• Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

business analyst mentor

The 5 Steps in Problem Analysis

problem analysis

One technique that is extremely useful to gain a better understanding of the problems before determining a solution is problem analysis .

Problem analysis is the process of understanding real-world problems and user’s needs and proposing solutions to meet those needs. The goal of problem analysis is to gain a better understanding of the problem being solved before developing a solution.

There are five useful steps that can be taken to gain a better understanding of the problem before developing a solution.

  • Gain agreement on the problem definition
  • Understand the root-causes – the problem behind the problem
  • Identify the stakeholders and the users
  • Define the solution boundary
  • Identify the constraints to be imposed on the solution

Table of Contents

Gain agreement on the problem definition.

The first step is to gain agreement on the definition of the problem to be solved. One of the simplest ways to gain agreement is to simply write the problem down and see whether everyone agrees.

Business Problem Statement Template

Opens in a new tab.

A helpful and standardised format to write the problem definition is as follows:

  • The problem of – Describe the problem
  • Affects – Identify stakeholders affected by the problem
  • The results of which – Describe the impact of this problem on stakeholders and business activity
  • Benefits of – Indicate the proposed solution and list a few key benefits

Example Business Problem Statement

There are many problems statement examples that can be found in different business domains and during the discovery when the business analyst is conducting analysis. An example business problem statement is as follows:

The problem of  having to manually maintain an accurate single source of truth for finance product data across the business, affects the finance department. The results of which has the impact of not having to have duplicate data, having to do workarounds and difficulty of maintaining finance product data across the business and key channels. A successful solution would  have the benefit of providing a single source of truth for finance product data that can be used across the business and channels and provide an audit trail of changes, stewardship and maintain data standards and best practices.

Understand the Root Causes Problem Behind the Problem

You can use a variety of techniques to gain an understanding of the real problem and its real causes. One such popular technique is root cause analysis, which is a systematic way of uncovering the root or underlying cause of an identified problem or a symptom of a problem.

Root cause analysis helps prevents the development of solutions that are focussed on symptoms alone .

To help identify the root cause, or the problem behind the problem, ask the people directly involved.

problem analysis fish bone diagram

The primary goal of the technique is to determine the root cause of a defect or problem by repeating the question “Why?” . Each answer forms the basis of the next question. The “five” in the name derives from an anecdotal observation on the number of iterations needed to resolve the problem .

Identify the Stakeholders and the Users

Effectively solving any complex problem typically involves satisfying the needs of a diverse group of stakeholders. Stakeholders typically have varying perspectives on the problem and various needs that must be addressed by the solution. So, involving stakeholders will help you to determine the root causes to problems.

Define the Solution Boundary

Once the problem statement is agreed to and the users and stakeholders are identified, we can turn our attention of defining a solution that can be deployed to address the problem.

Identify the Constraints  Imposed on Solution

We must consider the constraints that will be imposed on the solution. Each constraint has the potential to severely restrict our ability to deliver a solution as we envision it.

Some example solution constraints and considerations could be:-

  • Economic – what financial or budgetary constraints are applicable?
  • Environmental – are there environmental or regulatory constraints?
  • Technical  – are we restricted in our choice of technologies?
  • Political – are there internal or external political issues that affect potential solutions?

Conclusion – Problem Analysis

Try the five useful steps for problem solving when your next trying to gain a better understanding of the problem domain on your business analysis project or need to do problem analysis in software engineering.

The problem statement format can be used in businesses and across industries. 

requirements discovery checklist pack business analysis templates

Jerry Nicholas

Jerry continues to maintain the site to help aspiring and junior business analysts and taps into the network of experienced professionals to accelerate the professional development of all business analysts. He is a Principal Business Analyst who has over twenty years experience gained in a range of client sizes and sectors including investment banking, retail banking, retail, telecoms and public sector. Jerry has mentored and coached business analyst throughout his career. He is a member of British Computer Society (MBCS), International Institute of Business Analysis (IIBA), Business Agility Institute, Project Management Institute (PMI), Disciplined Agile Consortium and Business Architecture Guild. He has contributed and is acknowledged in the book: Choose Your WoW - A Disciplined Agile Delivery Handbook for Optimising Your Way of Working (WoW).

Recent Posts

Introduction to Train the Trainer for a Business Analyst

No matter the industry, modern professionals need to continuously improve themselves and work on up skilling and re-skilling to maintain satisfactory success within their field. This is particularly...

CliftonStrengths for a Business Analyst | Be You

Today, the job of a business analyst is probably more challenging than ever. The already intricate landscape of modern business analysis has recently gone through various shifts, mainly due to the...

Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)

problem solving problem analysis definition

Search form

problem solving problem analysis definition

  • Table of Contents
  • Troubleshooting Guide
  • A Model for Getting Started
  • Justice Action Toolkit
  • Best Change Processes
  • Databases of Best Practices
  • Online Courses
  • Ask an Advisor
  • Subscribe to eNewsletter
  • Community Stories
  • YouTube Channel
  • About the Tool Box
  • How to Use the Tool Box
  • Privacy Statement
  • Workstation/Check Box Sign-In
  • Online Training Courses
  • Capacity Building Training
  • Training Curriculum - Order Now
  • Community Check Box Evaluation System
  • Build Your Toolbox
  • Facilitation of Community Processes
  • Community Health Assessment and Planning
  • Section 3. Defining and Analyzing the Problem

Chapter 17 Sections

  • Section 1. An Introduction to the Problem-Solving Process
  • Section 2. Thinking Critically
  • Section 4. Analyzing Root Causes of Problems: The "But Why?" Technique
  • Section 5. Addressing Social Determinants of Health and Development
  • Section 6. Generating and Choosing Solutions
  • Section 7. Putting Your Solution into Practice

 

The Tool Box needs your help
to remain available.

Your contribution can help change lives.
.

 

Seeking supports for evaluation?
.

  • Main Section
Learn how to determine the nature of the problem, clarify the problem, decide to solve the problem, and analyze the problem with our process.

The nature of problems

Clarifying the problem, deciding to solve the problem, analyzing the problem.

We've all had our share of problems - more than enough, if you come right down to it. So it's easy to think that this section, on defining and analyzing the problem, is unnecessary. "I know what the problem is," you think. "I just don't know what to do about it."

Not so fast! A poorly defined problem - or a problem whose nuances you don't completely understand - is much more difficult to solve than a problem you have clearly defined and analyzed. The way a problem is worded and understood has a huge impact on the number, quality, and type of proposed solutions.

In this section, we'll begin with the basics, focusing primarily on four things. First, we'll consider the nature of problems in general, and then, more specifically, on clarifying and defining the problem you are working on. Then, we'll talk about whether or not you really want to solve the problem, or whether you are better off leaving it alone. Finally, we'll talk about how to do an in-depth analysis of the problem.

So, what is a problem? It can be a lot of things. We know in our gut when there is a problem, whether or not we can easily put it into words. Maybe you feel uncomfortable in a given place, but you're not sure why. A problem might be just the feeling that something is wrong and should be corrected. You might feel some sense of distress, or of injustice.

Stated most simply, a problem is the difference between what is , and what might or should be . "No child should go to bed hungry, but one-quarter of all children do in this country," is a clear, potent problem statement. Another example might be, "Communication in our office is not very clear." In this instance, the explanation of "what might or should be" is simply alluded to.

As these problems illustrate, some problems are more serious than others; the problem of child hunger is a much more severe problem than the fact that the new youth center has no exercise equipment, although both are problems that can and should be addressed. Generally, problems that affect groups of people - children, teenage mothers, the mentally ill, the poor - can at least be addressed and in many cases lessened using the process outlined in this Chapter.

Although your organization may have chosen to tackle a seemingly insurmountable problem, the process you will use to solve it is not complex. It does, however, take time, both to formulate and to fully analyze the problem. Most people underestimate the work they need to do here and the time they'll need to spend. But this is the legwork, the foundation on which you'll lay effective solutions. This isn't the time to take shortcuts.

Three basic concepts make up the core of this chapter: clarifying, deciding, and analyzing. Let's look at each in turn.

If you are having a problem-solving meeting, then you already understand that something isn't quite right - or maybe it's bigger than that; you understand that something is very, very wrong. This is your beginning, and of course, it makes most sense to...

  • Start with what you know . When group members walk through the door at the beginning of the meeting, what do they think about the situation? There are a variety of different ways to garner this information. People can be asked in advance to write down what they know about the problem. Or the facilitator can lead a brainstorming session to try to bring out the greatest number of ideas. Remember that a good facilitator will draw out everyone's opinions, not only those of the more vocal participants.
  • Decide what information is missing . Information is the key to effective decision making. If you are fighting child hunger, do you know which children are hungry? When are they hungry - all the time, or especially at the end of the month, when the money has run out? If that's the case, your problem statement might be, "Children in our community are often hungry at the end of the month because their parents' paychecks are used up too early."
Compare this problem statement on child hunger to the one given in "The nature of problems" above. How might solutions for the two problems be different?
  • Facts (15% of the children in our community don't get enough to eat.)
  • Inference (A significant percentage of children in our community are probably malnourished/significantly underweight.)
  • Speculation (Many of the hungry children probably live in the poorer neighborhoods in town.)
  • Opinion (I think the reason children go hungry is because their parents spend all of their money on cigarettes.)

When you are gathering information, you will probably hear all four types of information, and all can be important. Speculation and opinion can be especially important in gauging public opinion. If public opinion on your issue is based on faulty assumptions, part of your solution strategy will probably include some sort of informational campaign.

For example, perhaps your coalition is campaigning against the death penalty, and you find that most people incorrectly believe that the death penalty deters violent crime. As part of your campaign, therefore, you will probably want to make it clear to the public that it simply isn't true.

Where and how do you find this information? It depends on what you want to know. You can review surveys, interviews, the library and the internet.

  • Define the problem in terms of needs, and not solutions. If you define the problem in terms of possible solutions, you're closing the door to other, possibly more effective solutions. "Violent crime in our neighborhood is unacceptably high," offers space for many more possible solutions than, "We need more police patrols," or, "More citizens should have guns to protect themselves."
  • Define the problem as one everyone shares; avoid assigning blame for the problem. This is particularly important if different people (or groups) with a history of bad relations need to be working together to solve the problem. Teachers may be frustrated with high truancy rates, but blaming students uniquely for problems at school is sure to alienate students from helping to solve the problem.

You can define the problem in several ways; The facilitator can write a problem statement on the board, and everyone can give feedback on it, until the statement has developed into something everyone is pleased with, or you can accept someone else's definition of the problem, or use it as a starting point, modifying it to fit your needs.

After you have defined the problem, ask if everyone understands the terminology being used. Define the key terms of your problem statement, even if you think everyone understands them.

The Hispanic Health Coalition, has come up with the problem statement "Teen pregnancy is a problem in our community." That seems pretty clear, doesn't it? But let's examine the word "community" for a moment. You may have one person who defines community as "the city you live in," a second who defines it as, "this neighborhood" and a third who considers "our community" to mean Hispanics.

At this point, you have already spent a fair amount of time on the problem at hand, and naturally, you want to see it taken care of. Before you go any further, however, it's important to look critically at the problem and decide if you really want to focus your efforts on it. You might decide that right now isn't the best time to try to fix it. Maybe your coalition has been weakened by bad press, and chance of success right now is slim. Or perhaps solving the problem right now would force you to neglect another important agency goal. Or perhaps this problem would be more appropriately handled by another existing agency or organization.

You and your group need to make a conscious choice that you really do want to attack the problem. Many different factors should be a part of your decision. These include:

Importance . In judging the importance of the issue, keep in mind the f easibility . Even if you have decided that the problem really is important, and worth solving, will you be able to solve it, or at least significantly improve the situation? The bottom line: Decide if the good you can do will be worth the effort it takes. Are you the best people to solve the problem? Is someone else better suited to the task?

For example, perhaps your organization is interested in youth issues, and you have recently come to understand that teens aren't participating in community events mostly because they don't know about them. A monthly newsletter, given out at the high schools, could take care of this fairly easily. Unfortunately, you don't have much publishing equipment. You do have an old computer and a desktop printer, and you could type something up, but it's really not your forte. A better solution might be to work to find writing, design and/or printing professionals who would donate their time and/or equipment to create a newsletter that is more exciting, and that students would be more likely to want to read.

Negative impacts . If you do succeed in bringing about the solution you are working on, what are the possible consequences? If you succeed in having safety measures implemented at a local factory, how much will it cost? Where will the factory get that money? Will they cut salaries, or lay off some of their workers?

Even if there are some unwanted results, you may well decide that the benefits outweigh the negatives. As when you're taking medication, you'll put up with the side effects to cure the disease. But be sure you go into the process with your eyes open to the real costs of solving the problem at hand.

Choosing among problems

You might have many obstacles you'd like to see removed. In fact, it's probably a pretty rare community group that doesn't have a laundry list of problems they would like to resolve, given enough time and resources. So how do you decide which to start with?

A simple suggestion might be to list all of the problems you are facing, and whether or not they meet the criteria listed above (importance, feasibility, et cetera). It's hard to assign numerical values for something like this, because for each situation, one of the criteria may strongly outweigh the others. However, just having all of the information in front of the group can help the actual decision making a much easier task.

Now that the group has defined the problem and agreed that they want to work towards a solution, it's time to thoroughly analyze the problem. You started to do this when you gathered information to define the problem, but now, it's time to pay more attention to details and make sure everyone fully understands the problem.

Answer all of the question words.

The facilitator can take group members through a process of understanding every aspect of the problem by answering the "question words" - what, why, who, when, and how much. This process might include the following types of questions:

What is the problem? You already have your problem statement, so this part is more or less done. But it's important to review your work at this point.

Why does the problem exist? There should be agreement among meeting participants as to why the problem exists to begin with. If there isn't, consider trying one of the following techniques.

  • The "but why" technique. This simple exercise can be done easily with a large group, or even on your own. Write the problem statement, and ask participants, "Why does this problem exist?" Write down the answer given, and ask, "But why does (the answer) occur?"
"Children often fall asleep in class," But why? "Because they have no energy." But why? "Because they don't eat breakfast." But why?

Continue down the line until participants can comfortably agree on the root cause of the problem . Agreement is essential here; if people don't even agree about the source of the problem, an effective solution may well be out of reach.

  • Start with the definition you penned above.
  • Draw a line down the center of the paper. Or, if you are working with a large group of people who cannot easily see what you are writing, use two pieces.
  • On the top of one sheet/side, write "Restraining Forces."
  • On the other sheet/side, write, "Driving Forces."
  • Under "Restraining Forces," list all of the reasons you can think of that keep the situation the same; why the status quo is the way it is. As with all brainstorming sessions, this should be a "free for all;" no idea is too "far out" to be suggested and written down.
  • In the same manner, under "Driving Forces," list all of the forces that are pushing the situation to change.
  • When all of the ideas have been written down, group members can edit them as they see fit and compile a list of the important factors that are causing the situation.

Clearly, these two exercises are meant for different times. The "but why" technique is most effective when the facilitator (or the group as a whole) decides that the problem hasn't been looked at deeply enough and that the group's understanding is somewhat superficial. The force field analysis, on the other hand, can be used when people are worried that important elements of the problem haven't been noticed -- that you're not looking at the whole picture.

Who is causing the problem, and who is affected by it? A simple brainstorming session is an excellent way to determine this.

When did the problem first occur, or when did it become significant? Is this a new problem or an old one? Knowing this can give you added understanding of why the problem is occurring now. Also, the longer a problem has existed, the more entrenched it has become, and the more difficult it will be to solve. People often get used to things the way they are and resist change, even when it's a change for the better.

