• Python Programming
  • C Programming
  • Numerical Methods
  • Dart Language
  • Computer Basics
  • Deep Learning
  • C Programming Examples
  • Python Programming Examples

Augmented Assignment Operators in Python with Examples

Unlike normal assignment operator, Augmented Assignment Operators are used to replace those statements where binary operator takes two operands says var1 and var2 and then assigns a final result back to one of operands i.e. var1 or var2 .

For example: statement var1 = var1 + 5 is same as writing var1 += 5 in python and this is known as augmented assignment operator. Such type of operators are known as augmented because their functionality is extended or augmented to two operations at the same time i.e. we're adding as well as assigning.

List Of Augmented Assignment Operators in Python

Python has following list of augmented assignment operators:

  • Python »
  • 3.12.5 Documentation »
  • The Python Language Reference »
  • 7. Simple statements
  • Theme Auto Light Dark |

7. Simple statements ¶

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line separated by semicolons. The syntax for simple statements is:

7.1. Expression statements ¶

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a function that returns no meaningful result; in Python, procedures return the value None ). Other uses of expression statements are allowed and occasionally useful. The syntax for an expression statement is:

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None , it is converted to a string using the built-in repr() function and the resulting string is written to standard output on a line by itself (except if the result is None , so that procedure calls do not cause any output.)

7.2. Assignment statements ¶

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

(See section Primaries for the syntax definitions for attributeref , subscription , and slicing .)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object (an attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide about its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types and the exceptions raised are given with the definition of the object types (see section The standard type hierarchy ).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined as follows.

If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to that target.

If the target list contains one target prefixed with an asterisk, called a “starred” target: The object must be an iterable with at least as many items as there are targets in the target list, minus one. The first items of the iterable are assigned, from left to right, to the targets before the starred target. The final items of the iterable are assigned to the targets after the starred target. A list of the remaining items in the iterable is then assigned to the starred target (the list can be empty).

Else: The object must be an iterable with the same number of items as there are targets in the target list, and the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.

If the target is an identifier (name):

If the name does not occur in a global or nonlocal statement in the current code block: the name is bound to the object in the current local namespace.

Otherwise: the name is bound to the object in the global namespace or the outer namespace determined by nonlocal , respectively.

The name is rebound if it was already bound. This may cause the reference count for the object previously bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be called.

If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an object with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but not necessarily AttributeError ).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator, the right-hand side expression, a.x can access either an instance attribute or (if no instance attribute exists) a class attribute. The left-hand side target a.x is always set as an instance attribute, creating it if necessary. Thus, the two occurrences of a.x do not necessarily refer to the same attribute: if the right-hand side expression refers to a class attribute, the left-hand side creates a new instance attribute as the target of the assignment:

This description does not necessarily apply to descriptor attributes, such as properties created with property() .

If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative, the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the mapping’s key type, and the mapping is then asked to create a key/value pair which maps the subscript to the assigned object. This can either replace an existing key/value pair with the same key value, or insert a new key/value pair (if no key with the same value existed).

For user-defined objects, the __setitem__() method is called with appropriate arguments.

If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The bounds should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The resulting bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be different from the length of the assigned sequence, thus changing the length of the target sequence, if the target sequence allows it.

CPython implementation detail: In the current implementation, the syntax for targets is taken to be the same as for expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are ‘simultaneous’ (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to variables occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2] :

The specification for the *target feature.

7.2.1. Augmented assignment statements ¶

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking) and the expression list, performs the binary operation specific to the type of assignment on the two operands, and assigns the result to the original target. The target is only evaluated once.

An augmented assignment statement like x += 1 can be rewritten as x = x + 1 to achieve a similar, but not exactly equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is performed in-place , meaning that rather than creating a new object and assigning that to the target, the old object is modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side. For example, a[i] += f(x) first looks-up a[i] , then it evaluates f(x) and performs the addition, and lastly, it writes the result back to a[i] .

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible in-place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same caveat about class and instance attributes applies as for regular assignments.

7.2.2. Annotated assignment statements ¶

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional assignment statement:

The difference from normal Assignment statements is that only a single target is allowed.

The assignment target is considered “simple” if it consists of a single name that is not enclosed in parentheses. For simple assignment targets, if in class or module scope, the annotations are evaluated and stored in a special class or module attribute __annotations__ that is a dictionary mapping from variable names (mangled if private) to evaluated annotations. This attribute is writable and is automatically created at the start of class or module body execution, if annotations are found statically.

If the assignment target is not simple (an attribute, subscript node, or parenthesized name), the annotation is evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and stored in function scopes.

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations (where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the target except for the last __setitem__() or __setattr__() call.

The proposal that added syntax for annotating the types of variables (including class variables and instance variables), instead of expressing them through comments.

The proposal that added the typing module to provide a standard syntax for type annotations that can be used in static analysis tools and IDEs.

Changed in version 3.8: Now annotated assignments allow the same expressions in the right hand side as regular assignments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3. The assert statement ¶

Assert statements are a convenient way to insert debugging assertions into a program:

The simple form, assert expression , is equivalent to

The extended form, assert expression1, expression2 , is equivalent to

These equivalences assume that __debug__ and AssertionError refer to the built-in variables with those names. In the current implementation, the built-in variable __debug__ is True under normal circumstances, False when optimization is requested (command line option -O ). The current code generator emits no code for an assert statement when optimization is requested at compile time. Note that it is unnecessary to include the source code for the expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to __debug__ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4. The pass statement ¶

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is required syntactically, but no code needs to be executed, for example:

7.5. The del statement ¶

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details, here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the name occurs in a global statement in the same code block. If the name is unbound, a NameError exception will be raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a slicing is in general equivalent to assignment of an empty slice of the right type (but even this is determined by the sliced object).

Changed in version 3.2: Previously it was illegal to delete a name from the local namespace if it occurs as a free variable in a nested block.

7.6. The return statement ¶

return may only occur syntactically nested in a function definition, not within a nested class definition.

If an expression list is present, it is evaluated, else None is substituted.

return leaves the current function call with the expression list (or None ) as return value.

