LEARN STATISTICS EASILY

LEARN STATISTICS EASILY

Learn Data Analysis Now!

LEARN STATISTICS EASILY LOGO 2

What is: Data Representation

Understanding data representation.

Data representation refers to the methods and techniques used to visually or symbolically depict data. This can include various formats such as graphs, charts, tables, and diagrams. Effective data representation is crucial for data analysis and data science, as it allows for easier interpretation and communication of complex information. By transforming raw data into a more understandable format, stakeholders can make informed decisions based on insights derived from the data.

 width=

Ad description. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Types of Data Representation

There are several types of data representation, each suited for different types of data and analysis. Common forms include numerical representation, categorical representation, and temporal representation. Numerical representation involves using numbers to convey information, while categorical representation uses categories or groups. Temporal representation focuses on data over time, often visualized through time series graphs. Understanding these types is essential for selecting the appropriate method for data visualization.

The Importance of Visual Representation

Visual representation of data plays a vital role in data analysis. It enhances the ability to identify trends, patterns, and outliers within datasets. By utilizing visual tools like bar charts, pie charts, and scatter plots, analysts can quickly convey complex information in a digestible format. This not only aids in analysis but also facilitates communication with non-technical stakeholders, ensuring that insights are accessible to a broader audience.

Common Tools for Data Representation

Several tools and software applications are widely used for data representation in the fields of statistics and data science. Popular tools include Tableau, Microsoft Power BI, and Google Data Studio. These platforms provide users with the ability to create interactive and dynamic visualizations, allowing for real-time data analysis and exploration. Additionally, programming languages like Python and R offer libraries such as Matplotlib and ggplot2, which enable custom visualizations tailored to specific analytical needs.

Best Practices in Data Representation

When creating data representations, adhering to best practices is essential for clarity and effectiveness. This includes choosing the right type of visualization for the data at hand, ensuring that visualizations are not cluttered, and using appropriate scales and labels. Additionally, color choices should enhance readability and accessibility, avoiding combinations that may confuse or mislead viewers. Following these guidelines helps ensure that the data representation communicates the intended message accurately.

Challenges in Data Representation

Despite its importance, data representation comes with challenges. One significant challenge is the risk of misrepresentation, where visualizations may distort the data or lead to incorrect conclusions. This can occur due to inappropriate scaling, selective data presentation, or biased visual choices. Analysts must be vigilant in ensuring that their representations are truthful and accurately reflect the underlying data, as misleading visuals can have serious implications for decision-making.

Data Representation in Machine Learning

In the realm of machine learning, data representation is critical for model performance. The way data is represented can significantly impact the effectiveness of algorithms. Feature engineering, which involves selecting and transforming variables into a suitable format for modeling, is a key aspect of this process. Proper data representation can enhance the model’s ability to learn from the data, leading to better predictions and insights.

Interactive Data Representation

Interactive data representation has gained popularity in recent years, allowing users to engage with data in real-time. Tools that support interactive visualizations enable users to filter, zoom, and manipulate data, providing a more immersive experience. This interactivity fosters deeper exploration and understanding of the data, making it easier for users to uncover insights that may not be immediately apparent in static representations.

Future Trends in Data Representation

As technology continues to evolve, so too does the field of data representation. Emerging trends include the use of augmented reality (AR) and virtual reality (VR) for data visualization, offering new dimensions for understanding complex datasets. Additionally, advancements in artificial intelligence are enabling automated data representation, where algorithms can generate visualizations based on data patterns without human intervention. These innovations promise to enhance the way data is represented and understood in the future.

definition data representation

Robot

Download the Learning Outcomes App Today

Embibe Logo

Share this article

link

Table of Contents

Latest updates.

Ways To Improve Learning Outcomes: Learn Tips & Tricks

Ways To Improve Learning Outcomes: Learn Tips & Tricks

The Three States of Matter: Solids, Liquids, and Gases

The Three States of Matter: Solids, Liquids, and Gases

Types of Motion: Introduction, Parameters, Examples

Types of Motion: Introduction, Parameters, Examples

Understanding Frequency Polygon: Detailed Explanation

Understanding Frequency Polygon: Detailed Explanation

Uses of Silica Gel in Packaging?

Uses of Silica Gel in Packaging?

Visual Learning Style for Students: Pros and Cons

Visual Learning Style for Students: Pros and Cons

Air Pollution: Know the Causes, Effects & More

Air Pollution: Know the Causes, Effects & More

Sexual Reproduction in Flowering Plants

Sexual Reproduction in Flowering Plants

Integers Introduction: Check Detailed Explanation

Integers Introduction: Check Detailed Explanation

Human Respiratory System – Detailed Explanation

Human Respiratory System – Detailed Explanation

Tag cloud :.

  • entrance exams
  • engineering
  • ssc cgl 2024
  • Written By Priya_Singh
  • Last Modified 24-01-2023

Data Representation: Definition, Types, Examples

Data Representation: Data representation is a technique for analysing numerical data. The relationship between facts, ideas, information, and concepts is depicted in a diagram via data representation. It is a fundamental learning strategy that is simple and easy to understand. It is always determined by the data type in a specific domain. Graphical representations are available in many different shapes and sizes.

In mathematics, a graph is a chart in which statistical data is represented by curves or lines drawn across the coordinate point indicated on its surface. It aids in the investigation of a relationship between two variables by allowing one to evaluate the change in one variable’s amount in relation to another over time. It is useful for analysing series and frequency distributions in a given context. On this page, we will go through two different types of graphs that can be used to graphically display data. Continue reading to learn more.

Learn Informative Blog

Data Representation in Maths

Definition: After collecting the data, the investigator has to condense them in tabular form to study their salient features. Such an arrangement is known as the presentation of data.

Any information gathered may be organised in a frequency distribution table, and then shown using pictographs or bar graphs. A bar graph is a representation of numbers made up of equally wide bars whose lengths are determined by the frequency and scale you choose.

The collected raw data can be placed in any one of the given ways:

  • Serial order of alphabetical order
  • Ascending order
  • Descending order

Data Representation Example

Example: Let the marks obtained by \(30\) students of class VIII in a class test, out of \(50\)according to their roll numbers, be:

\(39,\,25,\,5,\,33,\,19,\,21,\,12,41,\,12,\,21,\,19,\,1,\,10,\,8,\,12\)

\(17,\,19,\,17,\,17,\,41,\,40,\,12,41,\,33,\,19,\,21,\,33,\,5,\,1,\,21\)

The data in the given form is known as raw data or ungrouped data. The above-given data can be placed in the serial order as shown below:

Data Representation Example

Now, for say you want to analyse the standard of achievement of the students. If you arrange them in ascending or descending order, it will give you a better picture.

Ascending order:

\(1,\,1,\,5,\,5,\,8,\,10,\,12,12,\,12,\,12,\,17,\,17,\,17,\,19,\,19\)

\(19,\,19,\,21,\,21,\,21,\,25,\,33,33,\,33,\,39,\,40,\,41,\,41,\,41\)

Descending order:

\(41,\,41,\,41,\,40,\,39,\,33,\,33,33,\,25,\,21,\,21,\,21,\,21,\,19,\,19\)

\(19,\,19,\,17,\,17,\,17,\,12,\,12,12,\,12,\,10,\,8,\,5,\,5,1,\,1\)

When the raw data is placed in ascending or descending order of the magnitude is known as an array or arrayed data.

Graph Representation in Data Structure

A few of the graphical representation of data is given below:

  • Frequency distribution table

Pictorial Representation of Data: Bar Chart

The bar graph represents the ​qualitative data visually. The information is displayed horizontally or vertically and compares items like amounts, characteristics, times, and frequency.

The bars are arranged in order of frequency, so more critical categories are emphasised. By looking at all the bars, it is easy to tell which types in a set of data dominate the others. Bar graphs can be in many ways like single, stacked, or grouped.

Bar Chart

Graphical Representation of Data: Frequency Distribution Table

A frequency table or frequency distribution is a method to present raw data in which one can easily understand the information contained in the raw data.

The frequency distribution table is constructed by using the tally marks. Tally marks are a form of a numerical system with the vertical lines used for counting. The cross line is placed over the four lines to get a total of \(5\).

Frequency Distribution Table

Consider a jar containing the different colours of pieces of bread as shown below:

Frequency Distribution Table Example

Construct a frequency distribution table for the data mentioned above.

Frequency Distribution Table Example

Graphical Representation of Data: Histogram

The histogram is another kind of graph that uses bars in its display. The histogram is used for quantitative data, and ranges of values known as classes are listed at the bottom, and the types with greater frequencies have the taller bars.

A histogram and the bar graph look very similar; however, they are different because of the data level. Bar graphs measure the frequency of the categorical data. A categorical variable has two or more categories, such as gender or hair colour.

Histogram

Graphical Representation of Data: Pie Chart

The pie chart is used to represent the numerical proportions of a dataset. This graph involves dividing a circle into different sectors, where each of the sectors represents the proportion of a particular element as a whole. Thus, it is also known as a circle chart or circle graph.

Pie Chart

Graphical Representation of Data: Line Graph

A graph that uses points and lines to represent change over time is defined as a line graph. In other words, it is the chart that shows a line joining multiple points or a line that shows the link between the points.

The diagram illustrates the quantitative data between two changing variables with the straight line or the curve that joins a series of successive data points. Linear charts compare two variables on the vertical and the horizontal axis.

Line Graph

General Rules for Visual Representation of Data

We have a few rules to present the information in the graphical representation effectively, and they are given below:

  • Suitable Title:  Ensure that the appropriate title is given to the graph, indicating the presentation’s subject.
  • Measurement Unit:  Introduce the measurement unit in the graph.
  • Proper Scale:  To represent the data accurately, choose an appropriate scale.
  • Index:  In the Index, the appropriate colours, shades, lines, design in the graphs are given for better understanding.
  • Data Sources:  At the bottom of the graph, include the source of information wherever necessary.
  • Keep it Simple:  Build the graph in a way that everyone should understand easily.
  • Neat:  You have to choose the correct size, fonts, colours etc., in such a way that the graph must be a model for the presentation of the information.

Solved Examples on Data Representation

Q.1. Construct the frequency distribution table for the data on heights in \(({\rm{cm}})\) of \(20\) boys using the class intervals \(130 – 135,135 – 140\) and so on. The heights of the boys in \({\rm{cm}}\) are: 

Data Representation Example 1

Ans: The frequency distribution for the above data can be constructed as follows:

Data Representation Example

Q.2. Write the steps of the construction of Bar graph? Ans: To construct the bar graph, follow the given steps: 1. Take a graph paper, draw two lines perpendicular to each other, and call them horizontal and vertical. 2. You have to mark the information given in the data like days, weeks, months, years, places, etc., at uniform gaps along the horizontal axis. 3. Then you have to choose the suitable scale to decide the heights of the rectangles or the bars and then mark the sizes on the vertical axis. 4. Draw the bars or rectangles of equal width and height marked in the previous step on the horizontal axis with equal spacing. The figure so obtained will be the bar graph representing the given numerical data.

Q.3. Read the bar graph and then answer the given questions: I. Write the information provided by the given bar graph. II. What is the order of change of the number of students over several years? III. In which year is the increase of the student maximum? IV. State whether true or false. The enrolment during \(1996 – 97\) is double that of \(1995 – 96\)

pictorial representation of data

Ans: I. The bar graph represents the number of students in class \({\rm{VI}}\) of a school during the academic years \(1995 – 96\,to\,1999 – 2000\). II. The number of stcccccudents is changing in increasing order as the heights of bars are growing. III. The increase in the number of students in uniform and the increase in the height of bars is uniform. Hence, in this case, the growth is not maximum in any of the years. The enrolment in the years is \(1996 – 97\, = 200\). and the enrolment in the years is \(1995 – 96\, = 150\). IV. The enrolment in \(1995 – 97\,\) is not double the enrolment in \(1995 – 96\). So the statement is false.

Q.4. Write the frequency distribution for the given information of ages of \(25\) students of class VIII in a school. \(15,\,16,\,16,\,14,\,17,\,17,\,16,\,15,\,15,\,16,\,16,\,17,\,15\) \(16,\,16,\,14,\,16,\,15,\,14,\,15,\,16,\,16,\,15,\,14,\,15\) Ans: Frequency distribution of ages of \(25\) students:

Data Representation Example

Q.5. There are \(20\) students in a classroom. The teacher asked the students to talk about their favourite subjects. The results are listed below:

Data Representation Example

By looking at the above data, which is the most liked subject? Ans: Representing the above data in the frequency distribution table by using tally marks as follows:

Data Representation Example

From the above table, we can see that the maximum number of students \((7)\) likes mathematics.