How much , or to what extent, is this problem occurring? How many people are affected by the problem? How significant is it? Here, you should revisit the questions on importance you looked at when you were defining the problem. This serves as a brief refresher and gives you a complete analysis from which you can work.

If time permits, you might want to summarize your analysis on a single sheet of paper for participants before moving on to generating solutions, the next step in the process. That way, members will have something to refer back to during later stages in the work.

Also, after you have finished this analysis, the facilitator should ask for agreement from the group. Have people's perceptions of the problem changed significantly? At this point, check back and make sure that everyone still wants to work together to solve the problem.

The first step in any effective problem-solving process may be the most important. Take your time to develop a critical definition, and let this definition, and the analysis that follows, guide you through the process. You're now ready to go on to generating and choosing solutions, which are the next steps in the problem-solving process, and the focus of the following section.

Print Resources

Avery, M., Auvine, B., Streibel, B., & Weiss, L. (1981). A handbook for consensus decision making: Building united judgement . Cambridge, MA: Center for Conflict Resolution.

Dale, D., & Mitiguy, N. Planning, for a change: A citizen's guide to creative planning and program development .

Dashiell, K. (1990). Managing meetings for collaboration and consensus . Honolulu, HI: Neighborhood Justice Center of Honolulu, Inc.

Interaction Associates (1987). Facilitator institute . San Francisco, CA: Author.

Lawson, L., Donant, F., & Lawson, J. (1982). Lead on! The complete handbook for group leaders . San Luis Obispo, CA: Impact Publishers.

Meacham, W. (1980). Human development training manual . Austin, TX: Human Development Training.

Morrison, E. (1994). Leadership skills: Developing volunteers for organizational success . Tucson, AZ: Fisher Books.  

problem solving definition

Problem Solving Skills for the Digital Age

Lucid Content

Reading time: about 6 min

Let’s face it: Things don’t always go according to plan. Systems fail, wires get crossed, projects fall apart.

Problems are an inevitable part of life and work. They’re also an opportunity to think critically and find solutions. But knowing how to get to the root of unexpected situations or challenges can mean the difference between moving forward and spinning your wheels.

Here, we’ll break down the key elements of problem solving, some effective problem solving approaches, and a few effective tools to help you arrive at solutions more quickly.

So, what is problem solving?

Broadly defined, problem solving is the process of finding solutions to difficult or complex issues. But you already knew that. Understanding problem solving frameworks, however, requires a deeper dive.

Think about a recent problem you faced. Maybe it was an interpersonal issue. Or it could have been a major creative challenge you needed to solve for a client at work. How did you feel as you approached the issue? Stressed? Confused? Optimistic? Most importantly, which problem solving techniques did you use to tackle the situation head-on? How did you organize thoughts to arrive at the best possible solution?

Solve your problem-solving problem  

Here’s the good news: Good problem solving skills can be learned. By its nature, problem solving doesn’t adhere to a clear set of do’s and don’ts—it requires flexibility, communication, and adaptation. However, most problems you face, at work or in life, can be tackled using four basic steps.

First, you must define the problem . This step sounds obvious, but often, you can notice that something is amiss in a project or process without really knowing where the core problem lies. The most challenging part of the problem solving process is uncovering where the problem originated.

Second, you work to generate alternatives to address the problem directly. This should be a collaborative process to ensure you’re considering every angle of the issue.

Third, you evaluate and test potential solutions to your problem. This step helps you fully understand the complexity of the issue and arrive at the best possible solution.

Finally, fourth, you select and implement the solution that best addresses the problem.

Following this basic four-step process will help you approach every problem you encounter with the same rigorous critical and strategic thinking process, recognize commonalities in new problems, and avoid repeating past mistakes.

In addition to these basic problem solving skills, there are several best practices that you should incorporate. These problem solving approaches can help you think more critically and creatively about any problem:

You may not feel like you have the right expertise to resolve a specific problem. Don’t let that stop you from tackling it. The best problem solvers become students of the problem at hand. Even if you don’t have particular expertise on a topic, your unique experience and perspective can lend itself to creative solutions.

Challenge the status quo

Standard problem solving methodologies and problem solving frameworks are a good starting point. But don’t be afraid to challenge assumptions and push boundaries. Good problem solvers find ways to apply existing best practices into innovative problem solving approaches.

Think broadly about and visualize the issue

Sometimes it’s hard to see a problem, even if it’s right in front of you. Clear answers could be buried in rows of spreadsheet data or lost in miscommunication. Use visualization as a problem solving tool to break down problems to their core elements. Visuals can help you see bottlenecks in the context of the whole process and more clearly organize your thoughts as you define the problem.  

Hypothesize, test, and try again

It might be cliche, but there’s truth in the old adage that 99% of inspiration is perspiration. The best problem solvers ask why, test, fail, and ask why again. Whether it takes one or 1,000 iterations to solve a problem, the important part—and the part that everyone remembers—is the solution.

Consider other viewpoints

Today’s problems are more complex, more difficult to solve, and they often involve multiple disciplines. They require group expertise and knowledge. Being open to others’ expertise increases your ability to be a great problem solver. Great solutions come from integrating your ideas with those of others to find a better solution. Excellent problem solvers build networks and know how to collaborate with other people and teams. They are skilled in bringing people together and sharing knowledge and information.

4 effective problem solving tools

As you work through the problem solving steps, try these tools to better define the issue and find the appropriate solution.

Root cause analysis

Similar to pulling weeds from your garden, if you don’t get to the root of the problem, it’s bound to come back. A root cause analysis helps you figure out the root cause behind any disruption or problem, so you can take steps to correct the problem from recurring. The root cause analysis process involves defining the problem, collecting data, and identifying causal factors to pinpoint root causes and arrive at a solution.

root cause analysis example table

Less structured than other more traditional problem solving methods, the 5 Whys is simply what it sounds like: asking why over and over to get to the root of an obstacle or setback. This technique encourages an open dialogue that can trigger new ideas about a problem, whether done individually or with a group. Each why piggybacks off the answer to the previous why. Get started with the template below—both flowcharts and fishbone diagrams can also help you track your answers to the 5 Whys.

5 Whys analysis

Brainstorming

A meeting of the minds, a brain dump, a mind meld, a jam session. Whatever you call it, collaborative brainstorming can help surface previously unseen issues, root causes, and alternative solutions. Create and share a mind map with your team members to fuel your brainstorming session.

Gap analysis

Sometimes you don’t know where the problem is until you determine where it isn’t. Gap filling helps you analyze inadequacies that are preventing you from reaching an optimized state or end goal. For example, a content gap analysis can help a content marketer determine where holes exist in messaging or the customer experience. Gap analysis is especially helpful when it comes to problem solving because it requires you to find workable solutions. A SWOT analysis chart that looks at a problem through the lens of strengths, opportunities, opportunities, and threats can be a helpful problem solving framework as you start your analysis.

SWOT analysis

A better way to problem solve

Beyond these practical tips and tools, there are myriad methodical and creative approaches to move a project forward or resolve a conflict. The right approach will depend on the scope of the issue and your desired outcome.

Depending on the problem, Lucidchart offers several templates and diagrams that could help you identify the cause of the issue and map out a plan to resolve it.  Learn more about how Lucidchart can help you take control of your problem solving process .

About Lucidchart

Lucidchart, a cloud-based intelligent diagramming application, is a core component of Lucid Software's Visual Collaboration Suite. This intuitive, cloud-based solution empowers teams to collaborate in real-time to build flowcharts, mockups, UML diagrams, customer journey maps, and more. Lucidchart propels teams forward to build the future faster. Lucid is proud to serve top businesses around the world, including customers such as Google, GE, and NBC Universal, and 99% of the Fortune 500. Lucid partners with industry leaders, including Google, Atlassian, and Microsoft. Since its founding, Lucid has received numerous awards for its products, business, and workplace culture. For more information, visit lucidchart.com.

Related articles

How you can use creative problem solving at work.

Sometimes you're faced with challenges that traditional problem solving can't fix. Creative problem solving encourages you to find new, creative ways of thinking that can help you overcome the issue at hand more quickly.

Solve issues faster with the root cause analysis process

Root cause analysis refers to any problem-solving method used to trace an issue back to its origin. Learn how to complete a root cause analysis—we've even included templates to get you started.

Bring your bright ideas to life.

or continue with

By registering, you agree to our Terms of Service and you acknowledge that you have read and understand our Privacy Policy .

How to master the seven-step problem-solving process

In this episode of the McKinsey Podcast , Simon London speaks with Charles Conn, CEO of venture-capital firm Oxford Sciences Innovation, and McKinsey senior partner Hugo Sarrazin about the complexities of different problem-solving strategies.

Podcast transcript

Simon London: Hello, and welcome to this episode of the McKinsey Podcast , with me, Simon London. What’s the number-one skill you need to succeed professionally? Salesmanship, perhaps? Or a facility with statistics? Or maybe the ability to communicate crisply and clearly? Many would argue that at the very top of the list comes problem solving: that is, the ability to think through and come up with an optimal course of action to address any complex challenge—in business, in public policy, or indeed in life.

Looked at this way, it’s no surprise that McKinsey takes problem solving very seriously, testing for it during the recruiting process and then honing it, in McKinsey consultants, through immersion in a structured seven-step method. To discuss the art of problem solving, I sat down in California with McKinsey senior partner Hugo Sarrazin and also with Charles Conn. Charles is a former McKinsey partner, entrepreneur, executive, and coauthor of the book Bulletproof Problem Solving: The One Skill That Changes Everything [John Wiley & Sons, 2018].

Charles and Hugo, welcome to the podcast. Thank you for being here.

Hugo Sarrazin: Our pleasure.

Charles Conn: It’s terrific to be here.

Simon London: Problem solving is a really interesting piece of terminology. It could mean so many different things. I have a son who’s a teenage climber. They talk about solving problems. Climbing is problem solving. Charles, when you talk about problem solving, what are you talking about?

Charles Conn: For me, problem solving is the answer to the question “What should I do?” It’s interesting when there’s uncertainty and complexity, and when it’s meaningful because there are consequences. Your son’s climbing is a perfect example. There are consequences, and it’s complicated, and there’s uncertainty—can he make that grab? I think we can apply that same frame almost at any level. You can think about questions like “What town would I like to live in?” or “Should I put solar panels on my roof?”

You might think that’s a funny thing to apply problem solving to, but in my mind it’s not fundamentally different from business problem solving, which answers the question “What should my strategy be?” Or problem solving at the policy level: “How do we combat climate change?” “Should I support the local school bond?” I think these are all part and parcel of the same type of question, “What should I do?”

I’m a big fan of structured problem solving. By following steps, we can more clearly understand what problem it is we’re solving, what are the components of the problem that we’re solving, which components are the most important ones for us to pay attention to, which analytic techniques we should apply to those, and how we can synthesize what we’ve learned back into a compelling story. That’s all it is, at its heart.

I think sometimes when people think about seven steps, they assume that there’s a rigidity to this. That’s not it at all. It’s actually to give you the scope for creativity, which often doesn’t exist when your problem solving is muddled.

Simon London: You were just talking about the seven-step process. That’s what’s written down in the book, but it’s a very McKinsey process as well. Without getting too deep into the weeds, let’s go through the steps, one by one. You were just talking about problem definition as being a particularly important thing to get right first. That’s the first step. Hugo, tell us about that.

Hugo Sarrazin: It is surprising how often people jump past this step and make a bunch of assumptions. The most powerful thing is to step back and ask the basic questions—“What are we trying to solve? What are the constraints that exist? What are the dependencies?” Let’s make those explicit and really push the thinking and defining. At McKinsey, we spend an enormous amount of time in writing that little statement, and the statement, if you’re a logic purist, is great. You debate. “Is it an ‘or’? Is it an ‘and’? What’s the action verb?” Because all these specific words help you get to the heart of what matters.

Want to subscribe to The McKinsey Podcast ?

Simon London: So this is a concise problem statement.

Hugo Sarrazin: Yeah. It’s not like “Can we grow in Japan?” That’s interesting, but it is “What, specifically, are we trying to uncover in the growth of a product in Japan? Or a segment in Japan? Or a channel in Japan?” When you spend an enormous amount of time, in the first meeting of the different stakeholders, debating this and having different people put forward what they think the problem definition is, you realize that people have completely different views of why they’re here. That, to me, is the most important step.

Charles Conn: I would agree with that. For me, the problem context is critical. When we understand “What are the forces acting upon your decision maker? How quickly is the answer needed? With what precision is the answer needed? Are there areas that are off limits or areas where we would particularly like to find our solution? Is the decision maker open to exploring other areas?” then you not only become more efficient, and move toward what we call the critical path in problem solving, but you also make it so much more likely that you’re not going to waste your time or your decision maker’s time.

How often do especially bright young people run off with half of the idea about what the problem is and start collecting data and start building models—only to discover that they’ve really gone off half-cocked.

Hugo Sarrazin: Yeah.

Charles Conn: And in the wrong direction.

Simon London: OK. So step one—and there is a real art and a structure to it—is define the problem. Step two, Charles?

Charles Conn: My favorite step is step two, which is to use logic trees to disaggregate the problem. Every problem we’re solving has some complexity and some uncertainty in it. The only way that we can really get our team working on the problem is to take the problem apart into logical pieces.

What we find, of course, is that the way to disaggregate the problem often gives you an insight into the answer to the problem quite quickly. I love to do two or three different cuts at it, each one giving a bit of a different insight into what might be going wrong. By doing sensible disaggregations, using logic trees, we can figure out which parts of the problem we should be looking at, and we can assign those different parts to team members.

Simon London: What’s a good example of a logic tree on a sort of ratable problem?

Charles Conn: Maybe the easiest one is the classic profit tree. Almost in every business that I would take a look at, I would start with a profit or return-on-assets tree. In its simplest form, you have the components of revenue, which are price and quantity, and the components of cost, which are cost and quantity. Each of those can be broken out. Cost can be broken into variable cost and fixed cost. The components of price can be broken into what your pricing scheme is. That simple tree often provides insight into what’s going on in a business or what the difference is between that business and the competitors.

If we add the leg, which is “What’s the asset base or investment element?”—so profit divided by assets—then we can ask the question “Is the business using its investments sensibly?” whether that’s in stores or in manufacturing or in transportation assets. I hope we can see just how simple this is, even though we’re describing it in words.

When I went to work with Gordon Moore at the Moore Foundation, the problem that he asked us to look at was “How can we save Pacific salmon?” Now, that sounds like an impossible question, but it was amenable to precisely the same type of disaggregation and allowed us to organize what became a 15-year effort to improve the likelihood of good outcomes for Pacific salmon.

Simon London: Now, is there a danger that your logic tree can be impossibly large? This, I think, brings us onto the third step in the process, which is that you have to prioritize.

Charles Conn: Absolutely. The third step, which we also emphasize, along with good problem definition, is rigorous prioritization—we ask the questions “How important is this lever or this branch of the tree in the overall outcome that we seek to achieve? How much can I move that lever?” Obviously, we try and focus our efforts on ones that have a big impact on the problem and the ones that we have the ability to change. With salmon, ocean conditions turned out to be a big lever, but not one that we could adjust. We focused our attention on fish habitats and fish-harvesting practices, which were big levers that we could affect.

People spend a lot of time arguing about branches that are either not important or that none of us can change. We see it in the public square. When we deal with questions at the policy level—“Should you support the death penalty?” “How do we affect climate change?” “How can we uncover the causes and address homelessness?”—it’s even more important that we’re focusing on levers that are big and movable.