When return passes control out of a try statement with a finally clause, that finally clause is executed before really leaving the function.

In a generator function, the return statement indicates that the generator is done and will cause StopIteration to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the StopIteration.value attribute.

In an asynchronous generator function, an empty return statement indicates that the asynchronous generator is done and will cause StopAsyncIteration to be raised. A non-empty return statement is a syntax error in an asynchronous generator function.

7.7. The yield statement ¶

A yield statement is semantically equivalent to a yield expression . The yield statement can be used to omit the parentheses that would otherwise be required in the equivalent yield expression statement. For example, the yield statements

are equivalent to the yield expression statements

Yield expressions and statements are only used when defining a generator function, and are only used in the body of the generator function. Using yield in a function definition is sufficient to cause that definition to create a generator function instead of a normal function.

For full details of yield semantics, refer to the Yield expressions section.

7.8. The raise statement ¶

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known as the active exception . If there isn’t currently an active exception, a RuntimeError exception is raised indicating that this is an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance of BaseException . If it is a class, the exception instance will be obtained when needed by instantiating the class with no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the __traceback__ attribute. You can create an exception and set your own traceback in one step using the with_traceback() exception method (which returns the same exception instance, with its traceback set to its argument), like so:

The from clause is used for exception chaining: if given, the second expression must be another exception class or instance. If the second expression is an exception instance, it will be attached to the raised exception as the __cause__ attribute (which is writable). If the expression is an exception class, the class will be instantiated and the resulting exception instance will be attached to the raised exception as the __cause__ attribute. If the raised exception is not handled, both exceptions will be printed:

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled. An exception may be handled when an except or finally clause, or a with statement, is used. The previous exception is then attached as the new exception’s __context__ attribute:

Exception chaining can be explicitly suppressed by specifying None in the from clause:

Additional information on exceptions can be found in section Exceptions , and information about handling exceptions is in section The try statement .

Changed in version 3.3: None is now permitted as Y in raise X from Y .

Added the __suppress_context__ attribute to suppress automatic display of the exception context.

Changed in version 3.11: If the traceback of the active exception is modified in an except clause, a subsequent raise statement re-raises the exception with the modified traceback. Previously, the exception was re-raised with the traceback it had when it was caught.

7.9. The break statement ¶

break may only occur syntactically nested in a for or while loop, but not nested in a function or class definition within that loop.

It terminates the nearest enclosing loop, skipping the optional else clause if the loop has one.

If a for loop is terminated by break , the loop control target keeps its current value.

When break passes control out of a try statement with a finally clause, that finally clause is executed before really leaving the loop.

7.10. The continue statement ¶

continue may only occur syntactically nested in a for or while loop, but not nested in a function or class definition within that loop. It continues with the next cycle of the nearest enclosing loop.

When continue passes control out of a try statement with a finally clause, that finally clause is executed before really starting the next loop cycle.

7.11. The import statement ¶

The basic import statement (no from clause) is executed in two steps:

find a module, loading and initializing it if necessary

define a name or names in the local namespace for the scope where the import statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for each clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules, are described in greater detail in the section on the import system , which also describes the various types of packages and modules that can be imported, as well as all the hooks that can be used to customize the import system. Note that failures in this step may indicate either that the module could not be located, or that an error occurred while initializing the module, which includes execution of the module’s code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three ways:

If the module name is followed by as , then the name following as is bound directly to the imported module.

If no other name is specified, and the module being imported is a top level module, the module’s name is bound in the local namespace as a reference to the imported module

If the module being imported is not a top level module, then the name of the top level package that contains the module is bound in the local namespace as a reference to the top level package. The imported module must be accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:

find the module specified in the from clause, loading and initializing it if necessary;

for each of the identifiers specified in the import clauses:

check if the imported module has an attribute by that name

if not, attempt to import a submodule with that name and then check the imported module again for that attribute

if the attribute is not found, ImportError is raised.

otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if it is present, otherwise using the attribute name

If the list of identifiers is replaced by a star ( '*' ), all public names defined in the module are bound in the local namespace for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named __all__ ; if defined, it must be a sequence of strings which are names defined or imported by that module. The names given in __all__ are all considered public and are required to exist. If __all__ is not defined, the set of public names includes all names found in the module’s namespace which do not begin with an underscore character ( '_' ). __all__ should contain the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such as library modules which were imported and used within the module).

The wild card form of import — from module import * — is only allowed at the module level. Attempting to use it in class or function definitions will raise a SyntaxError .

When specifying what module to import you do not have to specify the absolute name of the module. When a module or package is contained within another package it is possible to make a relative import within the same top package without having to mention the package name. By using leading dots in the specified module or package after from you can specify how high to traverse up the current package hierarchy without specifying exact names. One leading dot means the current package where the module making the import exists. Two dots means up one package level. Three dots is up two levels, etc. So if you execute from . import mod from a module in the pkg package then you will end up importing pkg.mod . If you execute from ..subpkg2 import mod from within pkg.subpkg1 you will import pkg.subpkg2.mod . The specification for relative imports is contained in the Package Relative Imports section.

importlib.import_module() is provided to support applications that determine dynamically the modules to be loaded.

Raises an auditing event import with arguments module , filename , sys.path , sys.meta_path , sys.path_hooks .

7.11.1. Future statements ¶

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to the language. It allows use of the new features on a per-module basis before the release in which the feature becomes standard.

A future statement must appear near the top of the module. The only lines that can appear before a future statement are:

the module docstring (if any),

blank lines, and

other future statements.

The only feature that requires using the future statement is annotations (see PEP 563 ).

All historical features enabled by the future statement are still recognized by Python 3. The list includes absolute_import , division , generators , generator_stop , unicode_literals , print_function , nested_scopes and with_statement . They are all redundant because they are always enabled, and only kept for backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs are often implemented by generating different code. It may even be the case that a new feature introduces new incompatible syntax (such as a new reserved word), in which case the compiler may need to parse the module differently. Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module __future__ , described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec() and compile() that occur in a module M containing a future statement will, by default, use the new syntax or semantics associated with the future statement. This can be controlled by optional arguments to compile() — see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session. If an interpreter is started with the -i option, is passed a script name to execute, and the script includes a future statement, it will be in effect in the interactive session started after the script is executed.