Also, Check –

  • Diagrammatic Representation of Data

In the given article, we have discussed the data representation with an example. Then we have talked about graphical representation like a bar graph, frequency table, pie chart, etc. later discussed the general rules for graphic representation. Finally, you can find solved examples along with a few FAQs. These will help you gain further clarity on this topic.

Test Informative Blog

FAQs on Data Representation

Q.1: How is data represented? A: The collected data can be expressed in various ways like bar graphs, pictographs, frequency tables, line graphs, pie charts and many more. It depends on the purpose of the data, and accordingly, the type of graph can be chosen.

Q.2: What are the different types of data representation? A : The few types of data representation are given below: 1. Frequency distribution table 2. Bar graph 3. Histogram 4. Line graph 5. Pie chart

Q.3: What is data representation, and why is it essential? A: After collecting the data, the investigator has to condense them in tabular form to study their salient features. Such an arrangement is known as the presentation of data. Importance: The data visualization gives us a clear understanding of what the information means by displaying it visually through maps or graphs. The data is more natural to the mind to comprehend and make it easier to rectify the trends outliners or trends within the large data sets.

Q.4: What is the difference between data and representation? A: The term data defines the collection of specific quantitative facts in their nature like the height, number of children etc., whereas the information in the form of data after being processed, arranged and then presented in the state which gives meaning to the data is data representation.

Q.5: Why do we use data representation? A: The data visualization gives us a clear understanding of what the information means by displaying it visually through maps or graphs. The data is more natural to the mind to comprehend and make it easier to rectify the trends outliners or trends within the large data sets.

Related Articles

Ways To Improve Learning Outcomes: With the development of technology, students may now rely on strategies to enhance learning outcomes. No matter how knowledgeable a...

The Three States of Matter: Anything with mass and occupied space is called ‘Matter’. Matters of different kinds surround us. There are some we can...

Motion is the change of a body's position or orientation over time. The motion of humans and animals illustrates how everything in the cosmos is...

Understanding Frequency Polygon: Students who are struggling with understanding Frequency Polygon can check out the details here. A graphical representation of data distribution helps understand...

When you receive your order of clothes or leather shoes or silver jewellery from any online shoppe, you must have noticed a small packet containing...

Visual Learning Style: We as humans possess the power to remember those which we have caught visually in our memory and that too for a...

Air Pollution: In the past, the air we inhaled was pure and clean. But as industrialisation grows and the number of harmful chemicals in the...

In biology, flowering plants are known by the name angiosperms. Male and female reproductive organs can be found in the same plant in flowering plants....

Integers Introduction: To score well in the exam, students must check out the Integers introduction and understand them thoroughly. The collection of negative numbers and whole...

Human Respiratory System: Students preparing for the NEET and Biology-related exams must have an idea about the human respiratory system. It is a network of tissues...

Place Value of Numbers: Detailed Explanation

Place Value of Numbers: Students must understand the concept of the place value of numbers to score high in the exam. In mathematics, place value...

The Leaf: Types, Structures, Parts

The Leaf: Students who want to understand everything about the leaf can check out the detailed explanation provided by Embibe experts. Plants have a crucial role...

Factors Affecting Respiration: Definition, Diagrams with Examples

In plants, respiration can be regarded as the reversal of the photosynthetic process. Like photosynthesis, respiration involves gas exchange with the environment. Unlike photosynthesis, respiration...

General Terms Related to Spherical Mirrors

General terms related to spherical mirrors: A mirror with the shape of a portion cut out of a spherical surface or substance is known as a...

Number System: Types, Conversion and Properties

Number System: Numbers are highly significant and play an essential role in Mathematics that will come up in further classes. In lower grades, we learned how...

Types of Respiration

Every living organism has to "breathe" to survive. The process by which the living organisms use their food to get energy is called respiration. It...

Animal Cell: Definition, Diagram, Types of Animal Cells

Animal Cell: An animal cell is a eukaryotic cell with membrane-bound cell organelles without a cell wall. We all know that the cell is the fundamental...

Conversion of Percentages: Conversion Method & Examples

Conversion of Percentages: To differentiate and explain the size of quantities, the terms fractions and percent are used interchangeably. Some may find it difficult to...

Arc of a Circle: Definition, Properties, and Examples

Arc of a circle: A circle is the set of all points in the plane that are a fixed distance called the radius from a fixed point...

Ammonia (NH3): Preparation, Structure, Properties and Uses

Ammonia, a colourless gas with a distinct odour, is a chemical building block and a significant component in producing many everyday items. It is found...

CGPA to Percentage: Calculator for Conversion, Formula, & More

CGPA to Percentage: The average grade point of a student is calculated using their cumulative grades across all subjects, omitting any supplemental coursework. Many colleges,...

Uses of Ether – Properties, Nomenclature, Uses, Disadvantages

Uses of Ether:  Ether is an organic compound containing an oxygen atom and an ether group connected to two alkyl/aryl groups. It is formed by the...

General and Middle Terms: Definitions, Formula, Independent Term, Examples

General and Middle terms: The binomial theorem helps us find the power of a binomial without going through the tedious multiplication process. Further, the use...

Mutually Exclusive Events: Definition, Formulas, Solved Examples

Mutually Exclusive Events: In the theory of probability, two events are said to be mutually exclusive events if they cannot occur simultaneously or at the...

Geometry: Definition, Shapes, Structure, Examples

Geometry is a branch of mathematics that is largely concerned with the forms and sizes of objects, their relative positions, and the qualities of space....

Bohr’s Model of Hydrogen Atom: Expressions for Radius, Energy

Rutherford’s Atom Model was undoubtedly a breakthrough in atomic studies. However, it was not wholly correct. The great Danish physicist Niels Bohr (1885–1962) made immediate...

Types of Functions: Definition, Classification and Examples

Types of Functions: Functions are the relation of any two sets. A relation describes the cartesian product of two sets. Cartesian products of two sets...

definition data representation

39 Insightful Publications

World Economic Forum

Embibe Is A Global Innovator

accenture

Innovator Of The Year Education Forever

Interpretable And Explainable AI

Interpretable And Explainable AI

Tedx

Revolutionizing Education Forever

Amazon AI Conclave

Best AI Platform For Education

Forbes India

Enabling Teachers Everywhere

ACM

Decoding Performance

World Education Summit

Leading AI Powered Learning Solution Provider

Journal of Educational Data Mining

Auto Generation Of Tests

BW Disrupt

Disrupting Education In India

Springer

Problem Sequencing Using DKT

Fortune India Forty Under Fourty

Help Students Ace India's Toughest Exams

Edtech Digest

Best Education AI Platform

Nasscom Product Connect

Unlocking AI Through Saas

Tech In Asia

Fixing Student’s Behaviour With Data Analytics

Your Story

Leveraging Intelligence To Deliver Results

City AI

Brave New World Of Applied AI

vccircle

You Can Score Higher

INK Talks

Harnessing AI In Education

kstart

Personalized Ed-tech With AI

StartUpGrind

Exciting AI Platform, Personalizing Education

Digital Women Award

Disruptor Award For Maximum Business Impact

The Mumbai Summit 2020 AI

Top 20 AI Influencers In India

USPTO

Proud Owner Of 9 Patents

StartUpGrind

Innovation in AR/VR/MR

StartUpGrind

Best Animated Frames Award 2024

Close

Trending Searches

Previous year question papers, sample papers.

Unleash Your True Potential With Personalised Learning on EMBIBE

Pattern

Ace Your Exam With Personalised Learning on EMBIBE

Enter mobile number.

By signing up, you agree to our Privacy Policy and Terms & Conditions

  • Reviews / Why join our community?
  • For companies
  • Frequently asked questions

Data Representation

Literature on data representation.

Here’s the entire UX literature on Data Representation by the Interaction Design Foundation, collated in one place:

Learn more about Data Representation

Take a deep dive into Data Representation with our course AI for Designers .

In an era where technology is rapidly reshaping the way we interact with the world, understanding the intricacies of AI is not just a skill, but a necessity for designers . The AI for Designers course delves into the heart of this game-changing field, empowering you to navigate the complexities of designing in the age of AI. Why is this knowledge vital? AI is not just a tool; it's a paradigm shift, revolutionizing the design landscape. As a designer, make sure that you not only keep pace with the ever-evolving tech landscape but also lead the way in creating user experiences that are intuitive, intelligent, and ethical.

AI for Designers is taught by Ioana Teleanu, a seasoned AI Product Designer and Design Educator who has established a community of over 250,000 UX enthusiasts through her social channel UX Goodies. She imparts her extensive expertise to this course from her experience at renowned companies like UiPath and ING Bank, and now works on pioneering AI projects at Miro.

In this course, you’ll explore how to work with AI in harmony and incorporate it into your design process to elevate your career to new heights. Welcome to a course that doesn’t just teach design; it shapes the future of design innovation.

In lesson 1, you’ll explore AI's significance, understand key terms like Machine Learning, Deep Learning, and Generative AI, discover AI's impact on design, and master the art of creating effective text prompts for design.

In lesson 2, you’ll learn how to enhance your design workflow using AI tools for UX research, including market analysis, persona interviews, and data processing. You’ll dive into problem-solving with AI, mastering problem definition and production ideation.

In lesson 3, you’ll discover how to incorporate AI tools for prototyping, wireframing, visual design, and UX writing into your design process. You’ll learn how AI can assist to evaluate your designs and automate tasks, and ensure your product is launch-ready.

In lesson 4, you’ll explore the designer's role in AI-driven solutions, how to address challenges, analyze concerns, and deliver ethical solutions for real-world design applications.

Throughout the course, you'll receive practical tips for real-life projects. In the Build Your Portfolio exercises, you’ll practice how to integrate AI tools into your workflow and design for AI products, enabling you to create a compelling portfolio case study to attract potential employers or collaborators.

All open-source articles on Data Representation

Visual mapping – the elements of information visualization.

definition data representation

  • 4 years ago

Rating Scales in UX Research: The Ultimate Guide

definition data representation

Open Access—Link to us!

We believe in Open Access and the  democratization of knowledge . Unfortunately, world-class educational materials such as this page are normally hidden behind paywalls or in expensive textbooks.

If you want this to change , cite this page , link to us, or join us to help us democratize design knowledge !

Privacy Settings

Our digital services use necessary tracking technologies, including third-party cookies, for security, functionality, and to uphold user rights. Optional cookies offer enhanced features, and analytics.

Experience the full potential of our site that remembers your preferences and supports secure sign-in.

Governs the storage of data necessary for maintaining website security, user authentication, and fraud prevention mechanisms.

Enhanced Functionality

Saves your settings and preferences, like your location, for a more personalized experience.

Referral Program

We use cookies to enable our referral program, giving you and your friends discounts.

Error Reporting

We share user ID with Bugsnag and NewRelic to help us track errors and fix issues.

Optimize your experience by allowing us to monitor site usage. You’ll enjoy a smoother, more personalized journey without compromising your privacy.

Analytics Storage

Collects anonymous data on how you navigate and interact, helping us make informed improvements.

Differentiates real visitors from automated bots, ensuring accurate usage data and improving your website experience.

Lets us tailor your digital ads to match your interests, making them more relevant and useful to you.

Advertising Storage

Stores information for better-targeted advertising, enhancing your online ad experience.

Personalization Storage

Permits storing data to personalize content and ads across Google services based on user behavior, enhancing overall user experience.

Advertising Personalization

Allows for content and ad personalization across Google services based on user behavior. This consent enhances user experiences.

Enables personalizing ads based on user data and interactions, allowing for more relevant advertising experiences across Google services.

Receive more relevant advertisements by sharing your interests and behavior with our trusted advertising partners.

Enables better ad targeting and measurement on Meta platforms, making ads you see more relevant.

Allows for improved ad effectiveness and measurement through Meta’s Conversions API, ensuring privacy-compliant data sharing.

LinkedIn Insights

Tracks conversions, retargeting, and web analytics for LinkedIn ad campaigns, enhancing ad relevance and performance.