Would you like to learn more about our Strategy & Corporate Finance Practice ?

Simon London: Let’s move swiftly on to step four. You’ve defined your problem, you disaggregate it, you prioritize where you want to analyze—what you want to really look at hard. Then you got to the work plan. Now, what does that mean in practice?

Hugo Sarrazin: Depending on what you’ve prioritized, there are many things you could do. It could be breaking the work among the team members so that people have a clear piece of the work to do. It could be defining the specific analyses that need to get done and executed, and being clear on time lines. There’s always a level-one answer, there’s a level-two answer, there’s a level-three answer. Without being too flippant, I can solve any problem during a good dinner with wine. It won’t have a whole lot of backing.

Simon London: Not going to have a lot of depth to it.

Hugo Sarrazin: No, but it may be useful as a starting point. If the stakes are not that high, that could be OK. If it’s really high stakes, you may need level three and have the whole model validated in three different ways. You need to find a work plan that reflects the level of precision, the time frame you have, and the stakeholders you need to bring along in the exercise.

Charles Conn: I love the way you’ve described that, because, again, some people think of problem solving as a linear thing, but of course what’s critical is that it’s iterative. As you say, you can solve the problem in one day or even one hour.

Charles Conn: We encourage our teams everywhere to do that. We call it the one-day answer or the one-hour answer. In work planning, we’re always iterating. Every time you see a 50-page work plan that stretches out to three months, you know it’s wrong. It will be outmoded very quickly by that learning process that you described. Iterative problem solving is a critical part of this. Sometimes, people think work planning sounds dull, but it isn’t. It’s how we know what’s expected of us and when we need to deliver it and how we’re progressing toward the answer. It’s also the place where we can deal with biases. Bias is a feature of every human decision-making process. If we design our team interactions intelligently, we can avoid the worst sort of biases.

Simon London: Here we’re talking about cognitive biases primarily, right? It’s not that I’m biased against you because of your accent or something. These are the cognitive biases that behavioral sciences have shown we all carry around, things like anchoring, overoptimism—these kinds of things.

Both: Yeah.

Charles Conn: Availability bias is the one that I’m always alert to. You think you’ve seen the problem before, and therefore what’s available is your previous conception of it—and we have to be most careful about that. In any human setting, we also have to be careful about biases that are based on hierarchies, sometimes called sunflower bias. I’m sure, Hugo, with your teams, you make sure that the youngest team members speak first. Not the oldest team members, because it’s easy for people to look at who’s senior and alter their own creative approaches.

Hugo Sarrazin: It’s helpful, at that moment—if someone is asserting a point of view—to ask the question “This was true in what context?” You’re trying to apply something that worked in one context to a different one. That can be deadly if the context has changed, and that’s why organizations struggle to change. You promote all these people because they did something that worked well in the past, and then there’s a disruption in the industry, and they keep doing what got them promoted even though the context has changed.

Simon London: Right. Right.

Hugo Sarrazin: So it’s the same thing in problem solving.

Charles Conn: And it’s why diversity in our teams is so important. It’s one of the best things about the world that we’re in now. We’re likely to have people from different socioeconomic, ethnic, and national backgrounds, each of whom sees problems from a slightly different perspective. It is therefore much more likely that the team will uncover a truly creative and clever approach to problem solving.

Simon London: Let’s move on to step five. You’ve done your work plan. Now you’ve actually got to do the analysis. The thing that strikes me here is that the range of tools that we have at our disposal now, of course, is just huge, particularly with advances in computation, advanced analytics. There’s so many things that you can apply here. Just talk about the analysis stage. How do you pick the right tools?

Charles Conn: For me, the most important thing is that we start with simple heuristics and explanatory statistics before we go off and use the big-gun tools. We need to understand the shape and scope of our problem before we start applying these massive and complex analytical approaches.

Simon London: Would you agree with that?

Hugo Sarrazin: I agree. I think there are so many wonderful heuristics. You need to start there before you go deep into the modeling exercise. There’s an interesting dynamic that’s happening, though. In some cases, for some types of problems, it is even better to set yourself up to maximize your learning. Your problem-solving methodology is test and learn, test and learn, test and learn, and iterate. That is a heuristic in itself, the A/B testing that is used in many parts of the world. So that’s a problem-solving methodology. It’s nothing different. It just uses technology and feedback loops in a fast way. The other one is exploratory data analysis. When you’re dealing with a large-scale problem, and there’s so much data, I can get to the heuristics that Charles was talking about through very clever visualization of data.

You test with your data. You need to set up an environment to do so, but don’t get caught up in neural-network modeling immediately. You’re testing, you’re checking—“Is the data right? Is it sound? Does it make sense?”—before you launch too far.

Simon London: You do hear these ideas—that if you have a big enough data set and enough algorithms, they’re going to find things that you just wouldn’t have spotted, find solutions that maybe you wouldn’t have thought of. Does machine learning sort of revolutionize the problem-solving process? Or are these actually just other tools in the toolbox for structured problem solving?

Charles Conn: It can be revolutionary. There are some areas in which the pattern recognition of large data sets and good algorithms can help us see things that we otherwise couldn’t see. But I do think it’s terribly important we don’t think that this particular technique is a substitute for superb problem solving, starting with good problem definition. Many people use machine learning without understanding algorithms that themselves can have biases built into them. Just as 20 years ago, when we were doing statistical analysis, we knew that we needed good model definition, we still need a good understanding of our algorithms and really good problem definition before we launch off into big data sets and unknown algorithms.

Simon London: Step six. You’ve done your analysis.

Charles Conn: I take six and seven together, and this is the place where young problem solvers often make a mistake. They’ve got their analysis, and they assume that’s the answer, and of course it isn’t the answer. The ability to synthesize the pieces that came out of the analysis and begin to weave those into a story that helps people answer the question “What should I do?” This is back to where we started. If we can’t synthesize, and we can’t tell a story, then our decision maker can’t find the answer to “What should I do?”

Simon London: But, again, these final steps are about motivating people to action, right?

Charles Conn: Yeah.

Simon London: I am slightly torn about the nomenclature of problem solving because it’s on paper, right? Until you motivate people to action, you actually haven’t solved anything.

Charles Conn: I love this question because I think decision-making theory, without a bias to action, is a waste of time. Everything in how I approach this is to help people take action that makes the world better.

Simon London: Hence, these are absolutely critical steps. If you don’t do this well, you’ve just got a bunch of analysis.

Charles Conn: We end up in exactly the same place where we started, which is people speaking across each other, past each other in the public square, rather than actually working together, shoulder to shoulder, to crack these important problems.

Simon London: In the real world, we have a lot of uncertainty—arguably, increasing uncertainty. How do good problem solvers deal with that?

Hugo Sarrazin: At every step of the process. In the problem definition, when you’re defining the context, you need to understand those sources of uncertainty and whether they’re important or not important. It becomes important in the definition of the tree.

You need to think carefully about the branches of the tree that are more certain and less certain as you define them. They don’t have equal weight just because they’ve got equal space on the page. Then, when you’re prioritizing, your prioritization approach may put more emphasis on things that have low probability but huge impact—or, vice versa, may put a lot of priority on things that are very likely and, hopefully, have a reasonable impact. You can introduce that along the way. When you come back to the synthesis, you just need to be nuanced about what you’re understanding, the likelihood.

Often, people lack humility in the way they make their recommendations: “This is the answer.” They’re very precise, and I think we would all be well-served to say, “This is a likely answer under the following sets of conditions” and then make the level of uncertainty clearer, if that is appropriate. It doesn’t mean you’re always in the gray zone; it doesn’t mean you don’t have a point of view. It just means that you can be explicit about the certainty of your answer when you make that recommendation.

Simon London: So it sounds like there is an underlying principle: “Acknowledge and embrace the uncertainty. Don’t pretend that it isn’t there. Be very clear about what the uncertainties are up front, and then build that into every step of the process.”

Hugo Sarrazin: Every step of the process.

Simon London: Yeah. We have just walked through a particular structured methodology for problem solving. But, of course, this is not the only structured methodology for problem solving. One that is also very well-known is design thinking, which comes at things very differently. So, Hugo, I know you have worked with a lot of designers. Just give us a very quick summary. Design thinking—what is it, and how does it relate?

Hugo Sarrazin: It starts with an incredible amount of empathy for the user and uses that to define the problem. It does pause and go out in the wild and spend an enormous amount of time seeing how people interact with objects, seeing the experience they’re getting, seeing the pain points or joy—and uses that to infer and define the problem.

Simon London: Problem definition, but out in the world.

Hugo Sarrazin: With an enormous amount of empathy. There’s a huge emphasis on empathy. Traditional, more classic problem solving is you define the problem based on an understanding of the situation. This one almost presupposes that we don’t know the problem until we go see it. The second thing is you need to come up with multiple scenarios or answers or ideas or concepts, and there’s a lot of divergent thinking initially. That’s slightly different, versus the prioritization, but not for long. Eventually, you need to kind of say, “OK, I’m going to converge again.” Then you go and you bring things back to the customer and get feedback and iterate. Then you rinse and repeat, rinse and repeat. There’s a lot of tactile building, along the way, of prototypes and things like that. It’s very iterative.

Simon London: So, Charles, are these complements or are these alternatives?

Charles Conn: I think they’re entirely complementary, and I think Hugo’s description is perfect. When we do problem definition well in classic problem solving, we are demonstrating the kind of empathy, at the very beginning of our problem, that design thinking asks us to approach. When we ideate—and that’s very similar to the disaggregation, prioritization, and work-planning steps—we do precisely the same thing, and often we use contrasting teams, so that we do have divergent thinking. The best teams allow divergent thinking to bump them off whatever their initial biases in problem solving are. For me, design thinking gives us a constant reminder of creativity, empathy, and the tactile nature of problem solving, but it’s absolutely complementary, not alternative.

Simon London: I think, in a world of cross-functional teams, an interesting question is do people with design-thinking backgrounds really work well together with classical problem solvers? How do you make that chemistry happen?

Hugo Sarrazin: Yeah, it is not easy when people have spent an enormous amount of time seeped in design thinking or user-centric design, whichever word you want to use. If the person who’s applying classic problem-solving methodology is very rigid and mechanical in the way they’re doing it, there could be an enormous amount of tension. If there’s not clarity in the role and not clarity in the process, I think having the two together can be, sometimes, problematic.

The second thing that happens often is that the artifacts the two methodologies try to gravitate toward can be different. Classic problem solving often gravitates toward a model; design thinking migrates toward a prototype. Rather than writing a big deck with all my supporting evidence, they’ll bring an example, a thing, and that feels different. Then you spend your time differently to achieve those two end products, so that’s another source of friction.

Now, I still think it can be an incredibly powerful thing to have the two—if there are the right people with the right mind-set, if there is a team that is explicit about the roles, if we’re clear about the kind of outcomes we are attempting to bring forward. There’s an enormous amount of collaborativeness and respect.

Simon London: But they have to respect each other’s methodology and be prepared to flex, maybe, a little bit, in how this process is going to work.

Hugo Sarrazin: Absolutely.

Simon London: The other area where, it strikes me, there could be a little bit of a different sort of friction is this whole concept of the day-one answer, which is what we were just talking about in classical problem solving. Now, you know that this is probably not going to be your final answer, but that’s how you begin to structure the problem. Whereas I would imagine your design thinkers—no, they’re going off to do their ethnographic research and get out into the field, potentially for a long time, before they come back with at least an initial hypothesis.

Want better strategies? Become a bulletproof problem solver

Want better strategies? Become a bulletproof problem solver

Hugo Sarrazin: That is a great callout, and that’s another difference. Designers typically will like to soak into the situation and avoid converging too quickly. There’s optionality and exploring different options. There’s a strong belief that keeps the solution space wide enough that you can come up with more radical ideas. If there’s a large design team or many designers on the team, and you come on Friday and say, “What’s our week-one answer?” they’re going to struggle. They’re not going to be comfortable, naturally, to give that answer. It doesn’t mean they don’t have an answer; it’s just not where they are in their thinking process.

Simon London: I think we are, sadly, out of time for today. But Charles and Hugo, thank you so much.

Charles Conn: It was a pleasure to be here, Simon.

Hugo Sarrazin: It was a pleasure. Thank you.

Simon London: And thanks, as always, to you, our listeners, for tuning into this episode of the McKinsey Podcast . If you want to learn more about problem solving, you can find the book, Bulletproof Problem Solving: The One Skill That Changes Everything , online or order it through your local bookstore. To learn more about McKinsey, you can of course find us at McKinsey.com.

Charles Conn is CEO of Oxford Sciences Innovation and an alumnus of McKinsey’s Sydney office. Hugo Sarrazin is a senior partner in the Silicon Valley office, where Simon London, a member of McKinsey Publishing, is also based.

Explore a career with us

Related articles.

Want better strategies? Become a bulletproof problem solver

Strategy to beat the odds

firo13_frth

Five routes to more innovative problem solving

40 problem-solving techniques and processes

Problem solving workshop

All teams and organizations encounter challenges. Approaching those challenges without a structured problem solving process can end up making things worse.

Proven problem solving techniques such as those outlined below can guide your group through a process of identifying problems and challenges , ideating on possible solutions , and then evaluating and implementing the most suitable .

In this post, you'll find problem-solving tools you can use to develop effective solutions. You'll also find some tips for facilitating the problem solving process and solving complex problems.

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, 54 great online tools for workshops and meetings, how to create an unforgettable training session in 8 simple steps.

  • 18 Free Facilitation Resources We Think You’ll Love

What is problem solving?

Problem solving is a process of finding and implementing a solution to a challenge or obstacle. In most contexts, this means going through a problem solving process that begins with identifying the issue, exploring its root causes, ideating and refining possible solutions before implementing and measuring the impact of that solution.

For simple or small problems, it can be tempting to skip straight to implementing what you believe is the right solution. The danger with this approach is that without exploring the true causes of the issue, it might just occur again or your chosen solution may cause other issues.

Particularly in the world of work, good problem solving means using data to back up each step of the process, bringing in new perspectives and effectively measuring the impact of your solution.

Effective problem solving can help ensure that your team or organization is well positioned to overcome challenges, be resilient to change and create innovation. In my experience, problem solving is a combination of skillset, mindset and process, and it’s especially vital for leaders to cultivate this skill.

A group of people looking at a poster with notes on it

What is the seven step problem solving process?

A problem solving process is a step-by-step framework from going from discovering a problem all the way through to implementing a solution.

With practice, this framework can become intuitive, and innovative companies tend to have a consistent and ongoing ability to discover and tackle challenges when they come up.

You might see everything from a four step problem solving process through to seven steps. While all these processes cover roughly the same ground, I’ve found a seven step problem solving process is helpful for making all key steps legible.

We’ll outline that process here and then follow with techniques you can use to explore and work on that step of the problem solving process with a group.

The seven-step problem solving process is:

1. Problem identification 

The first stage of any problem solving process is to identify the problem(s) you need to solve. This often looks like using group discussions and activities to help a group surface and effectively articulate the challenges they’re facing and wish to resolve.

Be sure to align with your team on the exact definition and nature of the problem you’re solving. An effective process is one where everyone is pulling in the same direction – ensure clarity and alignment now to help avoid misunderstandings later.

2. Problem analysis and refinement

The process of problem analysis means ensuring that the problem you are seeking to solve is  the   right problem . Choosing the right problem to solve means you are on the right path to creating the right solution.

