measures.
  • Material Strength Testing and Product Durability : Testing the strength of materials affects predictions about product durability.

How do you know if a hypothesis is two-tailed?

To determine if a hypothesis is two-tailed, you must look at the nature of the prediction. A two-tailed hypothesis is neutral concerning the direction of the predicted relationship or difference between groups. It simply predicts a difference or relationship without specifying whether it will be positive, negative, greater, or lesser. The hypothesis tests for effects in both directions.

What is one-tailed and two-tailed Hypothesis test with example?

In hypothesis testing, the choice between a one-tailed and a two-tailed test is determined by the nature of the research question.

One-tailed hypothesis: This tests for a specific direction of the effect. It predicts the direction of the relationship or difference between groups. For example, a one-tailed hypothesis might state: “The new drug will reduce symptoms more effectively than the standard treatment.”

Two-tailed hypothesis: This doesn’t specify the direction. It predicts that there will be a difference, but it doesn’t forecast whether the difference will be positive or negative. For example, a two-tailed hypothesis might state: “The new drug will have a different effect on symptoms compared to the standard treatment.”

What is a two-tailed hypothesis in psychology?

In psychology, a two-tailed hypothesis is frequently used when researchers are exploring new areas or relationships without a strong prior basis to predict the direction of findings. For instance, a psychologist might use a two-tailed hypothesis to explore whether a new therapeutic method has different outcomes than a traditional method, without predicting whether the outcomes will be better or worse.

What does a two-tailed alternative hypothesis look like?

A two-tailed alternative hypothesis is generally framed to show that a parameter is simply different from a certain value, without specifying the direction of the difference. Using mathematical notation, for a population mean (?) and a proposed value (k), the two-tailed hypothesis would look like: H1: ? ? k.

How do you write a Two-Tailed hypothesis statement? – A Step by Step Guide

  • Identify the Variables: Start by identifying the independent and dependent variables you want to study.
  • Formulate a Relationship: Consider the potential relationship between these variables without setting a direction.
  • Avoid Directional Language: Words like “increase”, “decrease”, “more than”, or “less than” should be avoided as they point to a one-tailed hypothesis.
  • Keep it Simple: The statement should be clear, concise, and to the point.
  • Use Neutral Language: For instance, words like “affects”, “influences”, or “has an impact on” can be used to indicate a relationship without specifying a direction.
  • Finalize the Statement: Once the relationship is clear in your mind, form a coherent sentence that describes the relationship between your variables.

Tips for Writing Two Tailed Hypothesis

  • Start Broad: Given that you’re not seeking a specific direction, it’s okay to start with a broad idea.
  • Be Objective: Avoid letting any biases or expectations shape your hypothesis.
  • Stay Informed: Familiarize yourself with existing research on the topic to ensure your hypothesis is novel and not inadvertently directional.
  • Seek Feedback: Share your hypothesis with colleagues or mentors to ensure it’s indeed non-directional.
  • Revisit and Refine: As with any research process, be open to revisiting and refining your hypothesis as you delve deeper into the literature or collect preliminary data.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

One-tailed and Two-tailed Tests

Contents Toggle Main Menu 1 Definition 2 One-tailed Tests 3 Two-tailed Tests 4 Worked Example 1 5 Worked Example 2 6 Worked Example 3 7 See Also

A one-tailed test results from an alternative hypothesis which specifies a direction. i.e. when the alternative hypothesis states that the parameter is in fact either bigger or smaller than the value specified in the null hypothesis.

A two-tailed test results from an alternative hypothesis which does not specify a direction. i.e. when the alternative hypothesis states that the null hypothesis is wrong.

One-tailed Tests

A one-tailed test may be either left-tailed or right-tailed.

A left-tailed test is used when the alternative hypothesis states that the true value of the parameter specified in the null hypothesis is less than the null hypothesis claims.

A right-tailed test is used when the alternative hypothesis states that the true value of the parameter specified in the null hypothesis is greater than the null hypothesis claims

Two-tailed Tests

The main difference between one-tailed and two-tailed tests is that one-tailed tests will only have one critical region whereas two-tailed tests will have two critical regions. If we require a $100(1-\alpha)$% confidence interval we have to make some adjustments when using a two-tailed test.

The confidence interval must remain a constant size, so if we are performing a two-tailed test, as there are twice as many critical regions then these critical regions must be half the size. This means that when we read the tables, when performing a two-tailed test, we need to consider $\frac{\alpha}{2}$ rather than $\alpha$.

Worked Example 1

Worked example.

A light bulb manufacturer claims that its' energy saving light bulbs last an average of 60 days. Set up a hypothesis test to check this claim and comment on what sort of test we need to use.