LinkedIn CAPI

Enhances LinkedIn advertising through server-side event tracking, offering more accurate measurement and personalization.

Google Ads Tag

Tracks ad performance and user engagement, helping deliver ads that are most useful to you.

Share Knowledge, Get Respect!

or copy link

Cite according to academic standards

Simply copy and paste the text below into your bibliographic reference list, onto your blog, or anywhere else. You can also just hyperlink to this page.

New to UX Design? We’re Giving You a Free ebook!

The Basics of User Experience Design

Download our free ebook The Basics of User Experience Design to learn about core concepts of UX design.

In 9 chapters, we’ll cover: conducting user interviews, design thinking, interaction design, mobile UX design, usability, UX research, and many more!

All Subjects

Data representation

In data visualization.

Data representation refers to the methods and formats used to visually depict information, making complex datasets more understandable and accessible. It involves the use of various visual forms, such as charts, graphs, and tables, to communicate data insights effectively. This concept is crucial for identifying patterns, trends, and correlations within data, enhancing decision-making processes.

congrats on reading the definition of data representation . now let's actually learn it.

5 Must Know Facts For Your Next Test

  • Data representation is essential for summarizing large datasets into meaningful visuals that convey key insights.
  • Heatmaps are particularly effective for displaying data density and identifying hotspots within datasets.
  • Correlation matrices help visualize relationships between multiple variables, enabling easier analysis of dependencies.
  • Effective data representation can reveal trends that might be obscured in raw data formats.
  • Choosing the right type of visualization is critical; different formats can highlight different aspects of the data.

Review Questions

  • Data representation enhances understanding by transforming complex datasets into visual formats that are easier to interpret. By using charts, graphs, and heatmaps, users can quickly identify patterns, trends, and anomalies in the data that may not be apparent when reviewing raw numbers. This visual approach aids in effective communication of insights to a wider audience.
  • Heatmaps and correlation matrices serve different purposes in data representation. Heatmaps visually display the magnitude or intensity of data points using color gradients, making them ideal for spotting areas of high activity or density. In contrast, correlation matrices focus on illustrating the relationships between multiple variables using numerical correlation coefficients, which help in understanding how variables interact with one another.
  • Choosing an appropriate data representation method significantly impacts decision-making processes by influencing how well information is conveyed. A well-chosen visualization can clarify complex insights and support informed decisions, while a poor choice can lead to misunderstandings or missed opportunities. The right visual tools can highlight critical trends and relationships that guide strategic planning, ultimately leading to better outcomes for organizations.

Related terms

Data visualization : The practice of creating visual representations of data to communicate information clearly and efficiently.

Correlation matrix : A table that shows the correlation coefficients between multiple variables, helping to identify relationships and dependencies.

Heatmap : A graphical representation of data where values are depicted by color gradients, making it easy to visualize intensity or magnitude.

" Data representation " also found in:

Subjects ( 12 ).

  • AP Human Geography
  • Big Data Analytics and Visualization
  • Computer Vision and Image Processing
  • Data Visualization for Business
  • Formal Language Theory
  • Geometric Algebra
  • Introduction to Chemical Engineering
  • Linear Algebra for Data Science
  • Multiphase Flow Modeling
  • Numerical Analysis I
  • Programming for Mathematical Applications
  • Thinking Like a Mathematician

© 2024 Fiveable Inc. All rights reserved.

Ap® and sat® are trademarks registered by the college board, which is not affiliated with, and does not endorse this website..

What Is Data Visualization: Brief Theory, Useful Tips and Awesome Examples

  • Share on Facebook
  • Share on Twitter

By Al Boicheva

in Insights , Inspiration

4 years ago

Viewed 11,902 times

Spread the word about this article:

What Is Data Visualization Brief Theory, Useful Tips and Awesome Examples

Updated: June 23, 2022

To create data visualization in order to present your data is no longer just a nice to have skill. Now, the skill to effectively sort and communicate your data through charts is a must-have for any business in any field that deals with data. Data visualization helps businesses quickly make sense of complex data and start making decisions based on that data. This is why today we’ll talk about what is data visualization. We’ll discuss how and why does it work, what type of charts to choose in what cases, how to create effective charts, and, of course, end with beautiful examples.

So let’s jump right in. As usual, don’t hesitate to fast-travel to a particular section of your interest.

Article overview: 1. What Does Data Visualization Mean? 2. How Does it Work? 3. When to Use it? 4. Why Use it? 5. Types of Data Visualization 6. Data Visualization VS Infographics: 5 Main Differences 7. How to Create Effective Data Visualization?: 5 Useful Tips 8. Examples of Data Visualization

1. What is Data Visualization?

Data Visualization is a graphic representation of data that aims to communicate numerous heavy data in an efficient way that is easier to grasp and understand . In a way, data visualization is the mapping between the original data and graphic elements that determine how the attributes of these elements vary. The visualization is usually made by the use of charts, lines, or points, bars, and maps.

  • Data Viz is a branch of Descriptive statistics but it requires both design, computer, and statistical skills.
  • Aesthetics and functionality go hand in hand to communicate complex statistics in an intuitive way.
  • Data Viz tools and technologies are essential for making data-driven decisions.
  • It’s a fine balance between form and functionality.
  • Every STEM field benefits from understanding data.

2. How Does it Work?

If we can see it, our brains can internalize and reflect on it. This is why it’s much easier and more effective to make sense of a chart and see trends than to read a massive document that would take a lot of time and focus to rationalize. We wouldn’t want to repeat the cliche that humans are visual creatures, but it’s a fact that visualization is much more effective and comprehensive.

In a way, we can say that data Viz is a form of storytelling with the purpose to help us make decisions based on data. Such data might include:

  • Tracking sales
  • Identifying trends
  • Identifying changes
  • Monitoring goals
  • Monitoring results
  • Combining data

3. When to Use it?

Data visualization is useful for companies that deal with lots of data on a daily basis. It’s essential to have your data and trends instantly visible. Better than scrolling through colossal spreadsheets. When the trends stand out instantly this also helps your clients or viewers to understand them instead of getting lost in the clutter of numbers.

With that being said, Data Viz is suitable for:

  • Annual reports
  • Presentations
  • Social media micronarratives
  • Informational brochures
  • Trend-trafficking
  • Candlestick chart for financial analysis
  • Determining routes

Common cases when data visualization sees use are in sales, marketing, healthcare, science, finances, politics, and logistics.

4. Why Use it?

Short answer: decision making. Data Visualization comes with the undeniable benefits of quickly recognizing patterns and interpret data. More specifically, it is an invaluable tool to determine the following cases.

  • Identifying correlations between the relationship of variables.
  • Getting market insights about audience behavior.
  • Determining value vs risk metrics.
  • Monitoring trends over time.
  • Examining rates and potential through frequency.
  • Ability to react to changes.

5. Types of Data Visualization

As you probably already guessed, Data Viz is much more than simple pie charts and graphs styled in a visually appealing way. The methods that this branch uses to visualize statistics include a series of effective types.

Map visualization is a great method to analyze and display geographically related information and present it accurately via maps. This intuitive way aims to distribute data by region. Since maps can be 2D or 3D, static or dynamic, there are numerous combinations one can use in order to create a Data Viz map.

COVID-19 Spending Data Visualization POGO by George Railean

The most common ones, however, are:

  • Regional Maps: Classic maps that display countries, cities, or districts. They often represent data in different colors for different characteristics in each region.
  • Line Maps: They usually contain space and time and are ideal for routing, especially for driving or taxi routes in the area due to their analysis of specific scenes.
  • Point Maps: These maps distribute data of geographic information. They are ideal for businesses to pinpoint the exact locations of their buildings in a region.
  • Heat Maps: They indicate the weight of a geographical area based on a specific property. For example, a heat map may distribute the saturation of infected people by area.

Charts present data in the form of graphs, diagrams, and tables. They are often confused with graphs since graphs are indeed a subcategory of charts. However, there is a small difference: graphs show the mathematical relationship between groups of data and is only one of the chart methods to represent data.

Gluten in America - chart data visualization

Infographic Data Visualization by Madeline VanRemmen

With that out of the way, let’s talk about the most basic types of charts in data visualization.

Finance Statistics - Bar Graph visualization

They use a series of bars that illustrate data development.  They are ideal for lighter data and follow trends of no more than three variables or else, the bars become cluttered and hard to comprehend. Ideal for year-on-year comparisons and monthly breakdowns.

Pie chart visualization type

These familiar circular graphs divide data into portions. The bigger the slice, the bigger the portion. They are ideal for depicting sections of a whole and their sum must always be 100%. Avoid pie charts when you need to show data development over time or lack a value for any of the portions. Doughnut charts have the same use as pie charts.

Line graph - common visualization type

They use a line or more than one lines that show development over time. It allows tracking multiple variables at the same time. A great example is tracking product sales by a brand over the years. Area charts have the same use as line charts.

Scatter Plot

Scatter Plot - data visualization idea

These charts allow you to see patterns through data visualization. They have an x-axis and a y-axis for two different values. For example, if your x-axis contains information about car prices while the y-axis is about salaries, the positive or negative relationship will tell you about what a person’s car tells about their salary.

Unlike the charts we just discussed, tables show data in almost a raw format. They are ideal when your data is hard to present visually and aim to show specific numerical data that one is supposed to read rather than visualize.

Creative data table visualization

Data Visualisation | To bee or not to bee by Aishwarya Anand Singh

For example, charts are perfect to display data about a particular illness over a time period in a particular area, but a table comes to better use when you also need to understand specifics such as causes, outcomes, relapses, a period of treatment, and so on.

6. Data Visualization VS Infographics

5 main differences.

They are not that different as both visually represent data. It is often you search for infographics and find images titled Data Visualization and the other way around. In many cases, however, these titles aren’t misleading. Why is that?

  • Data visualization is made of just one element. It could be a map, a chart, or a table. Infographics , on the other hand, often include multiple Data Viz elements.
  • Unlike data visualizations that can be simple or extremely complex and heavy, infographics are simple and target wider audiences. The latter is usually comprehensible even to people outside of the field of research the infographic represents.
  • Interestingly enough, data Viz doesn’t offer narratives and conclusions, it’s a tool and basis for reaching those. While infographics, in most cases offer a story and a narrative. For example, a data visualization map may have the title “Air pollution saturation by region”, while an infographic with the same data would go “Areas A and B are the most polluted in Country C”.
  • Data visualizations can be made in Excel or use other tools that automatically generate the design unless they are set for presentation or publishing. The aesthetics of infographics , however, are of great importance and the designs must be appealing to wider audiences.
  • In terms of interaction, data visualizations often offer interactive charts, especially in an online form. Infographics, on the other hand, rarely have interaction and are usually static images.

While on topic, you could also be interested to check out these 50 engaging infographic examples that make complex data look great.

7. Tips to Create Effective Data Visualization

The process is naturally similar to creating Infographics and it revolves around understanding your data and audience. To be more precise, these are the main steps and best practices when it comes to preparing an effective visualization of data for your viewers to instantly understand.

1. Do Your Homework

Preparation is half the work already done. Before you even start visualizing data, you have to be sure you understand that data to the last detail.

Knowing your audience is undeniable another important part of the homework, as different audiences process information differently. Who are the people you’re visualizing data for? How do they process visual data? Is it enough to hand them a single pie chart or you’ll need a more in-depth visual report?

The third part of preparing is to determine exactly what you want to communicate to the audience. What kind of information you’re visualizing and does it reflect your goal?

And last, think about how much data you’ll be working with and take it into account.

2. Choose the Right Type of Chart

In a previous section, we listed the basic chart types that find use in data visualization. To determine best which one suits your work, there are a few things to consider.

  • How many variables will you have in a chart?
  • How many items will you place for each of your variables?
  • What will be the relation between the values (time period, comparison, distributions, etc.)

With that being said, a pie chart would be ideal if you need to present what portions of a whole takes each item. For example, you can use it to showcase what percent of the market share takes a particular product. Pie charts, however, are unsuitable for distributions, comparisons, and following trends through time periods. Bar graphs, scatter plots,s and line graphs are much more effective in those cases.

Another example is how to use time in your charts. It’s way more accurate to use a horizontal axis because time should run left to right. It’s way more visually intuitive.