At this stage, you may look deeper at the problem you identified to try and discover the root cause at the level of people or process. You may also spend some time sourcing data, consulting relevant parties and creating and refining a problem statement.

Problem refinement means adjusting scope or focus of the problem you will be aiming to solve based on what comes up during your analysis. As you analyze data sources, you might discover that the root cause means you need to adjust your problem statement. Alternatively, you might find that your original problem statement is too big to be meaningful approached within your current project.

Remember that the goal of any problem refinement is to help set the stage for effective solution development and deployment. Set the right focus and get buy-in from your team here and you’ll be well positioned to move forward with confidence.

3. Solution generation

Once your group has nailed down the particulars of the problem you wish to solve, you want to encourage a free flow of ideas connecting to solving that problem. This can take the form of problem solving games that encourage creative thinking or techniquess designed to produce working prototypes of possible solutions. 

The key to ensuring the success of this stage of the problem solving process is to encourage quick, creative thinking and create an open space where all ideas are considered. The best solutions can often come from unlikely places and by using problem solving techniques that celebrate invention, you might come up with solution gold. 

problem solving problem analysis definition

4. Solution development

No solution is perfect right out of the gate. It’s important to discuss and develop the solutions your group has come up with over the course of following the previous problem solving steps in order to arrive at the best possible solution. Problem solving games used in this stage involve lots of critical thinking, measuring potential effort and impact, and looking at possible solutions analytically. 

During this stage, you will often ask your team to iterate and improve upon your front-running solutions and develop them further. Remember that problem solving strategies always benefit from a multitude of voices and opinions, and not to let ego get involved when it comes to choosing which solutions to develop and take further.

Finding the best solution is the goal of all problem solving workshops and here is the place to ensure that your solution is well thought out, sufficiently robust and fit for purpose. 

5. Decision making and planning

Nearly there! Once you’ve got a set of possible, you’ll need to make a decision on which to implement. This can be a consensus-based group decision or it might be for a leader or major stakeholder to decide. You’ll find a set of effective decision making methods below.

Once your group has reached consensus and selected a solution, there are some additional actions that also need to be decided upon. You’ll want to work on allocating ownership of the project, figure out who will do what, how the success of the solution will be measured and decide the next course of action.

Set clear accountabilities, actions, timeframes, and follow-ups for your chosen solution. Make these decisions and set clear next-steps in the problem solving workshop so that everyone is aligned and you can move forward effectively as a group. 

Ensuring that you plan for the roll-out of a solution is one of the most important problem solving steps. Without adequate planning or oversight, it can prove impossible to measure success or iterate further if the problem was not solved. 

6. Solution implementation 

This is what we were waiting for! All problem solving processes have the end goal of implementing an effective and impactful solution that your group has confidence in.

Project management and communication skills are key here – your solution may need to adjust when out in the wild or you might discover new challenges along the way. For some solutions, you might also implement a test with a small group and monitor results before rolling it out to an entire company.

You should have a clear owner for your solution who will oversee the plans you made together and help ensure they’re put into place. This person will often coordinate the implementation team and set-up processes to measure the efficacy of your solution too.

7. Solution evaluation 

So you and your team developed a great solution to a problem and have a gut feeling it’s been solved. Work done, right? Wrong. All problem solving strategies benefit from evaluation, consideration, and feedback.

You might find that the solution does not work for everyone, might create new problems, or is potentially so successful that you will want to roll it out to larger teams or as part of other initiatives. 

None of that is possible without taking the time to evaluate the success of the solution you developed in your problem solving model and adjust if necessary.

Remember that the problem solving process is often iterative and it can be common to not solve complex issues on the first try. Even when this is the case, you and your team will have generated learning that will be important for future problem solving workshops or in other parts of the organization. 

It’s also worth underlining how important record keeping is throughout the problem solving process. If a solution didn’t work, you need to have the data and records to see why that was the case. If you go back to the drawing board, notes from the previous workshop can help save time.

What does an effective problem solving process look like?

Every effective problem solving process begins with an agenda . In our experience, a well-structured problem solving workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

The format of a workshop ensures that you can get buy-in from your group, encourage free-thinking and solution exploration before making a decision on what to implement following the session.

This Design Sprint 2.0 template is an effective problem solving process from top agency AJ&Smart. It’s a great format for the entire problem solving process, with four-days of workshops designed to surface issues, explore solutions and even test a solution.

Check it for an example of how you might structure and run a problem solving process and feel free to copy and adjust it your needs!

For a shorter process you can run in a single afternoon, this remote problem solving agenda will guide you effectively in just a couple of hours.

Whatever the length of your workshop, by using SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

problem solving problem analysis definition

Complete problem-solving methods

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

The Six Thinking Hats   #creative thinking   #meeting facilitation   #problem solving   #issue resolution   #idea generation   #conflict resolution   The Six Thinking Hats are used by individuals and groups to separate out conflicting styles of thinking. They enable and encourage a group of people to think constructively together in exploring and implementing change, rather than using argument to fight over who is right and who is wrong.

Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   It doesn’t matter where you work and what your job role is, if you work with other people together as a team, you will always encounter the same challenges: Unclear goals and miscommunication that cause busy work and overtime Unstructured meetings that leave attendants tired, confused and without clear outcomes. Frustration builds up because internal challenges to productivity are not addressed Sudden changes in priorities lead to a loss of focus and momentum Muddled compromise takes the place of clear decision- making, leaving everybody to come up with their own interpretation. In short, a lack of structure leads to a waste of time and effort, projects that drag on for too long and frustrated, burnt out teams. AJ&Smart has worked with some of the most innovative, productive companies in the world. What sets their teams apart from others is not better tools, bigger talent or more beautiful offices. The secret sauce to becoming a more productive, more creative and happier team is simple: Replace all open discussion or brainstorming with a structured process that leads to more ideas, clearer decisions and better outcomes. When a good process provides guardrails and a clear path to follow, it becomes easier to come up with ideas, make decisions and solve problems. This is why AJ&Smart created Lightning Decision Jam (LDJ). It’s a simple and short, but powerful group exercise that can be run either in-person, in the same room, or remotely with distributed teams.

Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.
Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for brainstorming solutions

Now you have the context and background of the problem you are trying to solving, now comes the time to start ideating and thinking about how you’ll solve the issue.

Here, you’ll want to encourage creative, free thinking and speed. Get as many ideas out as possible and explore different perspectives so you have the raw material for the next step.

Looking at a problem from a new angle can be one of the most effective ways of creating an effective solution. TRIZ is a problem-solving tool that asks the group to consider what they must not do in order to solve a challenge.

By reversing the discussion, new topics and taboo subjects often emerge, allowing the group to think more deeply and create ideas that confront the status quo in a safe and meaningful way. If you’re working on a problem that you’ve tried to solve before, TRIZ is a great problem-solving method to help your team get unblocked.

Making Space with TRIZ   #issue analysis   #liberating structures   #issue resolution   You can clear space for innovation by helping a group let go of what it knows (but rarely admits) limits its success and by inviting creative destruction. TRIZ makes it possible to challenge sacred cows safely and encourages heretical thinking. The question “What must we stop doing to make progress on our deepest purpose?” induces seriously fun yet very courageous conversations. Since laughter often erupts, issues that are otherwise taboo get a chance to be aired and confronted. With creative destruction come opportunities for renewal as local action and innovation rush in to fill the vacuum. Whoosh!

Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

Idea and Concept Development

Brainstorming without structure can quickly become chaotic or frustrating. In a problem-solving context, having an ideation framework to follow can help ensure your team is both creative and disciplined.

In this method, you’ll find an idea generation process that encourages your group to brainstorm effectively before developing their ideas and begin clustering them together. By using concepts such as Yes and…, more is more and postponing judgement, you can create the ideal conditions for brainstorming with ease.

Idea & Concept Development   #hyperisland   #innovation   #idea generation   Ideation and Concept Development is a process for groups to work creatively and collaboratively to generate creative ideas. It’s a general approach that can be adapted and customized to suit many different scenarios. It includes basic principles for idea generation and several steps for groups to work with. It also includes steps for idea selection and development.

Problem-solving techniques for developing and refining solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to develop and refine your ideas in order to bring them closer to a solution that actually solves the problem.

Use these problem-solving techniques when you want to help your team think through their ideas and refine them as part of your problem solving process.

Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

Ensuring that everyone in a group is able to contribute to a discussion is vital during any problem solving process. Not only does this ensure all bases are covered, but its then easier to get buy-in and accountability when people have been able to contribute to the process.

1-2-4-All is a tried and tested facilitation technique where participants are asked to first brainstorm on a topic on their own. Next, they discuss and share ideas in a pair before moving into a small group. Those groups are then asked to present the best idea from their discussion to the rest of the team.

This method can be used in many different contexts effectively, though I find it particularly shines in the idea development stage of the process. Giving each participant time to concretize their ideas and develop them in progressively larger groups can create a great space for both innovation and psychological safety.

1-2-4-All   #idea generation   #liberating structures   #issue analysis   With this facilitation technique you can immediately include everyone regardless of how large the group is. You can generate better ideas and more of them faster than ever before. You can tap the know-how and imagination that is distributed widely in places not known in advance. Open, generative conversation unfolds. Ideas and solutions are sifted in rapid fashion. Most importantly, participants own the ideas, so follow-up and implementation is simplified. No buy-in strategies needed! Simple and elegant!

15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

Problem-solving techniques for making decisions and planning

After your group is happy with the possible solutions you’ve developed, now comes the time to choose which to implement. There’s more than one way to make a decision and the best option is often dependant on the needs and set-up of your group.

Sometimes, it’s the case that you’ll want to vote as a group on what is likely to be the most impactful solution. Other times, it might be down to a decision maker or major stakeholder to make the final decision. Whatever your process, here’s some techniques you can use to help you make a decision during your problem solving process.

How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

Straddling the gap between decision making and planning, MoSCoW is a simple and effective method that allows a group team to easily prioritize a set of possible options.

Use this method in a problem solving process by collecting and summarizing all your possible solutions and then categorize them into 4 sections: “Must have”, “Should have”, “Could have”, or “Would like but won‘t get”.

This method is particularly useful when its less about choosing one possible solution and more about prioritorizing which to do first and which may not fit in the scope of your project. In my experience, complex challenges often require multiple small fixes, and this method can be a great way to move from a pile of things you’d all like to do to a structured plan.

MoSCoW   #define intentions   #create   #design   #action   #remote-friendly   MoSCoW is a method that allows the team to prioritize the different features that they will work on. Features are then categorized into “Must have”, “Should have”, “Could have”, or “Would like but won‘t get”. To be used at the beginning of a timeslot (for example during Sprint planning) and when planning is needed.

When it comes to managing the rollout of a solution, clarity and accountability are key factors in ensuring the success of the project. The RAACI chart is a simple but effective model for setting roles and responsibilities as part of a planning session.

Start by listing each person involved in the project and put them into the following groups in order to make it clear who is responsible for what during the rollout of your solution.

  • Responsibility  (Which person and/or team will be taking action?)
  • Authority  (At what “point” must the responsible person check in before going further?)
  • Accountability  (Who must the responsible person check in with?)
  • Consultation  (Who must be consulted by the responsible person before decisions are made?)
  • Information  (Who must be informed of decisions, once made?)

Ensure this information is easily accessible and use it to inform who does what and who is looped into discussions and kept up to date.

RAACI   #roles and responsibility   #teamwork   #project management   Clarifying roles and responsibilities, levels of autonomy/latitude in decision making, and levels of engagement among diverse stakeholders.

Problem-solving warm-up activities

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process. Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Closing activities for a problem-solving process

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Tips for effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Create psychologically safe spaces for discussion

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner.

It can be tough for people to stand up and contribute if the problems or challenges are emotive or personal in nature. Try and create a psychologically safe space for these kinds of discussions and where possible, create regular opportunities for challenges to be brought up organically.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

Save time and effort creating an effective problem solving process

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

problem solving problem analysis definition

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

problem solving problem analysis definition

James Smart is Head of Content at SessionLab. He’s also a creative facilitator who has run workshops and designed courses for establishments like the National Centre for Writing, UK. He especially enjoys working with young people and empowering others in their creative practice.

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

' src=

Your list of techniques for problem solving can be helpfully extended by adding TRIZ to the list of techniques. TRIZ has 40 problem solving techniques derived from methods inventros and patent holders used to get new patents. About 10-12 are general approaches. many organization sponsor classes in TRIZ that are used to solve business problems or general organiztational problems. You can take a look at TRIZ and dwonload a free internet booklet to see if you feel it shound be included per your selection process.

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

problem solving problem analysis definition

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of great workshop tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your life easier and run better workshops and meetings. In fact, there are plenty of free online workshop tools and meeting…

problem solving problem analysis definition

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

lls-logo-main

The Art of Effective Problem Solving: A Step-by-Step Guide

Author's Avatar

Author: Daniel Croft

Daniel Croft is an experienced continuous improvement manager with a Lean Six Sigma Black Belt and a Bachelor's degree in Business Management. With more than ten years of experience applying his skills across various industries, Daniel specializes in optimizing processes and improving efficiency. His approach combines practical experience with a deep understanding of business fundamentals to drive meaningful change.

Whether we realise it or not, problem solving skills are an important part of our daily lives. From resolving a minor annoyance at home to tackling complex business challenges at work, our ability to solve problems has a significant impact on our success and happiness. However, not everyone is naturally gifted at problem-solving, and even those who are can always improve their skills. In this blog post, we will go over the art of effective problem-solving step by step.

You will learn how to define a problem, gather information, assess alternatives, and implement a solution, all while honing your critical thinking and creative problem-solving skills. Whether you’re a seasoned problem solver or just getting started, this guide will arm you with the knowledge and tools you need to face any challenge with confidence. So let’s get started!

Problem Solving Methodologies

Individuals and organisations can use a variety of problem-solving methodologies to address complex challenges. 8D and A3 problem solving techniques are two popular methodologies in the Lean Six Sigma framework.

Methodology of 8D (Eight Discipline) Problem Solving:

The 8D problem solving methodology is a systematic, team-based approach to problem solving. It is a method that guides a team through eight distinct steps to solve a problem in a systematic and comprehensive manner.

The 8D process consists of the following steps:

8D Problem Solving2 - Learnleansigma

  • Form a team: Assemble a group of people who have the necessary expertise to work on the problem.
  • Define the issue: Clearly identify and define the problem, including the root cause and the customer impact.
  • Create a temporary containment plan: Put in place a plan to lessen the impact of the problem until a permanent solution can be found.
  • Identify the root cause: To identify the underlying causes of the problem, use root cause analysis techniques such as Fishbone diagrams and Pareto charts.
  • Create and test long-term corrective actions: Create and test a long-term solution to eliminate the root cause of the problem.
  • Implement and validate the permanent solution: Implement and validate the permanent solution’s effectiveness.
  • Prevent recurrence: Put in place measures to keep the problem from recurring.
  • Recognize and reward the team: Recognize and reward the team for its efforts.

Download the 8D Problem Solving Template

A3 Problem Solving Method:

The A3 problem solving technique is a visual, team-based problem-solving approach that is frequently used in Lean Six Sigma projects. The A3 report is a one-page document that clearly and concisely outlines the problem, root cause analysis, and proposed solution.

The A3 problem-solving procedure consists of the following steps:

  • Determine the issue: Define the issue clearly, including its impact on the customer.
  • Perform root cause analysis: Identify the underlying causes of the problem using root cause analysis techniques.
  • Create and implement a solution: Create and implement a solution that addresses the problem’s root cause.
  • Monitor and improve the solution: Keep an eye on the solution’s effectiveness and make any necessary changes.