The original proposal for the __future__ mechanism.

7.12. The global statement ¶

The global statement is a declaration which holds for the entire current code block. It means that the listed identifiers are to be interpreted as globals. It would be impossible to assign to a global variable without global , although free variables may refer to globals without being declared global.

Names listed in a global statement must not be used in the same code block textually preceding that global statement.

Names listed in a global statement must not be defined as formal parameters, or as targets in with statements or except clauses, or in a for target list, class definition, function definition, import statement, or variable annotation.

CPython implementation detail: The current implementation does not enforce some of these restrictions, but programs should not abuse this freedom, as future implementations may enforce them or silently change the meaning of the program.

Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the global statement. In particular, a global statement contained in a string or code object supplied to the built-in exec() function does not affect the code block containing the function call, and code contained in such a string is unaffected by global statements in the code containing the function call. The same applies to the eval() and compile() functions.

7.13. The nonlocal statement ¶

When the definition of a function or class is nested (enclosed) within the definitions of other functions, its nonlocal scopes are the local scopes of the enclosing functions. The nonlocal statement causes the listed identifiers to refer to names previously bound in nonlocal scopes. It allows encapsulated code to rebind such nonlocal identifiers. If a name is bound in more than one nonlocal scope, the nearest binding is used. If a name is not bound in any nonlocal scope, or if there is no nonlocal scope, a SyntaxError is raised.

The nonlocal statement applies to the entire scope of a function or class body. A SyntaxError is raised if a variable is used or assigned to prior to its nonlocal declaration in the scope.

The specification for the nonlocal statement.

Programmer’s note: nonlocal is a directive to the parser and applies only to code parsed along with it. See the note for the global statement.

7.14. The type statement ¶

The type statement declares a type alias, which is an instance of typing.TypeAliasType .

For example, the following statement creates a type alias:

This code is roughly equivalent to:

annotation-def indicates an annotation scope , which behaves mostly like a function, but with several small differences.

The value of the type alias is evaluated in the annotation scope. It is not evaluated when the type alias is created, but only when the value is accessed through the type alias’s __value__ attribute (see Lazy evaluation ). This allows the type alias to refer to names that are not yet defined.

Type aliases may be made generic by adding a type parameter list after the name. See Generic type aliases for more.

type is a soft keyword .

Added in version 3.12.

Introduced the type statement and syntax for generic classes and functions.

Table of Contents

  • 7.1. Expression statements
  • 7.2.1. Augmented assignment statements
  • 7.2.2. Annotated assignment statements
  • 7.3. The assert statement
  • 7.4. The pass statement
  • 7.5. The del statement
  • 7.6. The return statement
  • 7.7. The yield statement
  • 7.8. The raise statement
  • 7.9. The break statement
  • 7.10. The continue statement
  • 7.11.1. Future statements
  • 7.12. The global statement
  • 7.13. The nonlocal statement
  • 7.14. The type statement

Previous topic

6. Expressions

8. Compound statements

  • Report a Bug
  • Show Source

EAS503: Python for Data Scientists - Home

Augmented Assignments

1.9. augmented assignments #.

An augmented assignment merges an assignment statement with an operator, resulting in a more concise statement. The execution of an augmented assignment involves the following steps:

Evaluate the expression on the right side of the = sign to yield a value.

Apply the operator associated with the = sign to the variable on the left of the = and the generated value. This produces another value. Store the memory address of this value in the variable on the left of the = .

Table Table 1.2 shows all the augmented assignments.

Table 1.2 Arithmetic operators

Symbol

Example

Result

+=

x = 7, x += 2

x refers to 9

-=

x = 7, x -= 2

x refers 5

*=

x = 7, x *= 2

x refers to 14

/=

x = 7, x /= 2

x refers to 3.5

//=

x = 7, x //= 2

x refers to 3

%=

x = 7, x %= 2

x refers to 1

**=

x = 7, x **=2

x refers to 49

Augmented assignment statements in Python

Augmented assignment statements in Python

In this article, we would cover Augmented assignment statements in Python. What makes Augmented assignment statements different from assignment statements is the binary operation. The Augmented assignment statements contain both assignment statements as well as binary operation.

Understand it with the help of an example. When we assignment integer value 10 to variable x then, we declare –

That is the typical assignment statement. But, for Augmented assignment statements – it performs binary operation on two operands and outcome is stored accordingly. So, let’s say we want to achieve the following result using augmented assignment statement –

For augmented assignment statement, we use a expression operator (*) followed by an assignment operator (=). So, it would be –

Here, instead of writing x = x * 10, we are using x *= 10. And, both the statements would get us same outcome i.e. multiply x with 10 and store the result in x again.

Similar operations can be performed for addition, subtraction, division, exponentiation etc. We cover few of those with relevant examples next. Let’s say we have –

I. Addition (+=)

Outcome –

II. Subtraction (-=)

Iii. multiplication (*=), iv. division (/=), v. floor division (//=), vi. modulus (%=), vii. exponentiation (**=).

In conclusion , we have discussed how work with Augmented assignment statements in Python.

Similar Posts

Install python packages using pip in ubuntu.

We can install Python packages, not available in standard Ubuntu repository, using PIP. PIP is a command-line tool for managing…

string capitalize() in Python

string capitalize() in Python

In this article, we would cover string capitalize() method in Python. The capitalize() method returns a string wherein all the…

keys() method in Python Dictionary

keys() method in Python Dictionary

A Python dictionary mainly consists of items, which is basically a key:value pair. In previous article, we covered items() method…

Draw a polygon in Turtle (Python)

Draw a polygon in Turtle (Python)

In this article, we would discuss how to draw a polygon in Turtle. Turtle is basically an inbuilt module in…

string find() in Python

string find() in Python

In this article, we would cover string find() method in Python. Sometimes, we need to find a substring which is…

Numerical operators in Python

In this article, we would discuss various numerical operators in Python v3.9. We use these operators on Python expressions. Python…

Join us and get access to thousands of tutorials and a community of expert Pythonistas.