3. Sort your Data

Start with removing every piece of data that does not add value and is basically excess for the chart. Sometimes, you have to work with a huge amount of data which will inevitably make your chart pretty complex and hard to read. Don’t hesitate to split your information into two or more charts. If that won’t work for you, you could use highlights or change the entire type of chart with something that would fit better.

Tip: When you use bar charts and columns for comparison, sort the information in an ascending or a descending way by value instead of alphabetical order.

4. Use Colors to Your Advantage

In every form of visualization, colors are your best friend and the most powerful tool. They create contrasts, accents, and emphasis and lead the eye intuitively. Even here, color theory is important.

When you design your chart, make sure you don’t use more than 5 or 6 colors. Anything more than that will make your graph overwhelming and hard to read for your viewers. However, color intensity is a different thing that you can use to your advantage. For example, when you compare the same concept in different periods of time, you could sort your data from the lightest shade of your chosen color to its darker one. It creates a strong visual progression, proper to your timeline.

Things to consider when you choose colors:

  • Different colors for different categories.
  • A consistent color palette for all charts in a series that you will later compare.
  • It’s appropriate to use color blind-friendly palettes.

5. Get Inspired

Always put your inspiration to work when you want to be at the top of your game. Look through examples, infographics, and other people’s work and see what works best for each type of data you need to implement.

This Twitter account Data Visualization Society is a great way to start. In the meantime, we’ll also handpick some amazing examples that will get you in the mood to start creating the visuals for your data.

8. Examples for Data Visualization

As another art form, Data Viz is a fertile ground for some amazing well-designed graphs that prove that data is beautiful. Now let’s check out some.

Dark Souls III Experience Data

We start with Meng Hsiao Wei’s personal project presenting his experience with playing Dark Souls 3. It’s a perfect example that infographics and data visualization are tools for personal designs as well. The research is pretty massive yet very professionally sorted into different types of charts for the different concepts. All data visualizations are made with the same color palette and look great in infographics.

Data of My Dark Souls 3 example

My dark souls 3 playing data by Meng Hsiao Wei

Greatest Movies of all Time

Katie Silver has compiled a list of the 100 greatest movies of all time based on critics and crowd reviews. The visualization shows key data points for every movie such as year of release, oscar nominations and wins, budget, gross, IMDB score, genre, filming location, setting of the film, and production studio. All movies are ordered by the release date.

Greatest Movies visualization chart

100 Greatest Movies Data Visualization by Katie Silver

The Most Violent Cities

Federica Fragapane shows data for the 50 most violent cities in the world in 2017. The items are arranged on a vertical axis based on population and ordered along the horizontal axis according to the homicide rate.

The Most Violent Cities example

The Most Violent Cities by Federica Fragapane

Family Businesses as Data

These data visualizations and illustrations were made by Valerio Pellegrini for Perspectives Magazine. They show a pie chart with sector breakdown as well as a scatter plot for contribution for employment.

Family Businesses as Data Visual

PERSPECTIVES MAGAZINE – Family Businesses by Valerio Pellegrini

Orbit Map of the Solar System

The map shows data on the orbits of more than 18000 asteroids in the solar system. Each asteroid is shown at its position on New Years’ Eve 1999, colored by type of asteroid.

Orbit Map of the Solar System graphic

An Orbit Map of the Solar System by Eleanor Lutz

The Semantics Of Headlines

Katja Flükiger has a take on how headlines tell the story. The data visualization aims to communicate how much is the selling influencing the telling. The project was completed at Maryland Institute College of Art to visualize references to immigration and color-coding the value judgments implied by word choice and context.

The Semantics Of Headlines graph

The Semantics of Headlines by Katja Flükiger

Moon and Earthquakes

This data visualization works on answering whether the moon is responsible for earthquakes. The chart features the time and intensity of earthquakes in response to the phase and orbit location of the moon.

Moon and Earthquakes statistics visual

Moon and Earthquakes by Aishwarya Anand Singh

Dawn of the Nanosats

The visualization shows the satellites launched from 2003 to 2015. The graph represents the type of institutions focused on projects as well as the nations that financed them. On the left, it is shown the number of launches per year and satellite applications.

Dawn of the Nanosats visualization

WIRED UK – Dawn of the by Nanosats by Valerio Pellegrini

Final Words

Data visualization is not only a form of science but also a form of art. Its purpose is to help businesses in any field quickly make sense of complex data and start making decisions based on that data. To make your graphs efficient and easy to read, it’s all about knowing your data and audience. This way you’ll be able to choose the right type of chart and use visual techniques to your advantage.

You may also be interested in some of these related articles:

  • Infographics for Marketing: How to Grab and Hold the Attention
  • 12 Animated Infographics That Will Engage Your Mind from Start to Finish
  • 50 Engaging Infographic Examples That Make Complex Ideas Look Great
  • Good Color Combinations That Go Beyond Trends: Inspirational Examples and Ideas

definition data representation

Add some character to your visuals

Cartoon Characters, Design Bundles, Illustrations, Backgrounds and more...

Like us on Facebook

Subscribe to our newsletter

Be the first to know what’s new in the world of graphic design and illustrations.

  • [email protected]

Browse High Quality Vector Graphics

E.g.: businessman, lion, girl…

Related Articles

10 of the best infographic designs for 2017, 6 trends for the classrooms of the future: what will change, top adobe photoshop alternatives in 2022, the best image formats to use in 2021, 21 most famous brand mascot designs of all time, check out our infographics bundle with 500+ infographic templates:, enjoyed this article.

Don’t forget to share!

  • Comments (2)

definition data representation

Al Boicheva

Al is an illustrator at GraphicMama with out-of-the-box thinking and a passion for anything creative. In her free time, you will see her drooling over tattoo art, Manga, and horror movies.

definition data representation

Thousands of vector graphics for your projects.

Hey! You made it all the way to the bottom!

Here are some other articles we think you may like:

How to Find the Right Website Design Company for Your Project?

How to Find the Right Website Design Company for Your Project?

by Lyudmil Enchev

30 Inspiring UX Design Examples For Your Next Vision in 2022

30 Inspiring UX Design Examples For Your Next Vision in 2022

33 Modern Clay Design Examples

Inspiration

33 modern clay design examples: digital & real, looking for design bundles or cartoon characters.

A source of high-quality vector graphics offering a huge variety of premade character designs, graphic design bundles, Adobe Character Animator puppets, and more.

definition data representation

Data representation 1: Introduction

This course investigates how systems software works: what makes programs work fast or slow, and how properties of the machines we program impact the programs we write. We discuss both general ideas and specific tools, and take an experimental approach.

Textbook readings

  • How do computers represent different kinds of information?
  • How do data representation choices impact performance and correctness?
  • What kind of language is understood by computer processors?
  • How is code you write translated to code a processor runs?
  • How do hardware and software defend against bugs and attacks?
  • How are operating systems interfaces implemented?
  • What kinds of computer data storage are available, and how do they perform?
  • How can we improve the performance of a system that stores data?
  • How can programs on the same computer cooperate and interact?
  • What kinds of operating systems interfaces are useful?
  • How can a single program safely use multiple processors?
  • How can multiple computers safely interact over a network?
  • Six problem sets
  • Midterm and final
  • Starting mid-next week
  • Attendance checked for simultaneously-enrolled students
  • Rough breakdown: >50% assignments, <35% tests, 15% participation
  • Course grading: A means mastery

Collaboration

Discussion, collaboration, and the exchange of ideas are essential to doing academic work, and to engineering. You are encouraged to consult with your classmates as you work on problem sets. You are welcome to discuss general strategies for solutions as well as specific bugs and code structure questions, and to use Internet resources for general information.

However, the work you turn in must be your own—the result of your own efforts. You should understand your code well enough that you could replicate your solution from scratch, without collaboration.

In addition, you must cite any books, articles, online resources, and so forth that helped you with your work, using appropriate citation practices; and you must list the names of students with whom you have collaborated on problem sets and briefly describe how you collaborated. (You do not need to list course staff.)

On our programming language

We use the C++ programming language in this class.

C++ is a boring, old, and unsafe programming language, but boring languages are underrated . C++ offers several important advantages for this class, including ubiquitous availability, good tooling, the ability to demonstrate impactful kinds of errors that you should understand, and a good standard library of data structures.

Pset 0 links to several C++ tutorials and references, and to a textbook.

Each program runs in a private data storage space. This is called its memory . The memory “remembers” the data it stores.

Programs work by manipulating values . Different programming languages have different conceptions of value; in C++, the primitive values are integers, like 12 or -100; floating-point numbers, like 1.02; and pointers , which are references to other objects.

An object is a region of memory that contains a value. (The C++ standard specifically says “a region of data storage in the execution environment, the contents of which can represent values”.)

Objects, values, and variables

Which are the objects? Which are the values?

Variables generally correspond to objects, and here there are three objects, one for each variable i1 , i2 , and i3 . The compiler and operating system associate the names with their corresponding objects. There are three values, too, one used to initialize each object: 61 , 62 , and 63 . However, there are other values—for instance, each argument to the printf calls is a value.

What does the program print?

i1: 61 i2: 62 i3: 63

C and C++ pointer types allow programs to access objects indirectly. A pointer value is the address of another object. For instance, in this program, the variable i4 holds a pointer to the object named by i3 :

There are four objects, corresponding to variables i1 through i4 . Note that the i4 object holds a pointer value, not an integer. There are also four values: 61 , 62 , 63 , and the expression &i3 (the address of i3 ). Note that there are three integer values, but four values overall.

What does this program print?

i1: 61 i2: 62 i3: 63 value pointed to by i4: 63

Here, the expressions i3 and *i4 refer to exactly the same object. Any modification to i3 can be observed through *i4 and vice versa. We say that i3 and *i4 are aliases : different names for the same object.

We now use hexdump_object , a helper function declared in our hexdump.hh helper file , to examine both the contents and the addresses of these objects.

Exactly what is printed will vary between operating systems and compilers. In Docker in class, on my Apple-silicon Macbook, we saw:

But on an Intel-based Amazon EC2 native Linux machine:

The data bytes look similar—identical for i1 through i3 —but the addresses vary.

But on Intel Mac OS X: 103c63020 3d 00 00 00 |=...| 103c5ef60 3e 00 00 00 |>...| 7ffeebfa4abc 3f 00 00 00 |?...| 7ffeebfa4ab0 bc 4a fa eb fe 7f 00 00 |.J......| And on Docker on an Intel Mac: 56499f239010 3d 00 00 00 |=...| 56499f23701c 3e 00 00 00 |>...| 7fffebf8b19c 3f 00 00 00 |?...| 7fffebf8b1a0 9c b1 f8 eb ff 7f 00 00 |........|

A hexdump printout shows the following information on each line.

  • An address , like 4000004010 . This is a hexadecimal (base-16) number indicating the value of the address of the object. A line contains one to sixteen bytes of memory starting at this address.
  • The contents of memory starting at the given address, such as 3d 00 00 00 . Memory is printed as a sequence of bytes , which are 8-bit numbers between 0 and 255. All modern computers organize their memory in units of 8-bit bytes.
  • A textual representation of the memory contents, such as |=...| . This is useful when examining memory that contains textual data, and random garbage otherwise.

Dynamic allocation

Must every data object be given a name? No! In C++, the new operator allocates a brand-new object with no variable name. (In C, the malloc function does the same thing.) The C++ expression new T returns a pointer to a brand-new, never-before-seen object of type T . For instance:

This prints something like

The new int{64} expression allocates a fresh object with no name of its own, though it can be located by following the i4 pointer.

What do you notice about the addresses of these different objects?

  • i3 and i4 , which are objects corresponding to variables declared local to main , are located very close to one another. In fact they are just 4 bytes part: i3 directly abuts i4 . Their addresses are quite high. In native Linux, in fact, their addresses are close to 2 47 !
  • i1 and i2 are at much lower addresses, and they do not abut. i2 ’s location is below i1 , and about 0x2000 bytes away.
  • The anonymous storage allocated by new int is located between i1 / i2 and i3 / i4 .

Although the values may differ on other operating systems, you’ll see qualitatively similar results wherever you run ./objects .