Subsequently, in the Lean Six Sigma framework, the 8D and A3 problem solving methodologies are two popular approaches to problem solving. Both methodologies provide a structured, team-based problem-solving approach that guides individuals through a comprehensive and systematic process of identifying, analysing, and resolving problems in an effective and efficient manner.

Step 1 – Define the Problem

The definition of the problem is the first step in effective problem solving. This may appear to be a simple task, but it is actually quite difficult. This is because problems are frequently complex and multi-layered, making it easy to confuse symptoms with the underlying cause. To avoid this pitfall, it is critical to thoroughly understand the problem.

To begin, ask yourself some clarifying questions:

  • What exactly is the issue?
  • What are the problem’s symptoms or consequences?
  • Who or what is impacted by the issue?
  • When and where does the issue arise?

Answering these questions will assist you in determining the scope of the problem. However, simply describing the problem is not always sufficient; you must also identify the root cause. The root cause is the underlying cause of the problem and is usually the key to resolving it permanently.

Try asking “why” questions to find the root cause:

  • What causes the problem?
  • Why does it continue?
  • Why does it have the effects that it does?

By repeatedly asking “ why ,” you’ll eventually get to the bottom of the problem. This is an important step in the problem-solving process because it ensures that you’re dealing with the root cause rather than just the symptoms.

Once you have a firm grasp on the issue, it is time to divide it into smaller, more manageable chunks. This makes tackling the problem easier and reduces the risk of becoming overwhelmed. For example, if you’re attempting to solve a complex business problem, you might divide it into smaller components like market research, product development, and sales strategies.

To summarise step 1, defining the problem is an important first step in effective problem-solving. You will be able to identify the root cause and break it down into manageable parts if you take the time to thoroughly understand the problem. This will prepare you for the next step in the problem-solving process, which is gathering information and brainstorming ideas.

Step 2 – Gather Information and Brainstorm Ideas

Brainstorming - Learnleansigma

Gathering information and brainstorming ideas is the next step in effective problem solving. This entails researching the problem and relevant information, collaborating with others, and coming up with a variety of potential solutions. This increases your chances of finding the best solution to the problem.

Begin by researching the problem and relevant information. This could include reading articles, conducting surveys, or consulting with experts. The goal is to collect as much information as possible in order to better understand the problem and possible solutions.

Next, work with others to gather a variety of perspectives. Brainstorming with others can be an excellent way to come up with new and creative ideas. Encourage everyone to share their thoughts and ideas when working in a group, and make an effort to actively listen to what others have to say. Be open to new and unconventional ideas and resist the urge to dismiss them too quickly.

Finally, use brainstorming to generate a wide range of potential solutions. This is the place where you can let your imagination run wild. At this stage, don’t worry about the feasibility or practicality of the solutions; instead, focus on generating as many ideas as possible. Write down everything that comes to mind, no matter how ridiculous or unusual it may appear. This can be done individually or in groups.

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the next step in the problem-solving process, which we’ll go over in greater detail in the following section.

Step 3 – Evaluate Options and Choose the Best Solution

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the third step in effective problem solving, and it entails weighing the advantages and disadvantages of each solution, considering their feasibility and practicability, and selecting the solution that is most likely to solve the problem effectively.

To begin, weigh the advantages and disadvantages of each solution. This will assist you in determining the potential outcomes of each solution and deciding which is the best option. For example, a quick and easy solution may not be the most effective in the long run, whereas a more complex and time-consuming solution may be more effective in solving the problem in the long run.

Consider each solution’s feasibility and practicability. Consider the following:

  • Can the solution be implemented within the available resources, time, and budget?
  • What are the possible barriers to implementing the solution?
  • Is the solution feasible in today’s political, economic, and social environment?

You’ll be able to tell which solutions are likely to succeed and which aren’t by assessing their feasibility and practicability.

Finally, choose the solution that is most likely to effectively solve the problem. This solution should be based on the criteria you’ve established, such as the advantages and disadvantages of each solution, their feasibility and practicability, and your overall goals.

It is critical to remember that there is no one-size-fits-all solution to problems. What is effective for one person or situation may not be effective for another. This is why it is critical to consider a wide range of solutions and evaluate each one based on its ability to effectively solve the problem.

Step 4 – Implement and Monitor the Solution

Communication the missing peice from Lean Six Sigma - Learnleansigma

When you’ve decided on the best solution, it’s time to put it into action. The fourth and final step in effective problem solving is to put the solution into action, monitor its progress, and make any necessary adjustments.

To begin, implement the solution. This may entail delegating tasks, developing a strategy, and allocating resources. Ascertain that everyone involved understands their role and responsibilities in the solution’s implementation.

Next, keep an eye on the solution’s progress. This may entail scheduling regular check-ins, tracking metrics, and soliciting feedback from others. You will be able to identify any potential roadblocks and make any necessary adjustments in a timely manner if you monitor the progress of the solution.

Finally, make any necessary modifications to the solution. This could entail changing the solution, altering the plan of action, or delegating different tasks. Be willing to make changes if they will improve the solution or help it solve the problem more effectively.

It’s important to remember that problem solving is an iterative process, and there may be times when you need to start from scratch. This is especially true if the initial solution does not effectively solve the problem. In these situations, it’s critical to be adaptable and flexible and to keep trying new solutions until you find the one that works best.

To summarise, effective problem solving is a critical skill that can assist individuals and organisations in overcoming challenges and achieving their objectives. Effective problem solving consists of four key steps: defining the problem, generating potential solutions, evaluating alternatives and selecting the best solution, and implementing the solution.

You can increase your chances of success in problem solving by following these steps and considering factors such as the pros and cons of each solution, their feasibility and practicability, and making any necessary adjustments. Furthermore, keep in mind that problem solving is an iterative process, and there may be times when you need to go back to the beginning and restart. Maintain your adaptability and try new solutions until you find the one that works best for you.

  • Novick, L.R. and Bassok, M., 2005.  Problem Solving . Cambridge University Press.

Was this helpful?

Picture of Daniel Croft

Daniel Croft

Hi im Daniel continuous improvement manager with a Black Belt in Lean Six Sigma and over 10 years of real-world experience across a range sectors, I have a passion for optimizing processes and creating a culture of efficiency. I wanted to create Learn Lean Siigma to be a platform dedicated to Lean Six Sigma and process improvement insights and provide all the guides, tools, techniques and templates I looked for in one place as someone new to the world of Lean Six Sigma and Continuous improvement.

Triple Threat to Productivity - Muda, Muri and Mura - Feature Image - LearnLeanSigma

The Triple Threat to Productivity: Muda, Muri, and Mura Explained

Andon Systems - Tips for Successful Implementation and Maintenance - Feature Image - LearnLeanSigma

Andon Systems: Tips for Successful Implementation and Maintenance

Free lean six sigma templates.

Improve your Lean Six Sigma projects with our free templates. They're designed to make implementation and management easier, helping you achieve better results.

Practice Exams-Sidebar

Understanding Process Performance: Pp and Ppk

Understand Process Performance (Pp) and Process Performance Index (Ppk) to assess and improve manufacturing processes.…

LIFO or FIFO for Stock Management?

Choosing between LIFO and FIFO for stock management depends on factors like product nature, market…

Are There Any Official Standards for Six Sigma?

Are there any official standards for Six Sigma? While Six Sigma is a well-defined methodology…

5S Floor Marking Best Practices

In lean manufacturing, the 5S System is a foundational tool, involving the steps: Sort, Set…

How to Measure the ROI of Continuous Improvement Initiatives

When it comes to business, knowing the value you’re getting for your money is crucial,…

8D Problem-Solving: Common Mistakes to Avoid

In today’s competitive business landscape, effective problem-solving is the cornerstone of organizational success. The 8D…

Forage

What Are Problem-Solving Skills? Definition and Examples

Zoe Kaplan

  • Share on Twitter Share on Twitter
  • Share on Facebook Share on Facebook
  • Share on LinkedIn Share on LinkedIn

person sitting at desk with headphones thinking

Forage puts students first. Our blog articles are written independently by our editorial team. They have not been paid for or sponsored by our partners. See our full  editorial guidelines .

Why do employers hire employees? To help them solve problems. Whether you’re a financial analyst deciding where to invest your firm’s money, or a marketer trying to figure out which channel to direct your efforts, companies hire people to help them find solutions. Problem-solving is an essential and marketable soft skill in the workplace. 

So, how can you improve your problem-solving and show employers you have this valuable skill? In this guide, we’ll cover:

Problem-Solving Skills Definition

Why are problem-solving skills important, problem-solving skills examples, how to include problem-solving skills in a job application, how to improve problem-solving skills, problem-solving: the bottom line.

Problem-solving skills are the ability to identify problems, brainstorm and analyze answers, and implement the best solutions. An employee with good problem-solving skills is both a self-starter and a collaborative teammate; they are proactive in understanding the root of a problem and work with others to consider a wide range of solutions before deciding how to move forward. 

Examples of using problem-solving skills in the workplace include:

  • Researching patterns to understand why revenue decreased last quarter
  • Experimenting with a new marketing channel to increase website sign-ups
  • Brainstorming content types to share with potential customers
  • Testing calls to action to see which ones drive the most product sales
  • Implementing a new workflow to automate a team process and increase productivity

Problem-solving skills are the most sought-after soft skill of 2022. In fact, 86% of employers look for problem-solving skills on student resumes, according to the National Association of Colleges and Employers Job Outlook 2022 survey . 

It’s unsurprising why employers are looking for this skill: companies will always need people to help them find solutions to their problems. Someone proactive and successful at problem-solving is valuable to any team.

“Employers are looking for employees who can make decisions independently, especially with the prevalence of remote/hybrid work and the need to communicate asynchronously,” Eric Mochnacz, senior HR consultant at Red Clover, says. “Employers want to see individuals who can make well-informed decisions that mitigate risk, and they can do so without suffering from analysis paralysis.”

Showcase new skills

Build the confidence and practical skills that employers are looking for with Forage’s free job simulations.

Problem-solving includes three main parts: identifying the problem, analyzing possible solutions, and deciding on the best course of action.

>>MORE: Discover the right career for you based on your skills with a career aptitude test .

Research is the first step of problem-solving because it helps you understand the context of a problem. Researching a problem enables you to learn why the problem is happening. For example, is revenue down because of a new sales tactic? Or because of seasonality? Is there a problem with who the sales team is reaching out to? 

Research broadens your scope to all possible reasons why the problem could be happening. Then once you figure it out, it helps you narrow your scope to start solving it. 

Analysis is the next step of problem-solving. Now that you’ve identified the problem, analytical skills help you look at what potential solutions there might be.

“The goal of analysis isn’t to solve a problem, actually — it’s to better understand it because that’s where the real solution will be found,” Gretchen Skalka, owner of Career Insights Consulting, says. “Looking at a problem through the lens of impartiality is the only way to get a true understanding of it from all angles.”

Decision-Making

Once you’ve figured out where the problem is coming from and what solutions are, it’s time to decide on the best way to go forth. Decision-making skills help you determine what resources are available, what a feasible action plan entails, and what solution is likely to lead to success.

On a Resume

Employers looking for problem-solving skills might include the word “problem-solving” or other synonyms like “ critical thinking ” or “analytical skills” in the job description.

“I would add ‘buzzwords’ you can find from the job descriptions or LinkedIn endorsements section to filter into your resume to comply with the ATS,” Matthew Warzel, CPRW resume writer, advises. Warzel recommends including these skills on your resume but warns to “leave the soft skills as adjectives in the summary section. That is the only place soft skills should be mentioned.”

On the other hand, you can list hard skills separately in a skills section on your resume .

problem solving problem analysis definition

Forage Resume Writing Masterclass

Learn how to showcase your skills and craft an award-winning resume with this free masterclass from Forage.

Avg. Time: 5 to 6 hours

Skills you’ll build: Resume writing, professional brand, professional summary, narrative, transferable skills, industry keywords, illustrating your impact, standing out

In a Cover Letter or an Interview

Explaining your problem-solving skills in an interview can seem daunting. You’re required to expand on your process — how you identified a problem, analyzed potential solutions, and made a choice. As long as you can explain your approach, it’s okay if that solution didn’t come from a professional work experience.

“Young professionals shortchange themselves by thinking only paid-for solutions matter to employers,” Skalka says. “People at the genesis of their careers don’t have a wealth of professional experience to pull from, but they do have relevant experience to share.”

Aaron Case, career counselor and CPRW at Resume Genius, agrees and encourages early professionals to share this skill. “If you don’t have any relevant work experience yet, you can still highlight your problem-solving skills in your cover letter,” he says. “Just showcase examples of problems you solved while completing your degree, working at internships, or volunteering. You can even pull examples from completely unrelated part-time jobs, as long as you make it clear how your problem-solving ability transfers to your new line of work.”

Learn How to Identify Problems

Problem-solving doesn’t just require finding solutions to problems that are already there. It’s also about being proactive when something isn’t working as you hoped it would. Practice questioning and getting curious about processes and activities in your everyday life. What could you improve? What would you do if you had more resources for this process? If you had fewer? Challenge yourself to challenge the world around you.

Think Digitally

“Employers in the modern workplace value digital problem-solving skills, like being able to find a technology solution to a traditional issue,” Case says. “For example, when I first started working as a marketing writer, my department didn’t have the budget to hire a professional voice actor for marketing video voiceovers. But I found a perfect solution to the problem with an AI voiceover service that cost a fraction of the price of an actor.”

Being comfortable with new technology — even ones you haven’t used before — is a valuable skill in an increasingly hybrid and remote world. Don’t be afraid to research new and innovative technologies to help automate processes or find a more efficient technological solution.

Collaborate

Problem-solving isn’t done in a silo, and it shouldn’t be. Use your collaboration skills to gather multiple perspectives, help eliminate bias, and listen to alternative solutions. Ask others where they think the problem is coming from and what solutions would help them with your workflow. From there, try to compromise on a solution that can benefit everyone.

If we’ve learned anything from the past few years, it’s that the world of work is constantly changing — which means it’s crucial to know how to adapt . Be comfortable narrowing down a solution, then changing your direction when a colleague provides a new piece of information. Challenge yourself to get out of your comfort zone, whether with your personal routine or trying a new system at work.

Put Yourself in the Middle of Tough Moments

Just like adapting requires you to challenge your routine and tradition, good problem-solving requires you to put yourself in challenging situations — especially ones where you don’t have relevant experience or expertise to find a solution. Because you won’t know how to tackle the problem, you’ll learn new problem-solving skills and how to navigate new challenges. Ask your manager or a peer if you can help them work on a complicated problem, and be proactive about asking them questions along the way.

Career Aptitude Test

What careers are right for you based on your skills? Take this quiz to find out. It’s completely free — you’ll just need to sign up to get your results!

Step 1 of 3

Companies always need people to help them find solutions — especially proactive employees who have practical analytical skills and can collaborate to decide the best way to move forward. Whether or not you have experience solving problems in a professional workplace, illustrate your problem-solving skills by describing your research, analysis, and decision-making process — and make it clear that you’re the solution to the employer’s current problems. 

Image Credit: Christina Morillo / Pexels 

Zoe Kaplan

Related Posts

6 negotiation skills to level up your work life, how to build conflict resolution skills: case studies and examples, what is github uses and getting started, upskill with forage.

problem solving problem analysis definition

Build career skills recruiters are looking for.

loading

  • Memberships
  • Problem Solving Theories

Problem solving can be defined as the process of a problem analysis and resolving it in the best way possible for that situation.