This lesson is for members only. Join us and get access to thousands of tutorials and a community of expert Pythonistas.

Augmented Assignment (Sets)

James Uejio

00:00 Let’s take a deep dive into how augmented assignment actually works. You saw that many of the modifying set methods have a corresponding augmented assignment.

00:09 Like we saw, intersection update ( &= ), and difference update ( -= ), and symmetric difference update ( ^= ). These are not the same as their expanded out counterparts.

00:19 For example, x &= {1} is not the same as x = x & {1} .

00:29 Here’s an example where you will see that. Here we have x = {1} , y = x . That will make y point to the same set that x is pointing to.

00:41 Now we will use update ( |= ) to update x with {2} .

00:47 Here, x becomes {1, 2} and y also becomes {1, 2} because they are pointing to the same object. Versus x = {1} , y = x , x = x | {2} . x will become {1, 2} , but y will become nothing.

01:08 It will actually be the original {1} . This is because x = x | {2} created a new set of {1, 2} and then bound that back to x . y still pointed to the original {1} .

01:25 The first example mutates x , the second example reassigns x .

Become a Member to join the conversation.

what is an augmented assignment in python

Python Enhancement Proposals

  • Python »
  • PEP Index »

PEP 577 – Augmented Assignment Expressions

Pep withdrawal, augmented assignment expressions, adding an inline assignment operator, assignment operator precedence, augmented assignment to names in block scopes, augmented assignment to names in scoped expressions, allowing complex assignment targets, augmented assignment or name binding only, postponing a decision on expression level target declarations, ignoring scoped expressions when determining augmented assignment targets, treating inline assignment as an augmented assignment variant, disallowing augmented assignments in class level scoped expressions, comparison operators vs assignment operators, simplifying retry loops, simplifying if-elif chains, capturing intermediate values from comprehensions, allowing lambda expressions to act more like re-usable code thunks, relationship with pep 572, acknowledgements.

While working on this PEP, I realised that it didn’t really address what was actually bothering me about PEP 572 ’s proposed scoping rules for previously unreferenced assignment targets, and also had some significant undesirable consequences (most notably, allowing >>= and <<= as inline augmented assignment operators that meant something entirely different from the >= and <= comparison operators).

I also realised that even without dedicated syntax of their own, PEP 572 technically allows inline augmented assignments to be written using the operator module:

The restriction to simple names as inline assignment targets means that the target expression can always be repeated without side effects, and thus avoids the ambiguity that would arise from allowing actual embedded augmented assignments (it’s still a bad idea, since it would almost certainly be hard for humans to read, this note is just about the theoretical limits of language level expressiveness).

Accordingly, I withdrew this PEP without submitting it for pronouncement. At the time I also started writing a replacement PEP that focused specifically on the handling of assignment targets which hadn’t already been declared as local variables in the current scope (for both regular block scopes, and for scoped expressions), but that draft never even reached a stage where I liked it better than the ultimately accepted proposal in PEP 572 , so it was never posted anywhere, nor assigned a PEP number.

This is a proposal to allow augmented assignments such as x += 1 to be used as expressions, not just statements.

As part of this, NAME := EXPR is proposed as an inline assignment expression that uses the new augmented assignment scoping rules, rather than implicitly defining a new local variable name the way that existing name binding statements do. The question of allowing expression level local variable declarations at function scope is deliberately separated from the question of allowing expression level name bindings, and deferred to a later PEP.

This PEP is a direct competitor to PEP 572 (although it borrows heavily from that PEP’s motivation, and even shares the proposed syntax for inline assignments). See Relationship with PEP 572 for more details on the connections between the two PEPs.

To improve the usability of the new expressions, a semantic split is proposed between the handling of augmented assignments in regular block scopes (modules, classes, and functions), and the handling of augmented assignments in scoped expressions (lambda expressions, generator expressions, and comprehensions), such that all inline assignments default to targeting the nearest containing block scope.

A new compile time TargetNameError is added as a subclass of SyntaxError to handle cases where it is deemed to be currently unclear which target is expected to be rebound by an inline assignment, or else the target scope for the inline assignment is considered invalid for another reason.

Syntax and semantics

The language grammar would be adjusted to allow augmented assignments to appear as expressions, where the result of the augmented assignment expression is the same post-calculation reference as is being bound to the given target.

For example:

For mutable targets, this means the result is always just the original object:

Augmented assignments to attributes and container subscripts will be permitted, with the result being the post-calculation reference being bound to the target, just as it is for simple name targets:

In these cases, __getitem__ and __getattribute__ will not be called after the assignment has already taken place (they will only be called as needed to evaluate the in-place operation).

Given only the addition of augmented assignment expressions, it would be possible to abuse a symbol like |= as a general purpose assignment operator by defining a Target wrapper type that worked as follows:

This is similar to the way that storing a single reference in a list was long used as a workaround for the lack of a nonlocal keyword, and can still be used today (in combination with operator.itemsetter ) to work around the lack of expression level assignments.

Rather than requiring such workarounds, this PEP instead proposes that PEP 572 ’s “NAME := EXPR” syntax be adopted as a new inline assignment expression that uses the augmented assignment scoping rules described below.

This cleanly handles cases where only the new value is of interest, and the previously bound value (if any) can just be discarded completely.

Note that for both simple names and complex assignment targets, the inline assignment operator does not read the previous reference before assigning the new one. However, when used at function scope (either directly or inside a scoped expression), it does not implicitly define a new local variable, and will instead raise TargetNameError (as described for augmented assignments below).

To preserve the existing semantics of augmented assignment statements, inline assignment operators will be defined as being of lower precedence than all other operators, include the comma pseudo-operator. This ensures that when used as a top level expression the entire right hand side of the expression is still interpreted as the value to be processed (even when that value is a tuple without parentheses).

The difference this introduces relative to PEP 572 is that where (n := first, second) sets n = first in PEP 572 , in this PEP it would set n = (first, second) , and getting the first meaning would require an extra set of parentheses ( ((n := first), second) ).