What’s happening is that the operating system and compiler have located different kinds of object in different broad regions of memory. These regions are called segments , and they are important because objects’ different storage characteristics benefit from different treatment.

i2 , the const int global object, has the smallest address. It is in the code or text segment, which is also used for read-only global data. The operating system and hardware ensure that data in this segment is not changed during the lifetime of the program. Any attempt to modify data in the code segment will cause a crash.

i1 , the int global object, has the next highest address. It is in the data segment, which holds modifiable global data. This segment keeps the same size as the program runs.

After a jump, the anonymous new int object pointed to by i4 has the next highest address. This is the heap segment, which holds dynamically allocated data. This segment can grow as the program runs; it typically grows towards higher addresses.

After a larger jump, the i3 and i4 objects have the highest addresses. They are in the stack segment, which holds local variables. This segment can also grow as the program runs, especially as functions call other functions; in most processors it grows down , from higher addresses to lower addresses.

Experimenting with the stack

How can we tell that the stack grows down? Do all functions share a single stack? This program uses a recursive function to test. Try running it; what do you see?

Saigon Technology

What is Data Representation in the Software Development Process?

definition data representation

Data representation is an important part of the software development process . To create efficient software, developers must have a comprehensive understanding of how data is represented. This article will explore what data representation is, its impact on the development process, and some commonly used representations.

Data representation is the method of storing and accessing data in an application or system, impacting how software developers work with data in the development process. Using it can enhance development times and application efficiency. Various types of representations exist, each possessing distinct benefits and drawbacks.

What are the Types of Data Representation?

There are three main types of data representations. These include: 

  • Database-based
  • Object-oriented

Text-based representation

Text-based representations are the most common type of representation. They use characters to represent items. 

  • Text-based representations are easy to read and understand
  • They can be edited with a text editor, which is a common type of software development tool
  • It is also easy to convert to other formats, such as HTML or XML
  • They can be difficult to parse and process
  • It can take up a lot of space

Database-based representation

Database-based representations store data in tables. Tables are a way of organizing information in rows and columns.

  • They are easy to query and update 
  • They can be used to represent complex data structures
  • They require special software to view and edit
  • It can be slow to access

Object-oriented representations

Object-oriented representations use objects to represent items. Objects are a way of representing information in software development.  

  • They have properties and methods, which are functions that can be performed on the object
  • Object-oriented representations are easy to understand and use
  • They can be reused in other applications.
  • They can be difficult to create
  • It can be difficult to maintain

Concepts of Data Representation

The development process can be broadly divided into two phases: conceptualization and implementation. In the conceptualization phase, the development team decides how the data will be represented in the system. This decision is based on a number of factors, including performance requirements, development time constraints, and future maintenance considerations. The chosen method will significantly impact the software development making process and the final product. This impact is often observable when using custom software development services .

There are two main types of data representation in digital computers: ASCII and Unicode. ASCII (American Standard Code for Information Interchange) is the most common form. It uses a fixed-length code to represent characters, which makes it simple to implement but limited in its ability to represent international character sets. 

On the other hand, Unicode is a newer standard that uses a variable-length code to represent characters. It supports a much wider range of characters than ASCII but is more complex to implement.

The choice can have a significant impact on development time and application performance. In general, using a more complex data representation will result in longer development times but improved performance. For example, using Unicode will usually take longer to develop than using ASCII, but the resulting application will be able to support a wider range of characters.

When selecting a data representation, one must weigh the trade-offs between development time and performance. Typically, a more intricate data representation yields superior performance. Nonetheless, if development time is a priority, opting for a simpler data representation may be optimal.

Why Do We Use Data Representation?

Data representation is used in order to more easily store, organize, and access data within the application. Different methods can be used in order to achieve different development goals. For example, if development time is a priority, a faster method of data representation may be used. If efficiency is the goal, then a more efficient method of data representation may be used.

There are many different methods, each with its own advantages and disadvantages. Some common methods include arrays, linked lists, trees, and hash tables. In the next section, we will discuss some of the most common methods and how they affect software development.

Arrays are a type of data structure that store data in a linear fashion. That is, it is stored in sequential order within the array. Arrays are generally fast to access and update, making them a good choice for development where speed is a priority. However, arrays can be inefficient when it comes to memory usage, as they require a contiguous block of memory in order to store the data.

Linked lists

Linked lists are another type that store data in a linear fashion. However, unlike arrays, linked lists do not require a contiguous block of memory. This can be advantageous when it comes to memory usage, as linked lists can be more efficient than arrays. However, linked lists can be slower to access and update than arrays, making them a less ideal choice for development where speed is a priority.

Trees are a type that store data in a hierarchical fashion. That is, the data is stored in a parent-child relationship within the tree. Trees are generally more efficient than arrays when it comes to memory usage, as they do not require a contiguous block of memory. However, trees can be slower to access and update than arrays, making them a less ideal choice for development where speed is a priority.

Hash tables

Hash tables are a type that store data in an associative fashion. That is, the data is stored in a key-value pair within the hash table. Hash tables are generally fast to access and update, making them a good choice for development where speed is a priority. However, hash tables can be less efficient than arrays when it comes to memory usage, as they require more memory to store the data.

Data representation is a critical part of software development and application development. How data is stored and accessed can have a major impact on development time and application efficiency. Understanding the different methods of data representation is essential for any software developer.

Thanh (Bruce) Pham CEO of Saigon Technology

skype

Table of Contents

Want to start a project?

Our team is ready to implement your ideas. Contact us now to discuss your roadmap!

You may also like

saigon-technology-66.jpg

What is the difference between a PoC, a prototype, and an MVP?

bao00974.jpg

Navigating the Contractual Crossroads: Time and Materials vs Fixed Price

no-code-or-custom-software-development-what-to-choose

No-code or Custom Software Development – What to Choose

As a Leading Vietnam Software Development Outsourcing Company, we dedicate to your success by following our philosophy:

YOUR SUCCESS IS OUR MISSION.

about-us

We use essential cookies to make Venngage work. By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts.

Manage Cookies

Cookies and similar technologies collect certain information about how you’re using our website. Some of them are essential, and without them you wouldn’t be able to use Venngage. But others are optional, and you get to choose whether we use them or not.

Strictly Necessary Cookies

These cookies are always on, as they’re essential for making Venngage work, and making it safe. Without these cookies, services you’ve asked for can’t be provided.

Show cookie providers

  • Google Login

Functionality Cookies

These cookies help us provide enhanced functionality and personalisation, and remember your settings. They may be set by us or by third party providers.

Performance Cookies

These cookies help us analyze how many people are using Venngage, where they come from and how they're using it. If you opt out of these cookies, we can’t get feedback to make Venngage better for you and all our users.

  • Google Analytics

Targeting Cookies

These cookies are set by our advertising partners to track your activity and show you relevant Venngage ads on other sites as you browse the internet.

  • Google Tag Manager

Infographics

  • Daily Infographics
  • Popular Templates
  • Accessibility
  • Graphic Design
  • Graphs and Charts
  • Data Visualization
  • Human Resources
  • Beginner Guides

Blog Graphic Design What is Data Visualization? (Definition, Examples, Best Practices)

What is Data Visualization? (Definition, Examples, Best Practices)

Written by: Midori Nediger Jun 05, 2020

What is Data Visualization Blog Header

Words don’t always paint the clearest picture. Raw data doesn’t always tell the most compelling story. 

The human mind is very receptive to visual information. That’s why data visualization is a powerful tool for communication.    

But if “data visualization” sounds tricky and technical don’t worry—it doesn’t have to be. 

This guide will explain the fundamentals of data visualization in a way that anyone can understand. Included are a ton of examples of different types of data visualizations and when to use them for your reports, presentations, marketing, and more.

Table of Contents

  • What is data visualization?

What is data visualization used for?

Types of data visualizations.

  • How to present data visually  (for businesses, marketers, nonprofits, and education)
  • Data visualization examples

Data visualization is used everywhere. 

Businesses use data visualization for reporting, forecasting, and marketing. 

Persona Marketing Report Template

CREATE THIS REPORT TEMPLATE

Nonprofits use data visualizations to put stories and faces to numbers. 

Gates Foundation Infographic

Source:  Bill and Melinda Gates Foundation

Scholars and scientists use data visualization to illustrate concepts and reinforce their arguments.

Light Reactions Chemistry Concept Map Template

CREATE THIS MIND MAP TEMPLATE

Reporters use data visualization to show trends and contextualize stories. 

Data Visualization Protests Reporter

While data visualizations can make your work more professional, they can also be a lot of fun.

What is data visualization? A simple definition of data visualization:

Data visualization is the visual presentation of data or information. The goal of data visualization is to communicate data or information clearly and effectively to readers. Typically, data is visualized in the form of a chart , infographic , diagram or map. 

The field of data visualization combines both art and data science. While a data visualization can be creative and pleasing to look at, it should also be functional in its visual communication of the data. 

Data Visualization Meme

Data, especially a lot of data, can be difficult to wrap your head around. Data visualization can help both you and your audience interpret and understand data. 

Data visualizations often use elements of visual storytelling to communicate a message supported by the data. 

There are many situations where you would want to present data visually. 

Data visualization can be used for:

  • Making data engaging and easily digestible
  • Identifying trends and outliers within a set of data
  • Telling a story found within the data
  • Reinforcing an argument or opinion
  • Highlighting the important parts of a set of data

Let’s look at some examples for each use case.

1. Make data digestible and easy to understand

Often, a large set of numbers can make us go cross-eyed. It can be difficult to find the significance behind rows of data. 

Data visualization allows us to frame the data differently by using illustrations, charts, descriptive text, and engaging design. Visualization also allows us to group and organize data based on categories and themes, which can make it easier to break down into understandable chunks. 

Related : How to Use Data Visualization in Your Infographics

For example, this infographic breaks down the concept of neuroplasticity in an approachable way:

Neuroplasticity Science Infographic

Source: NICABM

The same goes for complex, specialized concepts. It can often be difficult to break down the information in a way that non-specialists will understand. But an infographic that organizes the information, with visuals, can demystify concepts for novice readers.

Stocks Infographic Template Example

CREATE THIS INFOGRAPHIC TEMPLATE

NEW! Introducing: Marketing Statistics Report 2022

It’s 2022 already. Marketers, are you still using data from pre-COVID times?

Don’t make decisions based on outdated data that no longer applies. It’s time you keep yourself informed of the latest marketing statistics and trends during the past two years, and learn how COVID-19 has affected marketing efforts in different industries — with this FREE marketing statistics report put together by Venngage and HubSpot .

The report uses data gathered from over 100,000 customers of HubSpot CRM. In addition to that, you’ll also know about the trends in using visuals in content marketing and the impacts of the pandemic on visual content, from 200+ marketers all over the world interviewed by Venngage.

marketing statistics report 2022 Venngage Hubspot

GET YOUR FREE COPY

2. Identify trends and outliers

If you were to sift through raw data manually, it could take ages to notice patterns, trends or outlying data. But by using data visualization tools like charts, you can sort through a lot of data quickly. 

Even better, charts enable you to pick up on trends a lot quicker than you would sifting through numbers.

For example, here’s a simple chart generated by Google Search Console that shows the change in Google searches for “toilet paper”. As you can see, in March 2020 there was a huge increase in searches for toilet paper:

SEO Trends 2020 Chart

Source: How to Use SEO Data to Fuel Your Content Marketing Strategy in 2020

This chart shows an outlier in the general trend for toilet paper-related Google searches. The reason for the outlier? The outbreak of COVID-19 in North America. With a simple data visualization, we’ve been able to highlight an outlier and hint at a story behind the data. 

Uploading your data into charts, to create these kinds of visuals is easy. While working on your design in the editor, select a chart from the left panel. Open the chart and find the green IMPORT button under the DATA tab. Then upload the CSV file and your chart automatically visualizes the information. 

June 2020 Updates9

3. Tell a story within the data

Numbers on their own don’t tend to evoke an emotional response. But data visualization can tell a story that gives significance to the data. 

Designers use techniques like color theory , illustrations, design style and visual cues to appeal to the emotions of readers, put faces to numbers, and introduce a narrative to the data. 

Related : How to Tell a Story With Data (A Guide for Beginners)

For example, here’s an infographic created by World Vision. In the infographics, numbers are visualized using illustrations of cups. While comparing numbers might impress readers, reinforcing those numbers with illustrations helps to make an even greater impact. 