Because of the “is not” in the alternative hypothesis, we have to consider both the possibility that the lifetime of the energy-saving light bulb is greater than $60$ and that it is less than $60$. This means we have to use a two-tailed test.

Worked Example 2

The manufacturer now decides that it is only interested whether the mean lifetime of an energy-saving light bulb is less than 60 days. What changes would you make from Example 1?

Now we have a “less than” in the alternative hypothesis. This means that instead of performing a two-tailed test, we will perform a left-sided one-tailed test.

Worked Example 3

Find the critical values of the normal distribution using a $5$% significance level for both a one-tailed and a two-tailed test.

For the (right-sided) one-tailed test with a $5$% significance level, $z_{1-\alpha}=1.645$. (A left-tailed test would result in the critical value of $-1.645$.) For the two tailed test, $z_{1-\frac{\alpha}{2} } = 1.96$. The values are obtained from the tables of the inverse of the cumulative distribution function of the normal distribution.

Null and Alternative Hypotheses

IMAGES

  1. Hypothesis Testing: Upper, Lower, and Two Tailed Tests

    two tailed hypothesis test hypotheses

  2. PPT

    two tailed hypothesis test hypotheses

  3. Hypothesis Testing

    two tailed hypothesis test hypotheses

  4. Hypothesis Testing Example Two Sample t-Test

    two tailed hypothesis test hypotheses

  5. What Is a Two-Tailed Test? Definition and Example

    two tailed hypothesis test hypotheses

  6. PPT

    two tailed hypothesis test hypotheses

VIDEO

  1. Test of Hypothesis

  2. 1 tailed and 2 tailed Hypothesis

  3. One tailed hypothesis #psychology#statistics #ugcnet #netpsychology

  4. One tailed Vs Two tailed Test

  5. Hypothesis Testing & Two-tailed and One-tailed Test (tagalog and basic)

  6. Edexcel IAL AS / A Level Statistics 2 Chapter 7 Hypothesis Testing -4

COMMENTS

  1. Two-Tailed Hypothesis Tests: 3 Example Problems

    To test this, he can perform a one-tailed hypothesis test with the following null and alternative hypotheses: H 0 (Null Hypothesis): μ = 20 grams; H A (Alternative Hypothesis): μ ≠ 20 grams; This is an example of a two-tailed hypothesis test because the alternative hypothesis contains the not equal "≠" sign. The engineer believes that ...

  2. One-Tailed and Two-Tailed Hypothesis Tests Explained

    With a two-tailed hypothesis test, you'll obtain a two-sided confidence interval. The confidence interval tells us that the population mean is likely to fall between 3.372 and 4.828. This range excludes the target value (5), which is another indicator of significance. Advantages of two-tailed hypothesis tests

  3. Hypothesis Testing: Upper-, Lower, and Two Tailed Tests

    Step 1. Set up hypotheses and select the level of significance α. H 0: Null hypothesis (no change, no difference); H 1: Research hypothesis (investigator's belief); α =0.05. Upper-tailed, Lower-tailed, Two-tailed Tests. The research or alternative hypothesis can take one of three forms.

  4. Data analysis: hypothesis testing: 4.2 Two-tailed tests

    To perform a two-tailed test at a significance level of 0.05, you need to divide alpha by 2, giving a significance level of 0.025 for each distribution tail (0.05/2 = 0.025). This is done because the two-tailed test is looking for significance in either tail of the distribution. If the calculated test statistic falls in the rejection region of ...

  5. Hypothesis testing: One-tailed and two-tailed tests

    At this point, you might use a statistical test, like unpaired or 2-sample t-test, to see if there's a significant difference between the two groups' means. Typically, an unpaired t-test starts with two hypotheses. The first hypothesis is called the null hypothesis, and it basically says there's no difference in the means of the two groups.

  6. Hypothesis Testing

    z-value = (105-100)÷(15÷√7.5) = 2.89. This value 2.89 is called the test statistic. This takes us to our last step. 5. Draw a conclusion. So, if you look at the curve, the value of 2.89 will definitely lie on the red area towards the right of the curve because the critical value of 1.96 is less than 2.89.

  7. An Introduction to Statistics: Understanding Hypothesis Testing and

    This is known as a two-tailed hypothesis and it allows us to test for superiority on either side (using a two-sided test). This is because, when we start a study, we are not 100% certain that the new treatment can only be better than the standard treatment—it could be worse, and if it is so, the study should pick it up as well.