PEP 572 quite reasonably notes that this results in ambiguity when assignment expressions are used as function call arguments. This PEP resolves that concern a different way by requiring that assignment expressions be parenthesised when used as arguments to a function call (unless they’re the sole argument).

This is a more relaxed version of the restriction placed on generator expressions (which always require parentheses, except when they’re the sole argument to a function call).

No target name binding changes are proposed for augmented assignments at module or class scope (this also includes code executed using “exec” or “eval”). These will continue to implicitly declare a new local variable as the binding target as they do today, and (if necessary) will be able to resolve the name from an outer scope before binding it locally.

At function scope, augmented assignments will be changed to require that there be either a preceding name binding or variable declaration to explicitly establish the target name as being local to the function, or else an explicit global or nonlocal declaration. TargetNameError , a new SyntaxError subclass, will be raised at compile time if no such binding or declaration is present.

For example, the following code would compile and run as it does today:

The follow examples would all still compile and then raise an error at runtime as they do today:

Whereas the following would raise a compile time DeprecationWarning initially, and eventually change to report a compile time TargetNameError :

As a conservative implementation approach, the compile time function name resolution change would be introduced as a DeprecationWarning in Python 3.8, and then converted to TargetNameError in Python 3.9. This avoids potential problems in cases where an unused function would currently raise UnboundLocalError if it was ever actually called, but the code is actually unused - converting that latent runtime defect to a compile time error qualifies as a backwards incompatible change that requires a deprecation period.

When augmented assignments are used as expressions in function scope (rather than as standalone statements), there aren’t any backwards compatibility concerns, so the compile time name binding checks would be enforced immediately in Python 3.8.

Similarly, the new inline assignment expressions would always require explicit predeclaration of their target scope when used as part of a function, at least for Python 3.8. (See the design discussion section for notes on potentially revisiting that restriction in the future).

Scoped expressions is a new collective term being proposed for expressions that introduce a new nested scope of execution, either as an intrinsic part of their operation (lambda expressions, generator expressions), or else as a way of hiding name binding operations from the containing scope (container comprehensions).

Unlike regular functions, these scoped expressions can’t include explicit global or nonlocal declarations to rebind names directly in an outer scope.

Instead, their name binding semantics for augmented assignment expressions would be defined as follows:

  • augmented assignment targets used in scoped expressions are expected to either be already bound in the containing block scope, or else have their scope explicitly declared in the containing block scope. If no suitable name binding or declaration can be found in that scope, then TargetNameError will be raised at compile time (rather than creating a new binding within the scoped expression).
  • if the containing block scope is a function scope, and the target name is explicitly declared as global or nonlocal , then it will be use the same scope declaration in the body of the scoped expression
  • if the containing block scope is a function scope, and the target name is a local variable in that function, then it will be implicitly declared as nonlocal in the body of the scoped expression
  • if the containing block scope is a class scope, than TargetNameError will always be raised, with a dedicated message indicating that combining class scopes with augmented assignments in scoped expressions is not currently permitted.
  • if a name is declared as a formal parameter (lambda expressions), or as an iteration variable (generator expressions, comprehensions), then that name is considered local to that scoped expression, and attempting to use it as the target of an augmented assignment operation in that scope, or any nested scoped expression, will raise TargetNameError (this is a restriction that could potentially be lifted later, but is being proposed for now to simplify the initial set of compile time and runtime semantics that needs to be covered in the language reference and handled by the compiler and interpreter)

For example, the following code would work as shown:

While the following examples would all raise TargetNameError :

As augmented assignments currently can’t appear inside scoped expressions, the above compile time name resolution exceptions would be included as part of the initial implementation rather than needing to be phased in as a potentially backwards incompatible change.

Design discussion

The initial drafts of this PEP kept PEP 572 ’s restriction to single name targets when augmented assignments were used as expressions, allowing attribute and subscript targets solely for the statement form.

However, enforcing that required varying the permitted targets based on whether or not the augmented assignment was a top level expression or not, as well as explaining why n += 1 , (n += 1) , and self.n += 1 were all legal, but (self.n += 1) was prohibited, so the proposal was simplified to allow all existing augmented assignment targets for the expression form as well.

Since this PEP defines TARGET := EXPR as a variant on augmented assignment, that also gained support for assignment and subscript targets.

PEP 572 makes a reasonable case that the potential use cases for inline augmented assignment are notably weaker than those for inline assignment in general, so it’s acceptable to require that they be spelled as x := x + 1 , bypassing any in-place augmented assignment methods.

While this is at least arguably true for the builtin types (where potential counterexamples would probably need to focus on set manipulation use cases that the PEP author doesn’t personally have), it would also rule out more memory intensive use cases like manipulation of NumPy arrays, where the data copying involved in out-of-place operations can make them impractical as alternatives to their in-place counterparts.

That said, this PEP mainly exists because the PEP author found the inline assignment proposal much easier to grasp as “It’s like += , only skipping the addition step”, and also liked the way that that framing provides an actual semantic difference between NAME = EXPR and NAME := EXPR at function scope.

That difference in target scoping behaviour means that the NAME := EXPR syntax would be expected to have two primary use cases:

  • as a way of allowing assignments to be embedded as an expression in an if or while statement, or as part of a scoped expression
  • as a way of requesting a compile time check that the target name be previously declared or bound in the current function scope

At module or class scope, NAME = EXPR and NAME := EXPR would be semantically equivalent due to the compiler’s lack of visibility into the set of names that will be resolvable at runtime, but code linters and static type checkers would be encouraged to enforce the same “declaration or assignment required before use” behaviour for NAME := EXPR as the compiler would enforce at function scope.

At least for Python 3.8, usage of inline assignments (whether augmented or not) at function scope would always require a preceding name binding or scope declaration to avoid getting TargetNameError , even when used outside a scoped expression.

The intent behind this requirement is to clearly separate the following two language design questions:

  • Can an expression rebind a name in the current scope?
  • Can an expression declare a new name in the current scope?