World Vision Goat Nonprofit Infographic

Source: World Vision

Meanwhile, this infographic uses data to draw attention to an often overlooked issue:

Coronavirus Impact On Refugees Infographic Venngage

Read More:  The Coronavirus Pandemic and the Refugee Crisis

4. Reinforce an argument or opinion

When it comes to convincing people your opinion is right, they often have to see it to believe it. An effective infographic or chart can make your argument more robust and reinforce your creativity. 

For example, you can use a comparison infographic to compare sides of an argument, different theories, product/service options, pros and cons, and more. Especially if you’re blending data types.

Product Comparison Infographic

5. Highlight an important point in a set of data

Sometimes we use data visualizations to make it easier for readers to explore the data and come to their own conclusions. But often, we use data visualizations to tell a story, make a particular argument, or encourage readers to come to a specific conclusion. 

Designers use visual cues to direct the eye to different places on a page. Visual cues are shapes, symbols, and colors that point to a specific part of the data visualization, or that make a specific part stand out.

For example, in this data visualization, contrasting colors are used to emphasize the difference in the amount of waste sent to landfills versus recycled waste:

Waste Management Infographic Template

Here’s another example. This time, a red circle and an arrow are used to highlight points on the chart where the numbers show a drop: 

Travel Expense Infographic Template

Highlighting specific data points helps your data visualization tell a compelling story.

6. Make books, blog posts, reports and videos more engaging

At Venngage, we use data visualization to make our blog posts more engaging for readers. When we write a blog post or share a post on social media, we like to summarize key points from our content using infographics. 

The added benefit of creating engaging visuals like infographics is that it has enabled our site to be featured in publications like The Wall Street Journal , Mashable , Business Insider , The Huffington Post and more. 

That’s because data visualizations are different from a lot of other types of content people consume on a daily basis. They make your brain work. They combine concrete facts and numbers with impactful visual elements. They make complex concepts easier to grasp. 

Here’s an example of an infographic we made that got a lot of media buzz:

Game of Thrones Infographic

Read the Blog Post: Every Betrayal Ever in Game of Thrones

We created this infographic because a bunch of people on our team are big Game of Thrones fans and we wanted to create a visual that would help other fans follow the show. Because we approached a topic that a lot of people cared about in an original way, the infographic got picked up by a bunch of media sites. 

Whether you’re a website looking to promote your content, a journalist looking for an original angle, or a creative building your portfolio, data visualizations can be an effective way to get people’s attention.

Data visualizations can come in many different forms. People are always coming up with new and creative ways to present data visually. 

Generally speaking, data visualizations usually fall under these main categories:

An infographic is a collection of imagery, charts, and minimal text that gives an easy-to-understand overview of a topic. 

Product Design Process Infographic Template

While infographics can take many forms, they can typically be categorized by these infographic types:

  • Statistical infographics
  • Informational infographics
  • Timeline infographics
  • Process infographics
  • Geographic infographics
  • Comparison infographics
  • Hierarchical infographics
  • List infographics
  • Resume infographics

Read More: What is an Infographic? Examples, Templates & Design Tips

Charts 

In the simplest terms, a chart is a graphical representation of data. Charts use visual symbols like line, bars, dots, slices, and icons to represent data points. 

Some of the most common types of charts are:

  • Bar graphs /charts
  • Line charts
  • Bubble charts
  • Stacked bar charts
  • Word clouds
  • Pictographs
  • Area charts
  • Scatter plot charts
  • Multi-series charts

The question that inevitably follows is: what type of chart should I use to visualize my data? Does it matter?

Short answer: yes, it matters. Choosing a type of chart that doesn’t work with your data can end up misrepresenting and skewing your data. 

For example: if you’ve been in the data viz biz for a while, then you may have heard some of the controversy surrounding pie charts. A rookie mistake that people often make is using a pie chart when a bar chart would work better. 

Pie charts display portions of a whole. A pie chart works when you want to compare proportions that are substantially different. Like this:

Dark Greenhouse Gases Pie Chart Template

CREATE THIS CHART TEMPLATE

But when your proportions are similar, a pie chart can make it difficult to tell which slice is bigger than the other. That’s why, in most other cases, a bar chart is a safer bet.

Green Bar Chart Template

Here is a cheat sheet to help you pick the right type of chart for your data:

How to Pick Charts Infographic Cheat Sheet

Want to make better charts? Make engaging charts with Venngage’s Chart Maker .

Related : How to Choose the Best Types of Charts For Your Data

Similar to a chart, a diagram is a visual representation of information. Diagrams can be both two-dimensional and three-dimensional. 

Some of the most common types of diagrams are:

  • Venn diagrams
  • Tree diagrams
  • SWOT analysis
  • Fishbone diagrams
  • Use case diagrams

Diagrams are used for mapping out processes, helping with decision making, identifying root causes, connecting ideas, and planning out projects.

Root Cause Problem Fishbone Diagram Template

CREATE THIS DIAGRAM TEMPLATE

Want to make a diagram ? Create a Venn diagram and other visuals using our free Venn Diagram Maker .

A map is a visual representation of an area of land. Maps show physical features of land like regions, landscapes, cities, roads, and bodies of water. 

World Map National Geographic

Source: National Geographic

A common type of map you have probably come across in your travels is a choropleth map . Choropleth maps use different shades and colors to indicate average quantities. 

For example, a population density map uses varying shades to show the difference in population numbers from region to region:

US Population Map Template

Create your own map for free with Venngage’s Map Maker .

How to present data visually (data visualization best practices)

While good data visualization will communicate data or information clearly and effectively, bad data visualization will do the opposite. Here are some practical tips for how businesses and organizations can use data visualization to communicate information more effectively. 

Not a designer? No problem. Venngage’s Graph Maker  will help you create better graphs in minutes.

1. Avoid distorting the data

This may be the most important point in this whole blog post. While data visualizations are an opportunity to show off your creative design chops, function should never be sacrificed for fashion. 

The chart styles, colors, shapes, and sizing you use all play a role in how the data is interpreted. If you want to present your data accurately and ethically, then you need to take care to ensure that your data visualization does not present the data falsely. 

There are a number of different ways data can be distorted in a chart. Some common ways data can be distorted are:

  • Making the baselines something other than 0 to make numbers seem bigger or smaller than they are – this is called “truncating” a graph
  • Compressing or expanding the scale of the Y-axis to make a line or bar seem bigger or smaller than it should be
  • Cherry picking data so that only the data points you want to include are on a graph (i.e. only telling part of the story)
  • Using the wrong type of chart, graph or diagram for your data
  • Going against standard, expected data visualization conventions

Because people use data visualizations to reinforce their opinions, you should always read data visualizations with a critical eye. Often enough, writers may be using data visualization to skew the data in a way that supports their opinions, but that may not be entirely truthful.

Misleading Graphs Infographic Template

Read More: 5 Ways Writers Use Graphs To Mislead You

Want to create an engaging line graph? Use Venngage’s Line Graph Maker to create your own in minutes.

2. Avoid cluttering up your design with “chartjunk”

When it comes to best practices for data visualization, we should turn to one of the grandfather’s of data visualization: Edward Tufte. He coined the term “ chartjunk ”, which refers to the use of unnecessary or confusing design elements that skews or obscures the data in a chart. 

Here’s an example of a data visualization that suffers from chartjunk:

Chartjunk Example

Source: ExcelUser

In this example, the image of the coin is distracting for readers trying to interpret the data. Note how the fonts are tiny – almost unreadable. Mistakes like this are common when a designers tries to put style before function. 

Read More : The Worst Infographics of 2020 (With Lessons for 2021)

3. Tell a story with your data

Data visualizations like infographics give you the space to combine data and narrative structure in one page. Visuals like icons and bold fonts let you highlight important statistics and facts.

For example, you could customize this data visualization infographic template to show the benefit of using your product or service (and post it on social media):

Present Data Visually

USE THIS TEMPLATE

  This data visualization relies heavily on text and icons to tell the story of its data:

Workplace Culture Infographic Template

This type of infographic is perfect for those who aren’t as comfortable with charts and graphs. It’s also a great way to showcase original research, get social shares and build brand awareness.

4. Combine different types of data visualizations

While you may choose to keep your data visualization simple, combining multiple types of charts and diagrams can help tell a more rounded story.

Don’t be afraid to combine charts, pictograms and diagrams into one infographic. The result will be a data visualization infographic that is engaging and rich in visual data.

Vintage Agriculture Child Labor Statistics Infographic Template

Design Tip: This data visualization infographic would be perfect for nonprofits to customize and include in an email newsletter to increase awareness (and donations).

Or take this data visualization that also combines multiple types of charts, pictograms, and images to engage readers. It could work well in a presentation or report on customer research, customer service scores, quarterly performance and much more:

Smartphone Applications Infographic Template

Design Tip: This infographic could work well in a presentation or report on customer research, customer service scores, quarterly performance and much more.

Make your own bar graph in minutes with our free Bar Graph Maker .

5. Use icons to emphasize important points

Icons are perfect for attracting the eye when scanning a page. (Remember: use visual cues!)

If there are specific data points that you want readers to pay attention to, placing an icon beside it will make it more noticeable:

Presentation Design Statistical Infographic

Design Tip: This infographic template would work well on social media to encourage shares and brand awareness.

You can also pair icons with headers to indicate the beginning of a new section.

Meanwhile, this infographic uses icons like bullet points to emphasize and illustrate important points. 

Internship Statistics Infographic Template

Design Tip: This infographic would make a great sales piece to promote your course or other service.  

6. Use bold fonts to make text information engaging

A challenge people often face when setting out to visualize information is knowing how much text to include. After all, the point of data visualization is that it presents information visually, rather than a page of text. 

Even if you have a lot of text information, you can still create present data visually. Use bold, interesting fonts to make your data exciting. Just make sure that, above all else, your text is still easy to read.

This data visualization uses different fonts for the headers and body text that are bold but clear. This helps integrate the text into the design and emphasizes particular points:

Dark Child Labor Statistics Infographic Template

Design Tip: Nonprofits could use this data visualization infographic in a newsletter or on social media to build awareness, but any business could use it to explain the need for their product or service. 

As a general rule of thumb, stick to no more than three different font types in one infographic.

This infographic uses one font for headers, another font for body text, and a third font for accent text. 

Read More: How to Choose Fonts For Your Designs (With Examples)

Content Curation Infographic Template

Design Tip: Venngage has a library of fonts to choose from. If you can’t find the icon you’re looking for , you can always request they be added. Our online editor has a chat box with 24/7 customer support.

7. Use colors strategically in your design

In design, colors are as functional as they are fashionable. You can use colors to emphasize points, categorize information, show movement or progression, and more. 

For example, this chart uses color to categorize data:

World Population Infographic Template

Design Tip : This pie chart can actually be customized in many ways. Human resources could provide a monthly update of people hired by department, nonprofits could show a breakdown of how they spent donations and real estate agents could show the average price of homes sold by neighbourhood.

You can also use light colored text and icons on dark backgrounds to make them stand out. Consider the mood that you want to convey with your infographic and pick colors that will reflect that mood. You can also use contrasting colors from your brand color palette.

This infographic template uses a bold combination of pinks and purples to give the data impact:

Beauty Industry Infographic Template

Read More: How to Pick Colors to Captivate Readers and Communicate Effectively

8. Show how parts make up a whole

It can be difficult to break a big topic down into smaller parts. Data visualization can make it a lot easier for people to conceptualize how parts make up a whole.

Using one focus visual, diagram or chart can convey parts of a whole more effectively than a text list can. Look at how this infographic neatly visualizes how marketers use blogging as part of their strategy:

Modern Marketing Statistics Infographic Template

Design Tip: Human resources could use this graphic to show the results of a company survey. Or consultants could promote their services by showing their success rates.

Or look at how this infographic template uses one focus visual to illustrate the nutritional makeup of a banana:

Banana Nutrition Infographic

CREATE THIS FLYER TEMPLATE

9. Focus on one amazing statistic

If you are preparing a presentation, it’s best not to try and cram too many visuals into one slide. Instead, focus on one awe-inspiring statistic and make that the focus of your slide.

Use one focus visual to give the statistic even more impact. Smaller visuals like this are ideal for sharing on social media, like in this example:

Geography Statistical Infographic Template

Design Tip: You can easily swap out the icon above (of Ontario, Canada) using Venngage’s drag-and-drop online editor and its in-editor library of icons. Click on the template above to get started.