This process contains analysing the problem (root cause analysis), defining countermeasures for the problem and implementing the right solution for that situation.

For problem solving, people need critical thinking and analytical skills . Everybody within a organization or company can benefit from having good skills because there are always problems.

There have been lots of scientific and practical studies from a learning point of view. Some of the problem solving techniques developed and used in artificial intelligence (AI) , computer science, engineering, mathematics, or medicine are related to mental techniques studied in psychology.

What are the most known and used techniques and methods? What are their success stories and practical tips when you apply these? These posts are all about great tools and methods that can help you to achieve your goal or understand certain aspects that come with solving problems.

problem solving problem analysis definition

PDCA Cycle by Deming: Meaning and Steps

August 14th, 2024

problem solving problem analysis definition

Straw Man Proposal: The basics and template

July 9th, 2024

problem solving problem analysis definition

TRIZ Method of Problem Solving explained

problem solving problem analysis definition

Root Cause Analysis (RCA): Definition, Process and Tools

June 12th, 2024

problem solving problem analysis definition

Simplex Problem Solving Process by Marino Basadur

problem solving problem analysis definition

8D Report and template

May 22nd, 2024

problem solving problem analysis definition

Pareto Analysis explained plus example

problem solving problem analysis definition

Fishbone Diagram by Kaoru Ishikawa explained

problem solving problem analysis definition

Soft Systems Methodology (SSM) by Peter Checkland

April 29th, 2024

problem solving problem analysis definition

Crowdsourcing: the meaning, definition and some examples

April 10th, 2024

problem solving problem analysis definition

Systematic Inventive Thinking (SIT)

problem solving problem analysis definition

CATWOE Analysis: theory and example

January 26th, 2024

BOOST YOUR SKILLS

Toolshero supports people worldwide ( 10+ million visitors from 100+ countries ) to empower themselves through an easily accessible and high-quality learning platform for personal and professional development.

By making access to scientific knowledge simple and affordable, self-development becomes attainable for everyone, including you! Join our learning platform and boost your skills with Toolshero.

problem solving problem analysis definition

POPULAR TOPICS

  • Change Management
  • Marketing Theories
  • Psychology Theories

ABOUT TOOLSHERO

  • Free Toolshero e-book
  • Memberships & Pricing

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Ensure High-Quality Data Powers Your AI

  • Thomas C. Redman

problem solving problem analysis definition

The utility and impact of this technology depends on the data that goes into it.

AI does not need to fail on a global scale to cause enormous damage — to individuals, companies, and societies. Models frequently get things wrong, hallucinate, drift, and can collapse. Good AI comes from good data, but data quality is an enormous organization-wide issue (and opportunity), yet most companies have neglected it. Companies need to understand the nuances of the problem they’re trying to solve, get the data right (both by having the right data for that problem and by ensuring that the data is error-free), assign responsibility for data quality in the short term, and then push quality efforts upstream in the longer-term.

Twenty years ago, mortgage-backed securities and collateralized debt obligations were all the rage. These new financial products were, initially, a wonder: they helped put millions of people into homes and make billions for banks. Then things went horribly wrong, and they nearly tanked the global economy.

problem solving problem analysis definition

  • Thomas C. Redman , “the Data Doc,” is President of Data Quality Solutions . He helps companies and people  chart their courses to data-driven futures with special emphasis on quality, analytics, and organizational capabilities. His latest book, People and Data: Uniting to Transform Your Organization (Kogan Page) was published Summer 2023.

Partner Center

Every Problem, Every Step, All in Focus: Learning to Solve Vision-Language Problems With Integrated Attention

New citation alert added.

This alert has been successfully added and will be sent to:

You will be notified whenever a record that you have chosen has been cited.

To manage your alert preferences, click on the button below.

New Citation Alert!

Please log in to your account

Information & Contributors

Bibliometrics & citations, view options, recommendations, focus your attention: a bidirectional focal attention network for image-text matching.

Learning semantic correspondence between image and text is significant as it bridges the semantic gap between vision and language. The key challenge is to accurately find and correlate shared semantics in image and text. Most existing methods achieve ...

Focus Your Attention: A Focal Attention for Multimodal Learning

The key point in multimodal learning is to learn semantic alignment that finds the correspondence between sub-elements of instances from different modality data. Attention mechanism has shown its power in semantic alignment learning as it enables to ...

Sign, Attend and Tell: Spatial Attention for Sign Language Recognition

Sign Language Recognition (SLR) has witnessed a boost in recent years, particularly with the surge of deep learning techniques. However, most existing methods do not exploit the concept of attention mechanisms, despite their success in several computer ...

Information

Published in.

IEEE Computer Society

United States

Publication History

  • Research-article

Contributors

Other metrics, bibliometrics, article metrics.

  • 0 Total Citations
  • 0 Total Downloads
  • Downloads (Last 12 months) 0
  • Downloads (Last 6 weeks) 0

View options

Login options.

Check if you have access through your login credentials or your institution to get full access on this article.

Full Access

Share this publication link.

Copying failed.

Share on social media

Affiliations, export citations.

  • Please download or close your previous search result export first before starting a new bulk export. Preview is not available. By clicking download, a status dialog will open to start the export process. The process may take a few minutes but once it finishes a file will be downloadable from your browser. You may continue to browse the DL while the export process is in progress. Download
  • Download citation
  • Copy citation

We are preparing your search results for download ...

We will inform you here when the file is ready.

Your file of search results citations is now ready.

Your search export query has expired. Please try again.

  • Open access
  • Published: 20 August 2024

Impact of a game-based interprofessional education program on medical students’ perceptions: a text network analysis using essays

  • Young Gyu Kwon 1 ,
  • Myeong Namgung 2 ,
  • Song Hee Park 3 ,
  • Mi Kyung Kim 3 , 4 ,
  • Sun Jung Myung 5 ,
  • Eun Kyung Eo 6 &
  • Chan Woong Kim 1 , 2  

BMC Medical Education volume  24 , Article number:  898 ( 2024 ) Cite this article

Metrics details

The increasing complexity of the healthcare environment and the necessity of multidisciplinary teamwork have highlighted the importance of interprofessional education (IPE). IPE aims to enhance the quality of patient care through collaborative education involving various healthcare professionals, such as doctors, nurses, and pharmacists. This study sought to analyze how game-based IPE activities influence students’ perceptions and reflective thinking. It also aimed to identify the shifts in perception and effectiveness caused by this educational approach.

The study is based on a game-based IPE program conducted at University A, involving medical and nursing students in structured learning and team-based activities. Data were collected using essays written by the students after they had participated in IPE activities. Text network analysis was conducted by extracting key terms, performing centrality analysis, and visualizing topic modeling to identify changes in students’ perceptions and reflective thinking.

Keywords such as “patient,” “thought,” “group,” “doctor,” “nurse,” and “communication” played a crucial role in the network, indicating that students prioritized enhancing their communication and problem-solving skills within the educational environment. The topic modeling results identified three main topics, each demonstrating the positive influence of game-based collaborative activities, interprofessional perspectives, and interdisciplinary educational experiences on students. Topic 3 (interdisciplinary educational experience) acted as a significant mediator connecting Topic 1 (game-based collaborative activity experience) and Topic 2 (interprofessional perspectives).

This study demonstrates that game-based IPE activities are an effective educational approach for enhancing students’ team building skills, particularly communication and interprofessional perspectives. Based on these findings, future IPE programs should focus on creating collaborative learning environments, strengthening communication skills, and promoting interdisciplinary education. The findings provide essential insights for educational designers and medical educators to enhance the effectiveness of IPE programs. Future research should assess the long-term impacts of game-based IPE on clinical practice, patient outcomes, and participants’ professional development.

Peer Review reports

With rapid changes in the healthcare environment and the advancement of systems, effective collaboration among various healthcare professionals is crucial to meet patients’ high expectations [ 1 ]. This underscores the growing importance of interprofessional education (IPE), which aims to develop the ability to collaborate efficiently as multidisciplinary teams [ 2 , 3 ]. IPE involves students from two or more healthcare professions learning about, from, and with each other through collaborative education. The primary objective of IPE is to assist healthcare professionals, including doctors, pharmacists, and nurses, in developing the competence to collaborate more effectively in multidisciplinary teams to enhance patient care [ 4 ]. Its history began in the early twentieth century and has evolved to include numerous healthcare professionals such as nurses, pharmacists, and dentists [ 5 ]. The World Health Organization (WHO) reported that IPE provides highly collaborative teamwork experiences that improve job satisfaction and enhance access to and safety in patient care [ 6 ]. Recent studies have also shown that IPE is pivotal not only in promoting professional autonomy, understanding of professional roles, teamwork, and collaboration, but also in providing essential knowledge and skills for improving healthcare services [ 7 , 8 , 9 , 10 , 11 , 12 , 13 ].

One innovative approach to enhancing IPE involves game-based learning, which integrates educational content with interactive gaming elements to create engaging and effective learning experiences. Game-based learning has been shown to enhance students’ motivation, participation, and retention of knowledge by providing a dynamic and immersive learning environment [ 14 , 15 , 16 ]. In the context of IPE, these activities can simulate real-life clinical scenarios that require collaboration, communication, and problem-solving among diverse healthcare professionals [ 17 ]. This method allows students to practice and develop these critical skills in a safe and controlled setting, thereby preparing them for actual clinical practice [ 18 ].

Previous IPE studies involving students primarily used surveys, interviews, and participant observations to assess changes in students’ knowledge acquisition, collaboration, teamwork skills, and attitudes [ 19 , 20 , 21 , 22 , 23 ]. While these approaches have provided valuable information for evaluating the effectiveness of IPE programs, they have limitations in terms of exploring students’ direct expressions and deep thinking. Recent research has started exploring game-based learning in IPE, emphasizing its potential to enhance collaboration, communication, and problem-solving skills among healthcare students [ 24 , 25 ]. Game-based learning activities, such as serious games and simulations, offer engaging experiences that promote interprofessional collaboration and reflective thinking [ 17 ]. However, there is still a scarcity of research on students’ personal experiences, changing perceptions, and in-depth understanding of interprofessional collaboration through game-based learning. Addressing this gap can provide better relevance and context to the study of IPE.

Medical education literature has highlighted the importance of various educational strategies in enhancing reflective thinking skills [ 26 , 27 ]. Dewey defines reflective thinking as conscious thought in the problem-solving process, which can be considered as the active utilization of knowledge gained through experience [ 28 ]. Narrative materials, such as essays, are useful tools for gaining an in-depth understanding of students’ experiences and perceptions. Thus, analyzing reflective thinking through essays can help students better understand their learning experiences and improve their problem-solving abilities through effective collaboration across different disciplines [ 29 , 30 ].

This study aimed to analyze students’ perceptions of collaboration by examining essays they wrote after participating in game-based IPE activities, thereby providing evidence for the effectiveness of such education. The results of this study are expected to serve as foundational data to help design and implement more effective collaborative learning strategies for IPE programs.

Course design

The IPE program at a South Korean university targeted fifth-year medical and fourth-year nursing students to prepare them for clinical training. The course was divided into two phases: a six-day shadowing period and a four-day IPE activity period.

During the shadowing period, students observed various healthcare professionals in different clinical settings, including emergency rooms (ERs), ambulatory care, critical care, and outpatient environments. This phase emphasized understanding interprofessional roles and the importance of collaborative practice skills.

In the subsequent IPE activity period, students were grouped into teams of five or six, consisting of both medical and nursing students, to engage in team building exercises. These activities aimed to promote students’ collaboration, communication skills, mutual understanding in clinical settings. The activities during this phase were meticulously designed to develop essential soft skills through structured game-based exercises. These included the Marshmallow Challenge, which aimed to enhance understanding of team building dynamics; the Puzzle Game, which focused on defining roles and fostering teamwork to achieve a common objective; and the Message Game, which underscored the importance of clear and effective communication. Additional activities, such as the Drawing Shapes Game and the Drawing the Story Game, were designed to improve skills in accurate verbal description and to enhance understanding of the SBAR (Situation, Background, Assessment, Recommendation) communication protocol, respectively. Finally, the Board Game was specifically developed to reinforce systems thinking and to illustrate the need for interdisciplinary collaboration in addressing complex issues in a hospital. Table 1 outlines the key activities included in this period.

This study aimed to analyze essays written by students after participating in the IPE activities to assess their reflections and learning outcomes.

Research procedure

The fundamental premise of text network analysis is to extract keywords representing the core content from the literature [ 31 ]. This study focused on understanding students’ thoughts and perceptions by analyzing their essays. The research process comprised (1) data collection, (2) keyword selection and data processing, (3) core keyword extraction and network construction, (4) network connectivity and centrality analysis, and (5) topic modeling. This approach facilitated a nuanced understanding of the conceptual relationships within the text, yielding deeper insights into students’ reflective thinking and experiences with interprofessional collaboration, thereby aligning with the objectives of this study.

Data collection

Data were collected in 2021 after the IPE program. Of the 82 medical students who participated in the program, 77 voluntarily submitted essays, representing a 93.9% response rate from the entire cohort enrolled in the IPE program. The essays were collected after the completion of the entire program, capturing students’ reflections and feelings about the course. These essays were not intended for assessment or evaluation purposes but were written freely by students to express their thoughts and experiences regarding the program. The primary aim was to gather qualitative insights into how students perceived and internalized the IPE activities, which aligns with the study’s objective to understand the impact of game-based learning on developing interprofessional collaboration, communication, and team building skills. We focused on medical students’ essays to explore their specific perspectives and experiences within the IPE program, as these students often play crucial roles in multidisciplinary teams. Therefore, understanding their views can provide valuable insights for improving IPE programs and enhancing interprofessional collaboration in clinical practice [ 32 ].

Keyword selection and data pre-processing

The student essays were collected using MS Office Excel. Pre-processing involved an initial review using Excel’s Spell Check, followed by manual corrections to fix typographical errors. Morphological analysis was performed using Netminer 4.5.1.c (CYRAM), which automatically removed pronouns and adverbs, leaving only nouns. To extract the words, 25 designated words, 40 synonyms, and 321 excluded words were pre-registered. Designated words are terms that convey specific meanings when grouped [ 33 ]. In this study, terms such as “interprofessional education” and “Friday Night at the ER” were classified as such. Synonyms, a group of words that have similar meanings, were processed as a single term that can represent the common meaning of those words [ 34 ]. For instance, “Friday night ER,” “FNER,” and “Friday night in the ER” were extracted as “Friday Night at ER.” Words considered irrelevant to the current research focus or general words that did not contribute to meaningful analysis were excluded (e.g., “and,” “or,” “front,” “inside,” “during”). Three professors specializing in emergency medicine and one medical educator handled word extraction and refinement, and the final selection was reviewed by the entire research team.

The data analysis utilized was qualitative content analysis, focusing on both the identification and contextual usage of keywords. This approach involved the descriptive counting of keywords as well as an in-depth analysis of their usage within the essays. This rigorous process ensured that the keywords selected were relevant to the study’s focus on IPE and collaboration, providing both quantitative and qualitative insights into the students’ reflections and experiences.