For module global scopes, the answer to both of those questions is unequivocally “Yes”, because it’s a language level guarantee that mutating the globals() dict will immediately impact the runtime module scope, and global NAME declarations inside a function can have the same effect (as can importing the currently executing module and modifying its attributes).

For class scopes, the answer to both questions is also “Yes” in practice, although less unequivocally so, since the semantics of locals() are currently formally unspecified. However, if the current behaviour of locals() at class scope is taken as normative (as PEP 558 proposes), then this is essentially the same scenario as manipulating the module globals, just using locals() instead.

For function scopes, however, the current answers to these two questions are respectively “Yes” and “No”. Expression level rebinding of function locals is already possible thanks to lexically nested scopes and explicit nonlocal NAME expressions. While this PEP will likely make expression level rebinding more common than it is today, it isn’t a fundamentally new concept for the language.

By contrast, declaring a new function local variable is currently a statement level action, involving one of:

  • an assignment statement ( NAME = EXPR , OTHER_TARGET = NAME = EXPR , etc)
  • a variable declaration ( NAME : EXPR )
  • a nested function definition
  • a nested class definition
  • a with statement
  • an except clause (with limited scope of access)

The historical trend for the language has actually been to remove support for expression level declarations of function local names, first with the introduction of “fast locals” semantics (which made the introduction of names via locals() unsupported for function scopes), and again with the hiding of comprehension iteration variables in Python 3.0.

Now, it may be that in Python 3.9, we decide to revisit this question based on our experience with expression level name binding in Python 3.8, and decide that we really do want expression level function local variable declarations as well, and that we want NAME := EXPR to be the way we spell that (rather than, for example, spelling inline declarations more explicitly as NAME := EXPR given NAME , which would permit them to carry type annotations, and also permit them to declare new local variables in scoped expressions, rather than having to pollute the namespace in their containing scope).

But the proposal in this PEP is that we explicitly give ourselves a full release to decide how much we want that feature, and exactly where we find its absence irritating. Python has survived happily without expression level name bindings or declarations for decades, so we can afford to give ourselves a couple of years to decide if we really want both of those, or if expression level bindings are sufficient.

When discussing possible binding semantics for PEP 572 ’s assignment expressions, Tim Peters made a plausible case [1] , [2] , [3] for assignment expressions targeting the containing block scope, essentially ignoring any intervening scoped expressions.

This approach allows use cases like cumulative sums, or extracting the final value from a generator expression to be written in a relatively straightforward way:

Guido also expressed his approval for this general approach [4] .

The proposal in this PEP differs from Tim’s original proposal in three main areas:

  • it applies the proposal to all augmented assignment operators, not just a single new name binding operator
  • as far as is practical, it extends the augmented assignment requirement that the name already be defined to the new name binding operator (raising TargetNameError rather than implicitly declaring new local variables at function scope)
  • it includes lambda expressions in the set of scopes that get ignored for target name binding purposes, making this transparency to assignments common to all of the scoped expressions rather than being specific to comprehensions and generator expressions

With scoped expressions being ignored when calculating binding targets, it’s once again difficult to detect the scoping difference between the outermost iterable expressions in generator expressions and comprehensions (you have to mess about with either class scopes or attempting to rebind iteration Variables to detect it), so there’s also no need to tinker with that.

One of the challenges with PEP 572 is the fact that NAME = EXPR and NAME := EXPR are entirely semantically equivalent at every scope. This makes the two forms hard to teach, since there’s no inherent nudge towards choosing one over the other at the statement level, so you end up having to resort to “ NAME = EXPR is preferred because it’s been around longer” (and PEP 572 proposes to enforce that historical idiosyncrasy at the compiler level).

That semantic equivalence is difficult to avoid at module and class scope while still having if NAME := EXPR: and while NAME := EXPR: work sensibly, but at function scope the compiler’s comprehensive view of all local names makes it possible to require that the name be assigned or declared before use, providing a reasonable incentive to continue to default to using the NAME = EXPR form when possible, while also enabling the use of the NAME := EXPR as a kind of simple compile time assertion (i.e. explicitly indicating that the targeted name has already been bound or declared and hence should already be known to the compiler).

If Guido were to declare that support for inline declarations was a hard design requirement, then this PEP would be updated to propose that EXPR given NAME also be introduced as a way to support inline name declarations after arbitrary expressions (this would allow the inline name declarations to be deferred until the end of a complex expression rather than needing to be embedded in the middle of it, and PEP 8 would gain a recommendation encouraging that style).

While modern classes do define an implicit closure that’s visible to method implementations (in order to make __class__ available for use in zero-arg super() calls), there’s no way for user level code to explicitly add additional names to that scope.

Meanwhile, attributes defined in a class body are ignored for the purpose of defining a method’s lexical closure, which means adding them there wouldn’t work at an implementation level.

Rather than trying to resolve that inherent ambiguity, this PEP simply prohibits such usage, and requires that any affected logic be written somewhere other than directly inline in the class body (e.g. in a separate helper function).

The OP= construct as an expression currently indicates a comparison operation:

Both this PEP and PEP 572 propose adding at least one operator that’s somewhat similar in appearance, but defines an assignment instead:

This PEP then goes much further and allows all 13 augmented assignment symbols to be uses as binary operators:

Of those additional binary operators, the most questionable would be the bitshift assignment operators, since they’re each only one doubled character away from one of the inclusive ordered comparison operators.

There are currently a few different options for writing retry loops, including:

Each of the available options hides some aspect of the intended loop structure inside the loop body, whether that’s the state modification, the exit condition, or both.

The proposal in this PEP allows both the state modification and the exit condition to be included directly in the loop header:

if-elif chains that need to rebind the checked condition currently need to be written using nested if-else statements:

As with PEP 572 , this PEP allows the else/if portions of that chain to be condensed, making their consistent and mutually exclusive structure more readily apparent:

Unlike PEP 572 , this PEP requires that the assignment target be explicitly indicated as local before the first use as a := target, either by binding it to a value (as shown above), or else by including an appropriate explicit type declaration:

The proposal in this PEP makes it straightforward to capture and reuse intermediate values in comprehensions and generator expressions by exporting them to the containing block scope:

This PEP allows the classic closure usage example:

To be abbreviated as:

While the latter form is still a conceptually dense piece of code, it can be reasonably argued that the lack of boilerplate (where the “def”, “nonlocal”, and “return” keywords and two additional repetitions of the “x” variable name have been replaced with the “lambda” keyword) may make it easier to read in practice.