This template also focuses on one key statistic and offers some supporting information in the bar on the side:

Travel Statistical Infographic Template

10. Optimize your data visualization for mobile

Complex, information-packed infographics are great for spicing up reports, blog posts, handouts, and more. But they’re not always the best for mobile viewing. 

To optimize your data visualization for mobile viewing, use one focus chart or icon and big, legible font. You can create a series of mobile-optimized infographics to share multiple data points in a super original and attention-grabbing way.

For example, this infographic uses concise text and one chart to cut to the core message behind the data:

Social Media Infographic Example

CREATE THIS SOCIAL MEDIA TEMPLATE

Some amazing data visualization examples

Here are some of the best data visualization examples I’ve come across in my years writing about data viz. 

Evolution of Marketing Infographic

Evolution of Marketing Infographic

Graphic Design Trends Infographic

Graphic Design Trends 2020 Infographic

Stop Shark Finning Nonprofit Infographic

Shark Attack Nonprofit Infographic

Source: Ripetungi

Coronavirus Impact on Environment Data Visualization

Pandemic's Environmental Impact Infographic Template

What Disney Characters Tell Us About Color Theory

Color Psychology of Disney Characters Infographic

World’s Deadliest Animal Infographic

World's Deadliest Animal Gates Foundation Infographic

Source: Bill and Melinda Gates Foundation

The Secret Recipe For a Viral Creepypasta

Creepypasta Infographic

Read More: Creepypasta Study: The Secret Recipe For a Viral Horror Story

The Hero’s Journey Infographic

Hero's Journey Infographic

Read More: What Your 6 Favorite Movies Have in Common

Emotional Self Care Guide Infographic

Emotional Self Care Infographic

Source: Carley Schweet

Want to look at more amazing data visualization? Read More: 50+ Infographic Ideas, Examples & Templates for 2020 (For Marketers, Nonprofits, Schools, Healthcare Workers, and more)

Discover popular designs

definition data representation

Infographic maker

definition data representation

Brochure maker

definition data representation

White paper online

definition data representation

Newsletter creator

definition data representation

Flyer maker

definition data representation

Timeline maker

definition data representation

Letterhead maker

definition data representation

Mind map maker

definition data representation

Ebook maker

Illustration with collage of pictograms of clouds, pie chart, graph pictograms on the following

Data visualization is the representation of data through use of common graphics, such as charts, plots, infographics and even animations. These visual displays of information communicate complex data relationships and data-driven insights in a way that is easy to understand.

Data visualization can be utilized for a variety of purposes, and it’s important to note that is not only reserved for use by data teams. Management also leverages it to convey organizational structure and hierarchy while data analysts and data scientists use it to discover and explain patterns and trends.  Harvard Business Review  (link resides outside ibm.com) categorizes data visualization into four key purposes: idea generation, idea illustration, visual discovery, and everyday dataviz. We’ll delve deeper into these below:

Idea generation

Data visualization is commonly used to spur idea generation across teams. They are frequently leveraged during brainstorming or  Design Thinking  sessions at the start of a project by supporting the collection of different perspectives and highlighting the common concerns of the collective. While these visualizations are usually unpolished and unrefined, they help set the foundation within the project to ensure that the team is aligned on the problem that they’re looking to address for key stakeholders.

Idea illustration

Data visualization for idea illustration assists in conveying an idea, such as a tactic or process. It is commonly used in learning settings, such as tutorials, certification courses, centers of excellence, but it can also be used to represent organization structures or processes, facilitating communication between the right individuals for specific tasks. Project managers frequently use Gantt charts and waterfall charts to illustrate  workflows .  Data modeling  also uses abstraction to represent and better understand data flow within an enterprise’s information system, making it easier for developers, business analysts, data architects, and others to understand the relationships in a database or data warehouse.

Visual discovery

Visual discovery and every day data viz are more closely aligned with data teams. While visual discovery helps data analysts, data scientists, and other data professionals identify patterns and trends within a dataset, every day data viz supports the subsequent storytelling after a new insight has been found.

Data visualization

Data visualization is a critical step in the data science process, helping teams and individuals convey data more effectively to colleagues and decision makers. Teams that manage reporting systems typically leverage defined template views to monitor performance. However, data visualization isn’t limited to performance dashboards. For example, while  text mining  an analyst may use a word cloud to to capture key concepts, trends, and hidden relationships within this unstructured data. Alternatively, they may utilize a graph structure to illustrate relationships between entities in a knowledge graph. There are a number of ways to represent different types of data, and it’s important to remember that it is a skillset that should extend beyond your core analytics team.

Use this model selection framework to choose the most appropriate model while balancing your performance requirements with cost, risks and deployment needs.

Register for the ebook on generative AI

The earliest form of data visualization can be traced back the Egyptians in the pre-17th century, largely used to assist in navigation. As time progressed, people leveraged data visualizations for broader applications, such as in economic, social, health disciplines. Perhaps most notably, Edward Tufte published  The Visual Display of Quantitative Information  (link resides outside ibm.com), which illustrated that individuals could utilize data visualization to present data in a more effective manner. His book continues to stand the test of time, especially as companies turn to dashboards to report their performance metrics in real-time. Dashboards are effective data visualization tools for tracking and visualizing data from multiple data sources, providing visibility into the effects of specific behaviors by a team or an adjacent one on performance. Dashboards include common visualization techniques, such as:

  • Tables: This consists of rows and columns used to compare variables. Tables can show a great deal of information in a structured way, but they can also overwhelm users that are simply looking for high-level trends.
  • Pie charts and stacked bar charts:  These graphs are divided into sections that represent parts of a whole. They provide a simple way to organize data and compare the size of each component to one other.
  • Line charts and area charts:  These visuals show change in one or more quantities by plotting a series of data points over time and are frequently used within predictive analytics. Line graphs utilize lines to demonstrate these changes while area charts connect data points with line segments, stacking variables on top of one another and using color to distinguish between variables.
  • Histograms: This graph plots a distribution of numbers using a bar chart (with no spaces between the bars), representing the quantity of data that falls within a particular range. This visual makes it easy for an end user to identify outliers within a given dataset.
  • Scatter plots: These visuals are beneficial in reveling the relationship between two variables, and they are commonly used within regression data analysis. However, these can sometimes be confused with bubble charts, which are used to visualize three variables via the x-axis, the y-axis, and the size of the bubble.
  • Heat maps:  These graphical representation displays are helpful in visualizing behavioral data by location. This can be a location on a map, or even a webpage.
  • Tree maps, which display hierarchical data as a set of nested shapes, typically rectangles. Treemaps are great for comparing the proportions between categories via their area size.

Access to data visualization tools has never been easier. Open source libraries, such as D3.js, provide a way for analysts to present data in an interactive way, allowing them to engage a broader audience with new data. Some of the most popular open source visualization libraries include:

  • D3.js: It is a front-end JavaScript library for producing dynamic, interactive data visualizations in web browsers.  D3.js  (link resides outside ibm.com) uses HTML, CSS, and SVG to create visual representations of data that can be viewed on any browser. It also provides features for interactions and animations.
  • ECharts:  A powerful charting and visualization library that offers an easy way to add intuitive, interactive, and highly customizable charts to products, research papers, presentations, etc.  Echarts  (link resides outside ibm.com) is based in JavaScript and ZRender, a lightweight canvas library.
  • Vega:   Vega  (link resides outside ibm.com) defines itself as “visualization grammar,” providing support to customize visualizations across large datasets which are accessible from the web.
  • deck.gl: It is part of Uber's open source visualization framework suite.  deck.gl  (link resides outside ibm.com) is a framework, which is used for  exploratory data analysis  on big data. It helps build high-performance GPU-powered visualization on the web.

With so many data visualization tools readily available, there has also been a rise in ineffective information visualization. Visual communication should be simple and deliberate to ensure that your data visualization helps your target audience arrive at your intended insight or conclusion. The following best practices can help ensure your data visualization is useful and clear:

Set the context: It’s important to provide general background information to ground the audience around why this particular data point is important. For example, if e-mail open rates were underperforming, we may want to illustrate how a company’s open rate compares to the overall industry, demonstrating that the company has a problem within this marketing channel. To drive an action, the audience needs to understand how current performance compares to something tangible, like a goal, benchmark, or other key performance indicators (KPIs).

Know your audience(s): Think about who your visualization is designed for and then make sure your data visualization fits their needs. What is that person trying to accomplish? What kind of questions do they care about? Does your visualization address their concerns? You’ll want the data that you provide to motivate people to act within their scope of their role. If you’re unsure if the visualization is clear, present it to one or two people within your target audience to get feedback, allowing you to make additional edits prior to a large presentation.

Choose an effective visual:  Specific visuals are designed for specific types of datasets. For instance, scatter plots display the relationship between two variables well, while line graphs display time series data well. Ensure that the visual actually assists the audience in understanding your main takeaway. Misalignment of charts and data can result in the opposite, confusing your audience further versus providing clarity.

Keep it simple:  Data visualization tools can make it easy to add all sorts of information to your visual. However, just because you can, it doesn’t mean that you should! In data visualization, you want to be very deliberate about the additional information that you add to focus user attention. For example, do you need data labels on every bar in your bar chart? Perhaps you only need one or two to help illustrate your point. Do you need a variety of colors to communicate your idea? Are you using colors that are accessible to a wide range of audiences (e.g. accounting for color blind audiences)? Design your data visualization for maximum impact by eliminating information that may distract your target audience.

An AI-infused integrated planning solution that helps you transcend the limits of manual planning.

Build, run and manage AI models. Prepare data and build models on any cloud using open source code or visual modeling. Predict and optimize your outcomes.

Unlock the value of enterprise data and build an insight-driven organization that delivers business advantage with IBM Consulting.                                   

Your trusted Watson co-pilot for smarter analytics and confident decisions.

Use features within IBM Watson® Studio that help you visualize and gain insights into your data, then cleanse and transform your data to build high-quality predictive models.

Data Refinery makes it easy to explore, prepare, and deliver data that people across your organization can trust.

Learn how to use Apache Superset (a modern, enterprise-ready business intelligence web application) with Netezza database to uncover the story behind the data.

Predict outcomes with flexible AI-infused forecasting and analyze what-if scenarios in real-time. IBM Planning Analytics is an integrated business planning solution that turns raw data into actionable insights. Deploy as you need, on premises or on cloud.

  • Number System and Arithmetic
  • Trigonometry
  • Probability
  • Mensuration
  • Linear Algebra
  • CBSE Class 8 Maths Formulas
  • CBSE Class 9 Maths Formulas
  • CBSE Class 10 Maths Formulas
  • CBSE Class 11 Maths Formulas

What are the different ways of Data Representation?

The process of collecting the data and analyzing that data in large quantity is known as statistics. It is a branch of mathematics trading with the collection, analysis, interpretation, and presentation of numeral facts and figures.

It is a numerical statement that helps us to collect and analyze the data in large quantity the statistics are based on two of its concepts:

  • Statistical Data 
  • Statistical Science

Statistics must be expressed numerically and should be collected systematically.

Data Representation

The word data refers to constituting people, things, events, ideas. It can be a title, an integer, or anycast.  After collecting data the investigator has to condense them in tabular form to study their salient features. Such an arrangement is known as the presentation of data.

It refers to the process of condensing the collected data in a tabular form or graphically. This arrangement of data is known as Data Representation.

The row can be placed in different orders like it can be presented in ascending orders, descending order, or can be presented in alphabetical order. 

Example: Let the marks obtained by 10 students of class V in a class test, out of 50 according to their roll numbers, be: 39, 44, 49, 40, 22, 10, 45, 38, 15, 50 The data in the given form is known as raw data. The above given data can be placed in the serial order as shown below: Roll No. Marks 1 39 2 44 3 49 4 40 5 22 6 10 7 45 8 38 9 14 10 50 Now, if you want to analyse the standard of achievement of the students. If you arrange them in ascending or descending order, it will give you a better picture. Ascending order: 10, 15, 22, 38, 39, 40, 44. 45, 49, 50 Descending order: 50, 49, 45, 44, 40, 39, 38, 22, 15, 10 When the row is placed in ascending or descending order is known as arrayed data.

Types of Graphical Data Representation

Bar chart helps us to represent the collected data visually. The collected data can be visualized horizontally or vertically in a bar chart like amounts and frequency. It can be grouped or single. It helps us in comparing different items. By looking at all the bars, it is easy to say which types in a group of data influence the other.