  8. Understanding Statistical Testing

    Perhaps the most common statistical test is the two-tailed test of a scalar parameter. In this case, the hypotheses include a single point and its negation. Step 1 of the preceding logic is to express the hypotheses that constitute the relevant partition of the parameter space: for example, H 0: θ = 0 versus H 1: θ ≠ 0.

  9. 11.4: One- and Two-Tailed Tests

    The one-tailed hypothesis is rejected only if the sample proportion is much greater than \(0.5\). The alternative hypothesis in the two-tailed test is \(\pi \neq 0.5\). In the one-tailed test it is \(\pi > 0.5\). You should always decide whether you are going to use a one-tailed or a two-tailed probability before looking at the data.

  10. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  11. 5.2

    5.2 - Writing Hypotheses. The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis ( H 0) and an alternative hypothesis ( H a ). Null Hypothesis. The statement that there is not a difference in the population (s), denoted as H 0.

  12. S.3.2 Hypothesis Testing (P-Value Approach)

    The P -value is, therefore, the area under a tn - 1 = t14 curve to the left of -2.5 and to the right of 2.5. It can be shown using statistical software that the P -value is 0.0127 + 0.0127, or 0.0254. The graph depicts this visually. Note that the P -value for a two-tailed test is always two times the P -value for either of the one-tailed tests.

  13. Two Tailed Test: Definition, Examples

    A two tailed test tells you that you're finding the area in the middle of a distribution. In other words, your rejection region (the place where you would reject the null hypothesis) is in both tails. For example, let's say you were running a z test with an alpha level of 5% (0.05). In a one tailed test, the entire 5% would be in a single tail.

  14. What Is a Two-Tailed Test? Definition and Example

    A hypothesis test that is designed to show whether the mean of a sample is significantly greater than and significantly less than the mean of a population is referred to as a two-tailed test.

  15. One- and Two-Tailed Tests

    The one-tailed hypothesis is rejected only if the sample proportion is much greater than 0.5. The alternative hypothesis in the two-tailed test is π ≠ 0.5. In the one-tailed test it is π > 0.5. You should always decide whether you are going to use a one-tailed or a two-tailed probability before looking at the data.

  16. One- and two-tailed tests

    In coin flipping, the null hypothesis is a sequence of Bernoulli trials with probability 0.5, yielding a random variable X which is 1 for heads and 0 for tails, and a common test statistic is the sample mean (of the number of heads) ¯. If testing for whether the coin is biased towards heads, a one-tailed test would be used - only large numbers of heads would be significant.

  17. Data analysis: hypothesis testing: 4 One-tailed vs two-tailed test

    4 One-tailed vs two-tailed test. To gain a deeper understanding of how to conduct a hypothesis test, this section will delve into the concepts of one-tailed and two-tailed tests. These tests are vital tools in statistical hypothesis testing, and the decision of which test to employ depends on the research question and hypothesis under examination.

  18. Introduction to Hypothesis Testing

    A hypothesis test consists of five steps: 1. State the hypotheses. State the null and alternative hypotheses. These two hypotheses need to be mutually exclusive, so if one is true then the other must be false. 2. Determine a significance level to use for the hypothesis. Decide on a significance level.

  19. S.3.1 Hypothesis Testing (Critical Value Approach)

    The critical value for conducting the left-tailed test H0 : μ = 3 versus HA : μ < 3 is the t -value, denoted -t( α, n - 1), such that the probability to the left of it is α. It can be shown using either statistical software or a t -table that the critical value -t0.05,14 is -1.7613. That is, we would reject the null hypothesis H0 : μ = 3 ...

  20. One-Tailed vs. Two-Tailed Tests

    A two-tailed test, also known as a non directional hypothesis, is the standard test of significance to determine if there is a relationship between variables in either direction. Two-tailed tests ...

  21. Statistics

    The formula for the test statistic (TS) of a population mean is: x ¯ − μ s ⋅ n. x ¯ − μ is the difference between the sample mean (x ¯) and the claimed population mean (μ). s is the sample standard deviation. n is the sample size. In our example: The claimed (H 0) population mean (μ) was 60.

  22. Two Tailed Hypothesis

    A two-tailed hypothesis is neutral concerning the direction of the predicted relationship or difference between groups. It simply predicts a difference or relationship without specifying whether it will be positive, negative, greater, or lesser. The hypothesis tests for effects in both directions.

  23. Numeracy, Maths and Statistics

    Definition. A one-tailed test results from an alternative hypothesis which specifies a direction. i.e. when the alternative hypothesis states that the parameter is in fact either bigger or smaller than the value specified in the null hypothesis.. A two-tailed test results from an alternative hypothesis which does not specify a direction. i.e. when the alternative hypothesis states that the ...