The case for allowing inline assignments at all is made in PEP 572 . This competing PEP was initially going to propose an alternate surface syntax ( EXPR given NAME = EXPR ), while retaining the expression semantics from PEP 572 , but that changed when discussing one of the initial motivating use cases for allowing embedded assignments at all: making it possible to easily calculate cumulative sums in comprehensions and generator expressions.

As a result of that, and unlike PEP 572 , this PEP focuses primarily on use cases for inline augmented assignment. It also has the effect of converting cases that currently inevitably raise UnboundLocalError at function call time to report a new compile time TargetNameError .

New syntax for a name rebinding expression ( NAME := TARGET ) is then added not only to handle the same use cases as are identified in PEP 572 , but also as a lower level primitive to help illustrate, implement and explain the new augmented assignment semantics, rather than being the sole change being proposed.

The author of this PEP believes that this approach makes the value of the new flexibility in name rebinding clearer, while also mitigating many of the potential concerns raised with PEP 572 around explaining when to use NAME = EXPR over NAME := EXPR (and vice-versa), without resorting to prohibiting the bare statement form of NAME := EXPR outright (such that NAME := EXPR is a compile error, but (NAME := EXPR) is permitted).

The PEP author wishes to thank Chris Angelico for his work on PEP 572 , and his efforts to create a coherent summary of the great many sprawling discussions that spawned on both python-ideas and python-dev, as well as Tim Peters for the in-depth discussion of parent local scoping that prompted the above scoping proposal for augmented assignments inside scoped expressions.

Eric Snow’s feedback on a pre-release version of this PEP helped make it significantly more readable.

This document has been placed in the public domain.

Source: https://github.com/python/peps/blob/main/peps/pep-0577.rst

Last modified: 2023-10-11 12:05:51 GMT

  • Stack Overflow for Teams Where developers & technologists share private knowledge with coworkers
  • Advertising & Talent Reach devs & technologists worldwide about your product, service or employer brand
  • OverflowAI GenAI features for Teams
  • OverflowAPI Train & fine-tune LLMs
  • Labs The future of collective knowledge sharing
  • About the company Visit the blog

Collectives™ on Stack Overflow

Find centralized, trusted content and collaborate around the technologies you use most.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

Get early access and see previews of new features.

Augmented assignment in the middle of expression causes SyntaxError [duplicate]

In my code I have these lines:

When I run the code I get this error?

How do I fix this error?

  • syntax-error
  • augmented-assignment

Georgy's user avatar

  • 2 what are you trying to achieve? you are mixing a boolean expression with an assignment statement –  peter Commented Apr 13, 2014 at 21:08
  • You cant do += im your loop –  PYPL Commented Apr 13, 2014 at 21:10

2 Answers 2

The assignment

is a statement. Statements can not be part of expressions . Therefore, use an if-statement :

Python bans assignments inside of expressions because it is thought they frequently lead to bugs. For example,

is too close too

Community's user avatar

avId in self.disconnectedAvIds will return a boolean value. or is used to evaluate between two boolean values, so it's correct so far.

self.resultsStr += curStr is an assignment to a variable. An assignment to a variable is of the form lvalue = rvalue where lvalue is a variable you can assign values to and rvalue is some expression that evaluates to the data type of the lvalue . This will not return a boolean value, so the expression is illegal.

If you want to change the value if avId is in self.disconnectedAvIds then use an if statement.

Mdev's user avatar

Not the answer you're looking for? Browse other questions tagged python syntax-error augmented-assignment or ask your own question .

  • The Overflow Blog
  • Scaling systems to manage all the metadata ABOUT the data
  • Navigating cities of code with Norris Numbers
  • Featured on Meta
  • We've made changes to our Terms of Service & Privacy Policy - July 2024
  • Bringing clarity to status tag usage on meta sites
  • Tag hover experiment wrap-up and next steps

Hot Network Questions

  • In "Take [action]. When you do, [effect]", is the action a cost or an instruction?
  • Do "Whenever X becomes the target of a spell" abilities get triggered by counterspell?
  • What role does the lower bound play in the statement of Savitch's Theorem?
  • Has the application of a law ever being appealed anywhere due to the lawmakers not knowing what they were voting/ruling?
  • Connector's number of mating cycles
  • Can you bring a cohort back to life?
  • Guitar amplifier placement for live band
  • Blocking between two MERGE queries inserting into the same table
  • Why did evolution fail to protect humans against sun?
  • Repeats: Simpler at the cost of more redundant?
  • Smallest natural number unrepresentable by fifty letters
  • Why would Space Colonies even want to secede?
  • Next Bitcoin Core client version
  • When is internal use internal (considering licenses and their obligations)?
  • Fisher claims Σ(x - λ)²/λ is chi-squared when x is Poisson – how is that?
  • Is there a French noun equivalent for "twofer"?
  • What is the airspeed record for a helicopter flying backwards?
  • Do space stations have anything that big spacecraft (such as the Space Shuttle and SpaceX Starship) don't have?
  • Get the first character of a string or macro
  • I submitted a paper and later realised one reference was missing, although I had written the authors in the body text. What could happen?
  • Will the US Customs be suspicious of my luggage if i bought a lot of the same item?
  • If Venus had a sapient civilisation similar to our own prior to global resurfacing, would we know it?
  • Did the Space Shuttle weigh itself before deorbit?
  • Why didn't Walter White choose to work at Gray Matter instead of becoming a drug lord in Breaking Bad?

what is an augmented assignment in python

IMAGES

  1. Augmented Assignment Operator in Python

    what is an augmented assignment in python

  2. python augmented assignment operators

    what is an augmented assignment in python

  3. Learn Python: Part 2 (Python Basics I) /// Lesson #11: Augmented

    what is an augmented assignment in python

  4. Python

    what is an augmented assignment in python

  5. Python Augmented Assignment Operators Explained

    what is an augmented assignment in python

  6. assignment operator in python

    what is an augmented assignment in python

COMMENTS

  1. Augmented Assignment Operators in Python

    An assignment operator is an operator that is used to assign some value to a variable. Like normally in Python, we write "a = 5" to assign value 5 to variable 'a'. Augmented assignment operators have a special role to play in Python programming.