Extraction of core keywords and network construction

Core keyword extraction was based on the term frequency-inverse document frequency (TF-IDF) method. The frequency of word occurrences is expressed as “term frequency (TF),” which indicates how often a word appears within a document [ 35 ]. By contrast, “inverse document frequency (IDF)” is calculated using the logarithmic value of the inverse of document frequency [ 36 ]. The TF-IDF value is computed by multiplying TF by IDF. A high value indicates that a word is important in a specific document but rarely appears in others [ 37 ]. This method allows the assessment of the importance of words in documents. For network analysis, the 2-mode word-document network was converted into a 1-mode word-word network. The co-occurrence frequency was set to occur at least twice, and the word proximity (window size) was set to two, following previous studies on text network analysis [ 38 ].

Network connectivity and centrality analysis

Network size and density, as well as the average degree and distance at the node level, were identified to understand the overall characteristics of the network. Network size denotes the total number of nodes (keywords). Density measures the ratio of actual connections to possible connections, indicating network cohesion. The average degree reflects the average number of connections per node, while the average distance shows the typical number of steps between nodes, revealing the network’s connectivity and compactness [ 35 , 38 ]. Centrality analysis included degree, betweenness, and eigenvector centrality, whereas closeness centrality was excluded due to poor performance in lengthy texts [ 39 ]. Degree centrality measures how well a node is connected within a network, helping to identify keywords that play a central role in the network [ 40 ]. Betweenness centrality measures how frequently a node appears on the shortest path between other nodes, indicating how well it acts as an intermediary between two nodes [ 41 ]. Eigenvector centrality assesses the influence of a node by considering the importance of its neighboring nodes beyond the degree of connection [ 42 ]. This study extracted the top 30 words for each degree, betweenness, and eigenvector centrality. Finally, a spring map was used to visualize the keywords and their connection structures in the network.

Text network analysis was chosen because it provides a detailed understanding of relationships between concepts, unlike traditional methods that focus on theme frequency. It visualizes keyword interactions, highlighting central themes and their connections, offering insights into students’ reflections on IPE and their thought patterns.

Topic modeling

Latent Dirichlet allocation (LDA) is a statistical text-processing technique that clusters keywords based on their probabilities and distributions to infer topics [ 43 ]. In this study, keywords extracted from essays were compiled into a matrix for LDA. To determine the optimal number of topics, combinations of α = 0.01–0.03, β = 0.01–0.03, topic model = 3–8, and 1,000 iterations were tested. The optimal model was selected based on the coherence score (c_v), with the highest coherence score ensuring the validity and reliability of the inferred topics [ 44 , 45 , 46 ].

Key keywords

Table 2 presents the keywords derived from analyzing medical students’ essays selected through the TF and TF-IDF analyses. In the TF analysis, “thought” appeared most frequently (365 times), followed by “group” 359 times, “class” 322 times, and “game” 278 times. The top 20 keywords in TF-IDF included “patient,” “game,” “group,” and “person.” Keywords that appeared in both TF and TF-IDF analyses included “nursing school,” “nurse,” “game,” “hospital,” “person,” “mutual,” “communication,” “time,” “group,” “important,” “progress,” “puzzle,” “patient,” and “activity.” Comparing the keywords between TF and TF-IDF, new terms that emerged in TF-IDF included “IPE,” “room,” and “clinical practice.”

  • Text network analysis

Network structure

In this study, a network was constructed based on a co-occurrence frequency of at least two words with word proximity (window size) set to two words. The resulting network comprised 1,218 nodes and 627 links. The network density was 0.012, with an average degree and distance of 3.919 and 3.447, respectively.

Centrality analysis

Table 3 lists the top 30 keywords according to degree, betweenness, and eigenvector centralities, providing insight into the overall network characteristics. The top three keywords across all three centrality analyses included “patient,” “thought,” “group,” “doctor,” “nurse,” and “communication.” The ranking and composition of the keywords were similar in both degree and betweenness centrality analyses. In the eigenvector results, “doctor,” “nurse,” and “communication” were ranked highest. When comparing the top 30 keywords from eigenvector centrality with those from degree and betweenness centrality, new terms such as “future,” “society,” and “need” emerged. These findings are presented in Fig.  1 , which illustrates the spring network map of centrality.

figure 1

Spring network map of centrality. a  Degree centrality. b  Betweenness centrality. c  Eigenvector centrality

Topic modeling: selection of the number of topics

To determine the optimal number of topics, 54 combinations of options were tested, including α = 0.01–0.03, β = 0.01–0.03, topic models = 3–8, and 1,000 iterations. Three topics were identified.

In the topic modeling process, after reviewing the keywords and contents of the assigned original documents, the research team convened and named each topic to reflect the trend of the subject matter, as shown in Fig.  2 . Following prior research, the final topic model was visualized using a topic-keyword map displaying the top eight to thirteen words [ 44 ]. Topic 1, accounting for 17% of the total topics, includes keywords such as “group,” “game,” “puzzle,” “delivery,” and “activity.” This reflects the inclusion of group-based, game-centric activities in the IPE classes; hence, it was named “game-based collaborative activity experience.” Topic 2 comprises 23% of the topics centered around the thoughts of doctors and nurses about patients in clinical settings, with keywords including “doctor,” “thought,” “patient,” “hospital,” and “nurse.” It was thus named “interprofessional perspectives.” Topic 3, with the largest share at 60%, incorporates keywords such as “class,” “nursing school,” “thought,” “activity,” and “student.” It primarily addresses class activities involving nursing students, thus the term “interdisciplinary educational experience.” Visually examining the entire network of topic modeling indicates that Topic 1, “game-based collaborative activity experience,” and Topic 3, “interdisciplinary educational experience,” are connected through the keywords “person” and “activity.” Topic 2, “Interprofessional Perspectives,” and Topic 3, are linked by “thought” and “class.” In the network, Topic 3 plays a vital role in connecting Topics 1 and 2, as illustrated in Fig.  2 .

figure 2

Semantic keywords of topic modeling

This study is the first attempt to demonstrate the educational impact of game-based IPE activities on fostering an interprofessional perspective, communication skills, and team building skills among healthcare professionals through a text network analysis of student essays. This distinguishes this study from previous studies. This approach can help students develop collaborative skills, thereby effectively addressing various challenges in clinical settings. The primary findings and implications of this study are as follows:

First, the keywords with the highest degree of centrality were “patient,” “thought,” and “group.” High-degree-centrality keywords play a central role in the entire network, suggesting that the overall program should be designed around these keywords. The keywords with high betweenness centrality were also “patient,” “thought,” and “group.” These keywords act as necessary connectors within the network, indicating that they are crucial for establishing communication channels between different professions and ensuring a smooth flow of information in medical education. Keywords with high eigenvector centrality included “doctor,” “nurse,” and “communication.” The prominence of keywords such as “doctor,” “nurse,” and “communication” in centrality measures signifies their strong connections to other important terms in the network. This highlights the pivotal role of doctors and nurses in collaborative practices and underscores the importance of communication skills in IPE programs. The central positioning of these keywords within the network emphasizes the need to prioritize interprofessional roles and communication competencies to enhance collaborative practices in clinical settings. These results align with previous findings emphasizing the importance of education in promoting effective collaboration and communication among healthcare professionals [ 47 ]. The centralities thus provide quantitative evidence supporting the critical roles and interactions that are essential for successful IPE.

The relevance of these keywords can be understood within the framework of the Interprofessional Education Collaborative (IPEC) Core Competencies, which emphasize patient-centered care, reflective thinking, and effective communication. The central keywords align with IPEC’s domains: values/ethics for interprofessional practice, roles/responsibilities, interprofessional communication, and teams/teamwork [ 4 , 48 ]. For instance, “patient” and “group” correspond to the emphasis on patient-centered care and teamwork, while “thought” and “communication” are essential for reflective practice and effective interprofessional communication. Integrating IPE into medical education strengthens transparent and efficient teamwork across different specialties, minimizes errors in clinical decision-making, and improves patient outcomes. Consequently, medical schools should develop curricula that provide students with ample opportunities to collaborate with team members from various specialties [ 49 ].

Second, the topic modeling analysis indicated that Topic 1 provides a collaborative experience through group-based gaming activities in an IPE course. This aligns with previous research, indicating that game-based learning can enhance participants’ socialization and communication skills. Thornton Bacon et al. [ 50 ] and Sanko et al. [ 51 ] reported that students who participated in the Friday Night at Emergency Room (FNER) game demonstrated a statistically significant increase in systems thinking scores. In addition, Fusco et al. [ 52 ] confirmed that gameplay positively affected students’ systematic thinking, effective collaboration, and socialization skills. This suggests that game-based learning is useful for developing collaborative problem-solving skills and can be effectively integrated into various educational designs of IPE programs. Topic 2 highlights the significant focus on the perspectives of healthcare professionals in clinical environments. According to Bridges et al. [ 53 ] and Prentice et al. [ 54 ], IPE provides opportunities to develop a better understanding of roles and improve communication among healthcare team members. In this process, improving knowledge about one’s own roles and responsibilities as well as those of other professions can enhance teamwork between professionals [ 55 ]. This finding suggests that IPE programs can improve the quality of healthcare delivery by fostering mutual respect and understanding among different healthcare professionals. Topic 3 primarily addressed class activities for nursing students and included interdisciplinary educational experiences. These results show that game-based IPE activities are an effective educational method for enhancing interprofessional perspectives and communication skills, going beyond traditional lectures that simply deliver knowledge to students.

Additionally, Bjerkvik and Hilli [ 56 ] stated that expressing thoughts through writing facilitates the understanding of personal experiences. This enables learners to explore their emotions and attitudes, ultimately leading them to deeper self-understanding and professional growth. Consequently, this study analyzed students’ reflective thinking through topic modeling and presented evidence that game-based IPE activities are crucial in promoting learners’ reflective thinking and professional growth.

This study has several limitations. First, a limited group of students from a specific university participated in this study, which may have restricted the generalizability of the findings. Additional research is required to verify the results of this study across multiple student groups from various backgrounds and environments. Second, the research methodology relied on text analysis of student essays, focusing only on students’ subjective experiences and perceptions. To address this limitation, we used a rigorous coding scheme, inter-rater reliability checks, and TF-IDF for keyword extraction. Our methodology included keyword selection, data pre-processing, network construction, and LDA-based topic modeling, optimized with the coherence score (c_v). These steps ensured that the data analysis was both robust and reliable. Additionally, incorporating multiple methods for data analysis allowed us to cross-verify the findings and enhance the overall rigor of the study. Future research should integrate a range of methods, including interviews and surveys, to achieve a more comprehensive evaluation. Third, the effects of IPE programs on students’ collaborative competencies in clinical practice and healthcare settings is limited. Future research should explore the long-term impacts of game-based IPE on clinical practice, patient outcomes, and students’ readiness for clinical environments. Additionally, tracking the career progression and professional development of participants will help assess the sustained benefits of these educational interventions.

Conclusions

This study is the first to explore changes in reflective thinking and perceptions among students who participated in IPE programs. This demonstrates the positive effects of IPE on professional healthcare students. Specifically, through the analysis of degree, betweenness, and eigenvector centrality, we identified keywords such as “patient,” “thought,” “group,” “doctor,” “nurse,” and “communication” as crucial to interprofessional perspectives and communication among healthcare professionals. Topic modeling further underscores the importance of game-based learning, interprofessional perspectives, and interdisciplinary educational experiences.

These findings emphasize the need for innovative teaching methods in medical education and reaffirm the importance of promoting effective inter-professional perspective, communication skills and team building skills. Medical schools should strive to improve the design and implementation of their IPE program by incorporating students’ experiences and reflective insights. This will ultimately improve the quality of medical education. This study can serve as valuable foundational data for future research. Future studies should investigate the long-term effects of game-based IPE on clinical practice and patient outcomes. Research should also explore the impact of game-based IPE on participants’ career progression and professional development to assess sustained benefits. Additionally, future research could examine how different game-based learning activities influence specific interprofessional competencies, such as teamwork, communication, and problem-solving skills, to identify the most effective approaches for IPE programs.

Availability of data and materials

The datasets generated and/or analysed during the current study are not publicly available due to ethical constraints but are available from the corresponding author on reasonable request.

Abbreviations

  • Interprofessional education

Friday night at emergency room

Latent Dirichlet allocation

Term frequency

Term frequency-inverse document frequency

Inverse document frequency

Fox A, Reeves S. Interprofessional collaborative patient-centred care: a critical exploration of two related discourses. J Interprof Care. 2015;29:113–8.

Article   Google Scholar  

Gilligan C, Outram S, Levett-Jones T. Recommendations from recent graduates in medicine, nursing and pharmacy on improving interprofessional education in university programs: A qualitative study. BMC Med Educ. 2014;14:52.

Haresaku S, Naito T, Aoki H, Miyoshi M, Monji M, Umezaki Y, et al. Development of interprofessional education programmes in nursing care and oral healthcare for dental and nursing students. BMC Med Educ. 2024;24:381.

Mohammed CA, Anand R, Saleena Ummer VS. Interprofessional education (IPE): A framework for introducing teamwork and collaboration in health professions curriculum. Med J Armed Forces India. 2021;77(Suppl 1):S16-21.

Schmitt MH, Gilbert JH, Brandt BF, Weinstein RS. The coming of age for interprofessional education and practice. Am J Med. 2013;126:284–8.

World Health Organization. Framework for Action on Interprofessional Education and Collaborative Practice. Geneva: World Health Organization; 2010. p. 13–15.5.

Curran VR, Sharpe D, Flynn K, Button P. A longitudinal study of the effect of an interprofessional education curriculum on student satisfaction and attitudes towards interprofessional teamwork and education. J Interprof Care. 2010;24:41–52.

Reeves S, Goldman J, Burton A, Sawatzky-Girling B. Synthesis of systematic review evidence of interprofessional education. J Allied Health. 2010;39(Suppl 1):198–203.

Google Scholar  

Brock D, Abu-Rish E, Chiu CR, Hammer D, Wilson S, Vorvick L, et al. Interprofessional education in team communication: Working together to improve patient safety. Postgrad Med J. 2013;89:642–51.

Rogers O, Heck A, Kohnert L, Paode P, Harrell L. Occupational therapy’s role in an interprofessional student-run free clinic: Challenges and opportunities identified. Open J Occup Ther. 2017;5:7.

Peeters MJ, Sexton M, Metz AE, Hasbrouck CS. A team-based interprofessional education course for first-year health professions students. Curr Pharm Teach Learn. 2017;9:1099–110.

Imafuku R, Kataoka R, Ogura H, Suzuki H, Enokida M, Osakabe K. What did first-year students experience during their interprofessional education? A qualitative analysis of e-portfolios. J Interprof Care. 2018;32:358–66.

Alzamil H, Meo SA. Medical students’ readiness and perceptions about interprofessional education: a cross sectional study. Pak J Med Sci. 2020;36:693–8.

Hu H, Xiao Y, Li H. The effectiveness of a serious game versus online lectures for improving medical students’ coronavirus disease 2019 knowledge. Games Health J. 2021;10:139–44.

Xu M, Luo Y, Zhang Y, Xia R, Qian H, Zou X. Game-based learning in medical education. Front Public Health. 2023;11:1113682.

Surapaneni KM. Livogena: The Ikteros curse—A jaundice narrative card and board game for medical students. MedEdPORTAL. 2024;20:11381.

Fusco NM, Jacobsen LJ, Klem N, Krzyzanowicz R, Ohtake PJ. A serious game employed to introduce principles of interprofessional collaboration to students of multiple health professions. Simul Gaming. 2022;53:253–64.

Umoren R, editor. Simulation and Game-Based Learning for the Health Professions. Hershey: IGI Global; 2022.

Thannhauser J, Russell-Mayhew S, Scott C. Measures of interprofessional education and collaboration. J Interprof Care. 2010;24:336–49.