  2. Python's Assignment Operator: Write Robust Assignments

    Augmented Assignment Operators in Python. Python supports what are known as augmented assignments. An augmented assignment combines the assignment operator with another operator to make the statement more concise. Most Python math and bitwise operators have an augmented assignment variation that looks something like this:

  3. Augmented Assignment Operators in Python with Examples

    Augmented Assignment Operators in Python with Examples. Unlike normal assignment operator, Augmented Assignment Operators are used to replace those statements where binary operator takes two operands says var1 and var2 and then assigns a final result back to one of operands i.e. var1 or var2. For example: statement var1 = var1 + 5 is same as writing var1 += 5 in python and this is known as ...

  4. 7. Simple statements

    In the augmented version, x is only evaluated once. Also, when possible, the actual operation is performed in-place, meaning that rather than creating a new object and assigning that to the target, the old object is modified instead. Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side.

  5. Augmented Assignment Expression in Python

    Since version 3.8, the new feature augmented assignment expression has been included in Python. In particular, a new operator emerges as a result — the inline assignment operator := . Because of its look, this operator is more commonly known as the walrus operator.

  6. PEP 203

    This PEP describes the augmented assignment proposal for Python 2.0. This PEP tracks the status and ownership of this feature, slated for introduction in Python 2.0. It contains a description of the feature and outlines changes necessary to support the feature. This PEP summarizes discussions held in mailing list forums [1], and provides URLs ...

  7. Augmented Assignment Expressions in Python

    Augmented assignments in Python. Augmented assignments create a shorthand that incorporates a binary expression to the actual assignment. For instance, the following two statements are equivalent: a = a + b. a += b # augmented assignment. In the code fragment below we present all augmented assignments allowed in Python language. a += b. a -= b.

  8. 155 Demystifying the Augmented Assignment Operator: A ...

    Welcome to our comprehensive YouTube video on the augmented assignment operator in Python. In this guide, we unravel the power and efficiency of this operato...

  9. 1.9. Augmented Assignments

    Augmented Assignments — EAS503: Python for Data Scientists. 1.9. Augmented Assignments #. An augmented assignment merges an assignment statement with an operator, resulting in a more concise statement. The execution of an augmented assignment involves the following steps: Evaluate the expression on the right side of the = sign to yield a value.

  10. Augmented assignment statements in Python

    For augmented assignment statement, we use a expression operator (*) followed by an assignment operator (=). So, it would be -. x *= 10. Here, instead of writing x = x * 10, we are using x *= 10. And, both the statements would get us same outcome i.e. multiply x with 10 and store the result in x again. Similar operations can be performed for ...

  11. Augmented Assignment (Sets) (Video)

    This is because x = x | {2} created a new set of {1, 2} and then bound that back to x. y still pointed to the original {1}. 01:25 The first example mutates x, the second example reassigns x. Let's take a deep dive into how augmented assignment actually works. You saw that many of the modifying set methods have a corresponding augmented ...

  12. PEP 577

    Abstract. This is a proposal to allow augmented assignments such as x += 1 to be used as expressions, not just statements. As part of this, NAME := EXPR is proposed as an inline assignment expression that uses the new augmented assignment scoping rules, rather than implicitly defining a new local variable name the way that existing name binding ...

  13. Python Assignment Operators

    Python Assignment Operators. Assignment operators are used to assign values to variables: Operator. Example. Same As. Try it. =. x = 5. x = 5.

  14. Python augmenting multiple variables inline

    The nature of an in-place ("augmented") assignment is that it must take a variable on its left hand side, whose value receives the operator call, and the variable then receives the result of that call. Python does not allow distribution of an in-place assignment over multiple targets. answered Aug 8, 2013 at 18:00. Marcin.

  15. [Language skills Python] Augmented Assignment Operator ...

    This course will give you a full introduction into all of the core concepts in python. Follow along with the videos and you'll be a python programmer in no t...

  16. Different Forms of Assignment Statements in Python

    Multiple- target assignment: x = y = 75. print(x, y) In this form, Python assigns a reference to the same object (the object which is rightmost) to all the target on the left. OUTPUT. 75 75. 7. Augmented assignment : The augmented assignment is a shorthand assignment that combines an expression and an assignment.

  17. Assignment Operators in Python

    Assignment Operator. Assignment Operators are used to assign values to variables. This operator is used to assign the value of the right side of the expression to the left side operand. Python. # Assigning values using # Assignment Operator a = 3 b = 5 c = a + b # Output print(c) Output. 8.

  18. CBSE Class 11 Computer Science

    Augmented Assignment Operators. Augmented assignment operators combine an arithmetic operation with an assignment. They provide a shorthand way to update the value of a variable. 1. Addition Assignment (+=): Adds a value to the variable and assigns the result back to the variable. Example: x = 10 x += 5 # Equivalent to x = x + 5; x now equals ...

  19. python

    Rahul Ratwatte. 1. Augmented assignments can behave differently and can be customized. See the duplicate. EDIT: In Python. - timgeb. Oct 6, 2020 at 7:16. I removed the Java and Kotlin tags because this question has different answers in different languages. - timgeb.

  20. python

    1. In case of lists, += is in place, meaning it does not create a new list, it changes the list on the left side. It internally calls the __iadd__() method for list (where the i stands for in place) . where as the concatenation operator + actually creates a new list. (It internally calls the __add__() method)

  21. python

    The assignment. self.resultsStr += curStr is a statement. Statements can not be part of expressions. Therefore, use an if-statement: if avId not in self.disconnectedAvIds: self.resultsStr += curStr Python bans assignments inside of expressions because it is thought they frequently lead to bugs. For example, if x = 0 # banned is too close too