Rosenfield D, Oandasan I, Reeves S. Perceptions versus reality: a qualitative study of students’ expectations and experiences of interprofessional education. Med Educ. 2011;45:471–7.

Darlow B, Donovan S, Coleman K, McKinlay E, Beckingsale L, Gallagher P, et al. What makes an interprofessional education programme meaningful to students? Findings from focus group interviews with students based in New Zealand. J Interprof Care. 2016;30:355–61.

Almoghirah H, Nazar H, Illing J. Assessment tools in pre-licensure interprofessional education: A systematic review, quality appraisal and narrative synthesis. Med Educ. 2021;55:795–807.

Gysin S, Huber M, Feusi E, Gerber-Grote A, Witt CM. Interprofessional education day 2019–A qualitative participant evaluation. GMS J Med Educ. 2022;39:Doc52.

Friedrich C, Teaford H, Taubenheim A, Boland P, Sick B. Escaping the professional silo: an escape room implemented in an interprofessional education curriculum. J Interprof Care. 2019;33:573–5.

Friedrich C, Teaford H, Taubenheim A, Sick B. Interprofessional health care escape room for advanced learners. J Nurs Educ. 2020;59:46–50.

Sandars J. The use of reflection in medical education: AMEE Guide No. 4. Med Teach. 2009;31:685–95.

Wald HS, Borkan JM, Taylor JS, Anthony D, Reis SP. Fostering and evaluating reflective capacity in medical education: Developing the REFLECT rubric for assessing reflective writing. Acad Med. 2012;87:41–50.

Rodgers C. Defining reflection: Another look at John Dewey and reflective thinking. Teach Coll Rec. 2002;104:842–66.

Entwistle N. Frameworks for understanding as experienced in essay writing and in preparing for examination. Educ Psychol. 1995;30:47–54.

Lin CW, Lin MJ, Wen CC, Chu SY. A word-count approach to analyze linguistic patterns in the reflective writings of medical students. Med Educ Online. 2016;21:29522.

Yang L, Li K, Huang H. A new network model for extracting text keywords. Scientometrics. 2018;116:339–61.

Zechariah S, Ansa BE, Johnson SW, Gates AM, Leo GD. Interprofessional education and collaboration in healthcare: an exploratory study of the perspectives of medical students in the United States. Healthcare. 2019;7:117.

Lee SS. A content analysis of journal articles using the language network analysis methods. J Korean Soc Inf Manag. 2014;31:49–68.

Won J, Kim K, Sohng KY, Chang SO, Chaung SK, Choi MJ, et al. Trends in nursing research on infections: semantic network analysis and topic modeling. Int J Environ Res Public Health. 2021;18:6915.

Park ST, Liu C. A study on topic models using LDA and Word2Vec in travel route recommendation: Focus on convergence travel and tours reviews. Pers Ubiquitous Comput. 2022;26:429–45.

Robertson S. Understanding inverse document frequency: On theoretical arguments for IDF. J Doc. 2004;60:503–20.

Wang J, Dagvadorj A, Kim HS. Research trends of human resources management in hotel industry: Evidence from South Korea by semantic network analysis. Culinary Sci Hosp Res. 2021;27:68–78.

Park MY, Jeong SH, Kim HS, Lee EJ. Images of nurses appeared in media reports before and after outbreak of COVID-19: Text network analysis and topic modeling. J Korean Acad Nurs. 2022;52:291–307.

Boudin F. A comparison of centrality measures for graph-based keyphrase extraction. In: Proceedings of the sixth international joint conference on natural language processing. 2013. p. 834–8.

Valente TW, Coronges K, Lakon C, Costenbader E. How correlated are network centrality measures? Connect (Tor). 2008;28:16–26.

Ausiello G, Firmani D, Laura L. The (betweenness) centrality of critical nodes and network cores. In: 9th International Wireless Communications and Mobile Computing Conference (IWCMC), 2013. Sardinia: IEEE; 2013. p. 90–5.

Maharani W, Adiwijaya AA, Gozali AA. Degree centrality and eigenvector centrality in Twitter. In: 8th International Conference on Telecommunication Systems Services and Applications (TSSA), 2014. Bali: IEEE; 2014. p. 1–5.

Blei DM, Lafferty JD. Topic models. In: Text Mining. Boca Raton: Chapman and Hall/CRC; 2009. p. 101–24.

Lee JW, Kim Y, Han DH. LDA-based topic modeling for COVID-19-related sports research trends. Front Psychol. 2022;13:1033872.

Colla D, Delsanto M, Agosto M, Vitiello B, Radicioni DP. Semantic coherence markers: The contribution of perplexity metrics. Artif Intell Med. 2022;134: 102393.

Jang JH, Masatsuku N. A study of factors influencing happiness in Korea: Topic modelling and neural network analysis. Data and Metadata. 2024;3:238–238.

Buring SM, Bhushan A, Broeseker A, Conway S, Duncan-Hewitt W, Hansen L, et al. Interprofessional education: definitions, student competencies, and guidelines for implementation. Am J Pharm Educ. 2009;73:59.

Thistlethwaite JE, et al. Competencies and frameworks in interprofessional education: a comparative analysis. Acad Med. 2014;89:869–87.

Barnsteiner JH, Disch JM, Hall L, Mayer D, Moore SM. Promoting interprofessional education. Nurs Outlook. 2007;55:144–50.

Thornton Bacon C, Trent P, McCoy TP. Enhancing systems thinking for undergraduate nursing students using Friday Night at the ER. J Nurs Educ. 2018;57:687–9.

Sanko JS, Gattamorta K, Young J, Durham CF, Sherwood G, Dolansky M. A multisite study demonstrates positive impacts to systems thinking using a table-top simulation experience. Nurse Educ. 2021;46:29–33.

Fusco NM, Foltz-Ramos K, Ohtake PJ, Mann C. Interprofessional simulation learning game increases socialization and teamwork among students of health professions programs. Nurse Educ. 2024;49:E32–5.

Bridges D, Davidson RA, Soule Odegard P, Maki IV, Tomkowiak J. Interprofessional collaboration: three best practice models of interprofessional education. Med Educ Online. 2011;16(1):6035.

Prentice D, Engel J, Taplay K, Stobbe K. Interprofessional collaboration: The experience of nursing and medical students’ interprofessional education. Glob Qual Nurs Res. 2015;2:2333393614560566.

Wilhelmsson M, Pelling S, Uhlin L, Owe Dahlgren L, Faresjö T, Forslund K. How to think about interprofessional competence: A metacognitive model. J Interprof Care. 2012;26:85–91.

Bjerkvik LK, Hilli Y. Reflective writing in undergraduate clinical nursing education: A literature review. Nurse Educ Pract. 2019;35:32–41.

Download references

Acknowledgements

The authors sincerely thank all those who have contributed to this work through their support, insights, and encouragement.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and affiliations.

Center for Medical Education, College of Medicine, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea

Young Gyu Kwon & Chan Woong Kim

Department of Emergency Medicine, College of Medicine, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea

Myeong Namgung & Chan Woong Kim

Department of Medical Education, College of Medicine, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea

Song Hee Park & Mi Kyung Kim

Department of Pathology, College of Medicine, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea

Mi Kyung Kim

Office of Medical Education, Seoul National University College of Medicine, Jongno-Gu, Seoul, Republic of Korea

Sun Jung Myung

Department of Emergency Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea

Eun Kyung Eo

You can also search for this author in PubMed   Google Scholar

Contributions

Study conception and design: YK, MN, CK. Data collection: YK, MN, CK. Data analysis and interpretation: YK, MN, SM, EE, CK. Drafting of the article: YK, MN, SP, MK. Critical revision of the article: YK, MN, SP, SM, EE, CK.

Corresponding author

Correspondence to Chan Woong Kim .

Ethics declarations

Ethical approval and consent to participate.

The Institutional Review Board (IRB) of Chung-Ang University determined that this study meets the criteria for an exemption from IRB review, as it involves research conducted in established or commonly accepted educational settings and involves normal educational practices. Approval Number: 1041078–20240321-HR-051. Written informed consent was obtained from all participating students. All methods were performed in accordance with relevant guidelines and regulations, including the principles outlined in the Declaration of Helsinki.

Consent for publication

Not applicable.

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Reprints and permissions

About this article

Cite this article.

Kwon, Y.G., Namgung, M., Park, S.H. et al. Impact of a game-based interprofessional education program on medical students’ perceptions: a text network analysis using essays. BMC Med Educ 24 , 898 (2024). https://doi.org/10.1186/s12909-024-05893-2

Download citation

Received : 27 May 2024

Accepted : 12 August 2024

Published : 20 August 2024

DOI : https://doi.org/10.1186/s12909-024-05893-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Game-based learning
  • Reflective thinking
  • Collaborative learning

BMC Medical Education

ISSN: 1472-6920

problem solving problem analysis definition

COMMENTS

  1. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  2. What Is Problem Analysis? (With Processes and Useful Types)

    Problem analysis is a series of steps for identifying problems, analyzing them, and developing solutions to address them. It's an inquiry or investigation into the causes of an error, failure, or unexpected incident. While the major aim of issue analysis is to develop solutions, the process also provides you with an in-depth understanding of a ...

  3. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  4. The 5 Steps In Problem Analysis

    A helpful and standardised format to write the problem definition is as follows: The problem of - Describe the problem. Affects - Identify stakeholders affected by the problem. The results of which - Describe the impact of this problem on stakeholders and business activity. Benefits of - Indicate the proposed solution and list a few key ...

  5. What is Problem Solving? (Steps, Techniques, Examples)

    Definition and Importance. Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional ...

  6. Section 3. Defining and Analyzing the Problem

    At this point, check back and make sure that everyone still wants to work together to solve the problem. In Summary. The first step in any effective problem-solving process may be the most important. Take your time to develop a critical definition, and let this definition, and the analysis that follows, guide you through the process.

  7. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In general, effective problem-solving strategies include the following steps: Define the problem. Come up with alternative solutions. Decide on a solution. Implement the solution. Problem-solving ...

  8. Problem solving

    Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. ... TapRooT—The System for Root Cause Analysis, Problem Investigation, and ...

  9. Problem Solving Definition and Methodology

    Broadly defined, problem solving is the process of finding solutions to difficult or complex issues. But you already knew that. Understanding problem solving frameworks, however, requires a deeper dive. Think about a recent problem you faced. Maybe it was an interpersonal issue.

  10. How to analyze a problem

    Before jumping in, it's crucial to plan the analysis, decide which analytical tools to use, and ensure rigor. Check out these insights to uncover ways data can take your problem-solving techniques to the next level, and stay tuned for an upcoming post on the potential power of generative AI in problem-solving. The data-driven enterprise of 2025

  11. How to master the seven-step problem-solving process

    They've got their analysis, and they assume that's the answer, and of course it isn't the answer. ... When we do problem definition well in classic problem solving, we are demonstrating the kind of empathy, at the very beginning of our problem, that design thinking asks us to approach. When we ideate—and that's very similar to the ...

  12. Guide: Problem Solving

    Problem-solving stands as a fundamental skill, crucial in navigating the complexities of both everyday life and professional environments. Far from merely providing quick fixes, it entails a comprehensive process involving the identification, analysis, and resolution of issues. This multifaceted approach requires an understanding of the problem's nature, the exploration of its various ...

  13. 40 problem-solving techniques and processes

    7. Solution evaluation. 1. Problem identification. The first stage of any problem solving process is to identify the problem (s) you need to solve. This often looks like using group discussions and activities to help a group surface and effectively articulate the challenges they're facing and wish to resolve.

  14. What Is Problem Solving?

    The first step in solving a problem is understanding what that problem actually is. You need to be sure that you're dealing with the real problem - not its symptoms. For example, if performance in your department is substandard, you might think that the problem lies with the individuals submitting work. However, if you look a bit deeper, the ...

  15. What is 8D? Eight Disciplines Problem Solving Process

    The purpose of the 8D methodology is to identify, correct, and eliminate recurring problems, making it useful in product and process improvement. The 8D problem solving model establishes a permanent corrective action based on statistical analysis of the problem and focuses on the origin of the problem by determining its root causes.

  16. When is a Problem a Project?

    This process is called problem solving. In order to work through the problem analysis, solution selection process most efficiently, it's useful to use a problem solving process. We call our five-stage process DAS/IR. These five stages are broken down into two separate projects: DAS and IR. The first project involves D efining the problem, A ...

  17. The Art of Effective Problem Solving: A Step-by-Step Guide

    The A3 report is a one-page document that clearly and concisely outlines the problem, root cause analysis, and proposed solution. The A3 problem-solving procedure consists of the following steps: Determine the issue: Define the issue clearly, including its impact on the customer. ... The definition of the problem is the first step in effective ...

  18. 5 Examples of Problem Analysis

    A problem analysis is an investigation of the causes of an incident, issue or failure. This is done to identify improvements to systems, processes, procedures, designs and culture. ... An overview of problem solving with examples. 72 Examples of Problem Solving » ... The definition of analysis paralysis with examples. 8 Examples of Analysis ...

  19. The Problem Solving Process

    The Problem Solving process consists of a sequence of sections that fit together depending on the type of problem to be solved. These are: Problem Definition. Problem Analysis. Generating possible Solutions. Analyzing the Solutions. Selecting the best Solution (s). The process is only a guide for problem solving.

  20. What Are Problem-Solving Skills? Definition and Examples

    Problem-Solving Skills Definition. Problem-solving skills are the ability to identify problems, brainstorm and analyze answers, and implement the best solutions. An employee with good problem-solving skills is both a self-starter and a collaborative teammate; they are proactive in understanding the root of a problem and work with others to ...

  21. The Problem-Definition Process

    The Problem-Definition Process encourages you to define and understand the problem that you're trying to solve, in detail. It also helps you confirm that solving the problem contributes towards your organization's objectives. This stops you spending time, energy, and resources on unimportant problems, or on initiatives that don't align with ...

  22. Are You Solving the Right Problem?

    Summary. The rigor with which a problem is defined is the most important factor in finding a good solution. Many organizations, however, are not proficient at articulating their problems and ...

  23. Problem Solving Techniques and Methods

    Problem solving can be defined as the process of a problem analysis and resolving it in the best way possible for that situation. This process contains analysing the problem (root cause analysis), defining countermeasures for the problem and implementing the right solution for that situation. For problem solving, people need critical thinking ...

  24. 7 Problem-Solving Skills That Can Help You Be a More ...

    What is problem-solving? Problem-solving is both an ability and a process. As an ability, problem-solving can help resolve issues in different environments, such as home, school, abroad, and social situations. As a process, problem-solving involves a series of steps for finding solutions to questions or concerns that arise throughout life.

  25. Ensure High-Quality Data Powers Your AI

    Companies need to understand the nuances of the problem they're trying to solve, get the data right (both by having the right data for that problem and by ensuring that the data is error-free ...

  26. Every Problem, Every Step, All in Focus: Learning to Solve Vision

    To tightly couple attention with the problem-solving procedure, we further design new learning objectives with attention metrics that quantify this integrated attention, which better aligns visual and language information within steps, and more accurately captures information flow between steps. ... IEEE Transactions on Pattern Analysis and ...

  27. Impact of a game-based interprofessional education program on medical

    Dewey defines reflective thinking as conscious thought in the problem-solving process, which can be considered as the active utilization of knowledge gained through experience . Narrative materials, such as essays, are useful tools for gaining an in-depth understanding of students' experiences and perceptions.