Now let us understand bar chart by taking this example  Let the marks obtained by 5 students of class V in a class test, out of 10 according to their names, be: 7,8,4,9,6 The data in the given form is known as raw data. The above given data can be placed in the bar chart as shown below: Name Marks Akshay 7 Maya 8 Dhanvi 4 Jaslen 9 Muskan 6

A histogram is the graphical representation of data. It is similar to the appearance of a bar graph but there is a lot of difference between histogram and bar graph because a bar graph helps to measure the frequency of categorical data. A categorical data means it is based on two or more categories like gender, months, etc. Whereas histogram is used for quantitative data.

For example:

The graph which uses lines and points to present the change in time is known as a line graph. Line graphs can be based on the number of animals left on earth, the increasing population of the world day by day, or the increasing or decreasing the number of bitcoins day by day, etc. The line graphs tell us about the changes occurring across the world over time. In a  line graph, we can tell about two or more types of changes occurring around the world.

For Example:

Pie chart is a type of graph that involves a structural graphic representation of numerical proportion. It can be replaced in most cases by other plots like a bar chart, box plot, dot plot, etc. As per the research, it is shown that it is difficult to compare the different sections of a given pie chart, or if it is to compare data across different pie charts.

Frequency Distribution Table

A frequency distribution table is a chart that helps us to summarise the value and the frequency of the chart. This frequency distribution table has two columns, The first column consist of the list of the various outcome in the data, While the second column list the frequency of each outcome of the data. By putting this kind of data into a table it helps us to make it easier to understand and analyze the data. 

For Example: To create a frequency distribution table, we would first need to list all the outcomes in the data. In this example, the results are 0 runs, 1 run, 2 runs, and 3 runs. We would list these numerals in numerical ranking in the foremost queue. Subsequently, we ought to calculate how many times per result happened. They scored 0 runs in the 1st, 4th, 7th, and 8th innings, 1 run in the 2nd, 5th, and the 9th innings, 2 runs in the 6th inning, and 3 runs in the 3rd inning. We set the frequency of each result in the double queue. You can notice that the table is a vastly more useful method to show this data.  Baseball Team Runs Per Inning Number of Runs Frequency           0       4           1        3            2        1            3        1

Sample Questions

Question 1: Considering the school fee submission of 10 students of class 10th is given below:

Muskan  Paid
Kritika Not paid
Anmol Not paid
Raghav Paid
Nitin Paid
Dhanvi Paid
Jasleen Paid
Manas Not paid
Anshul Not paid
Sahil Paid
In order to draw the bar graph for the data above, we prepare the frequency table as given below. Fee submission No. of Students Paid   6 Not paid    4 Now we have to represent the data by using the bar graph. It can be drawn by following the steps given below: Step 1: firstly we have to draw the two axis of the graph X-axis and the Y-axis. The varieties of the data must be put on the X-axis (the horizontal line) and the frequencies of the data must be put on the Y-axis (the vertical line) of the graph. Step 2: After drawing both the axis now we have to give the numeric scale to the Y-axis (the vertical line) of the graph It should be started from zero and ends up with the highest value of the data. Step 3: After the decision of the range at the Y-axis now we have to give it a suitable difference of the numeric scale. Like it can be 0,1,2,3…….or 0,10,20,30 either we can give it a numeric scale like 0,20,40,60… Step 4: Now on the X-axis we have to label it appropriately. Step 5: Now we have to draw the bars according to the data but we have to keep in mind that all the bars should be of the same length and there should be the same distance between each graph

Question 2: Watch the subsequent pie chart that denotes the money spent by Megha at the funfair. The suggested colour indicates the quantity paid for each variety. The total value of the data is 15 and the amount paid on each variety is diagnosed as follows:

Chocolates – 3

Wafers – 3

Toys – 2

Rides – 7

To convert this into pie chart percentage, we apply the formula:  (Frequency/Total Frequency) × 100 Let us convert the above data into a percentage: Amount paid on rides: (7/15) × 100 = 47% Amount paid on toys: (2/15) × 100 = 13% Amount paid on wafers: (3/15) × 100 = 20% Amount paid on chocolates: (3/15) × 100 = 20 %

Question 3: The line graph given below shows how Devdas’s height changes as he grows.

Given below is a line graph showing the height changes in Devdas’s as he grows. Observe the graph and answer the questions below.

definition data representation

(i) What was the height of  Devdas’s at 8 years? Answer: 65 inches (ii) What was the height of  Devdas’s at 6 years? Answer:  50 inches (iii) What was the height of  Devdas’s at 2 years? Answer: 35 inches (iv) How much has  Devdas’s grown from 2 to 8 years? Answer: 30 inches (v) When was  Devdas’s 35 inches tall? Answer: 2 years.

Please Login to comment...

Similar reads.

  • Mathematics
  • School Learning
  • Best Twitch Extensions for 2024: Top Tools for Viewers and Streamers
  • Discord Emojis List 2024: Copy and Paste
  • Best Adblockers for Twitch TV: Enjoy Ad-Free Streaming in 2024
  • PS4 vs. PS5: Which PlayStation Should You Buy in 2024?
  • 10 Best Free VPN Services in 2024

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Logo

06 Mar Data visualization vs. data representation

What’s the difference.

The terms data visualization and data representation can be easy to confuse.

They sound pretty similar, and at first glance, one may find it’s tricky to keep the two straight. And since data is ubiquitous these days, we are seeing more examples of both almost everywhere from our watches and fitness bands to the apps on our phones and dashboards on our computers. 

Both have been employed in insights research and reporting for some time and they both fulfill specific functions. They both sound pretty similar, too, and they do similar things – it’s no wonder how it can be hard keeping data visualization and data representation straight.

So, we’ve created a new downloadable infographic to explain the differences between the two and how they are used.

We’ve been using it around our offices to help our researchers and data professionals explain the styles of data representation or data visualizations we might utilize in our reports. We’ve also been employing it to work with research professionals who are new to the field to help them also become acquainted with the uses and development of both – and now it’s available for you to download for your own use!

Scroll to the bottom of this article to download the infographic right away, or read on to learn more about the differences between data visualization and data representation for market research.

Data visualization crunches numbers

Putting it simply, data visualization is the process of taking information and representing it graphically. Common in insights and market research reporting, data visualization makes it easier to communicate the story in the data.

definition data representation

Data visualizations are developed programmatically; that means they are built through the use of software. Think Google Maps or complex GIS systems – they crunch large data sets through sometimes sophisticated algorithms to find trends and correlations in the data, producing interactive representations that allow one to communicate or understand data more easily.

Common examples of data visualizations include heat maps, streamgraphs and word clouds.

definition data representation

Data representations support data reporting

Sometimes referred to as infographics, data representations can support almost any kind of data reporting. They allow one to drill down to and communicate the most important parts of a data story graphically.

Data representation, infographics, Insightrix

Infographics communicate information creatively and stylistically to engage and create memorable experiences. This makes data representation ideal for executive summaries or to highlight key data points that may not be as well communicated in a data table or chart.

Some ways data representations are used are in timelines, hierarchical representations, flow charts and comparisons.

Want to know about data visualization? Listen to Ep. 14 of Stories of Market Research: The Insightrix Podcast – it’s all about how to use them, best practices on how to build them and more.

Always know which to use and when

Insightrix infographics, Insightrix Research, Stories of Market Research

This rich and engaging chart offers insights into how both visualizations are representations are used and why, as well as the most common forms of both. You can hold onto it to refer to later, or share it to help teach others about infographics and visualizations. Go ahead – put it on your wall and never be unsure which chart or graphic to use to tell your next data story!

Fill out the form below to access your own copy of The Difference Between Data Representation and Data Visualization for Market Research infographic.

Insightrix infographics, Insightrix Research, Stories of Market Research

Want to access the entire infographic? Fill out the form below to receive an email to download your own PDF copy.

What Is Data Visualization and Why Is It Important? A Complete Introduction

They say a picture is worth a thousand words, and this is especially true for data analytics.

Data visualization is all about presenting data in a visual format, using charts, graphs, and maps to tell a meaningful story. It’s a crucial step in the data analysis process—and a technique (or art form!) that all areas of business can benefit from.

In this guide, we’ll tell you everything you need to know about data visualization (also known as data viz). We’ll explain what it is, why it matters, some of the most common types, as well as the tools you can use to create them.

This guide is ideal for anyone who wants to present, communicate, and share data-driven insights.

If you’d like to learn more data analytics skills, try this free data short course .

  • What is data visualization?
  • Why is data visualization important?
  • When should you visualize your data? 
  • Different types of data visualization and when to use them
  • Top data visualization tools
  • Best practices and principles for effective data visualization
  • Getting started with data visualization

So: What is data visualization? Let’s start with a definition.

1. What is data visualization? A definition

Data visualization is the graphical or visual representation of data. It helps to highlight the most useful insights from a dataset, making it easier to spot trends, patterns, outliers, and correlations.

Imagine you’re presented with a spreadsheet containing rows and rows of data. You probably won’t be able to decipher the data without delving into it, and it’s unlikely that you’ll be able to spot trends and patterns at first glance.

Now imagine seeing the same data presented as a bar chart, or on a color-coded map. It’s much easier to see what the data is telling you, right?

That’s the whole point of data visualization. It makes insights visible to the naked eye, so that virtually anyone can see and understand what’s going on. When done well, data visualization tells a story.

This storytelling aspect is crucial as it makes your data actionable. There’s a huge difference between simply having lots of data versus actually understanding how to use it to drive actions and decisions—and data visualization bridges that gap.

There are two broad categories of data visualization: exploration and explanation. Let’s take a look at those now.

What are the two main types of data visualization? Exploration vs. explanation

We’ll look at specific types of data visualization later on, but for now, it’s important to distinguish between exploratory and explanatory data visualization.

In a nutshell, exploratory data visualization helps you figure out what’s in your data, while explanatory visualization helps you to communicate what you’ve found. Exploration takes place while you’re still analyzing the data, while explanation comes towards the end of the process when you’re ready to share your findings.

Exploration

When faced with a new dataset, one of the first things you’ll do is carry out an exploratory data analysis . This is where you investigate the dataset and identify some of its main features, laying the foundation for more thorough analysis.

At this stage, visualizations can make it easier to get a sense of what’s in your dataset and to spot any noteworthy trends or anomalies. Ultimately, you’re getting an initial lay of the land and finding clues as to what the data might be trying to tell you.

Explanation

Once you’ve conducted your analysis and have figured out what the data is telling you, you’ll want to share these insights with others.

These could be key business stakeholders who can take action based on the data, for example, or public audiences who have an interest in your topic area.

Explanatory data visualizations help you tell this story, and it’s up to you to determine which visualizations will help you to do so most effectively. We’ll introduce some of the most common types of data visualization (and when to use them) in section four.

Want to learn more about data visualization, and try your hand at creating visualizations of your own?  Give this free introductory tutorial a go. We’ll show you, step by step, how to create bar charts, line graphs, and more for a real dataset in Google Sheets.

2. Why is data visualization important?

The importance of effective data visualization is rooted in the importance of data analytics in general.

We’re living in an increasingly data-rich world; at the start of 2020, the digital universe comprised approximately 44 zettabytes of data . For perspective, one zettabyte is roughly equal to a trillion gigabytes. By 2025, it’s estimated that around 463 exabytes of data will be created every 24 hours across the globe. An exabyte is equivalent to one billion gigabytes. Basically, we’re producing tons and tons of data all the time.

Data analytics allows us to make sense of (at least some of) that data. From a business perspective, it enables companies to learn from the past and plan ahead for the future. In fields like healthcare, it can help to improve patient care and treatment. In finance and insurance, it can help to assess risk and combat fraudulent activity. Essentially, we need data analytics in order to make smart decisions—and data visualization is a crucial part of that.

Data visualization helps us to understand what certain data is telling us, presenting it in a way that’s accessible to a range of audiences—not just data experts. It’s how you bridge the gap between your expertise as a data analyst or data scientist, and those people who can use or act upon the insights you discover.

A line graph and a bar chart taken from the Fitbit app.

The advantages and benefits of effective data visualization at a glance

Data visualization allows you to:

  • Get an initial understanding of your data by making trends, patterns, and outliers easily visible to the naked eye
  • Comprehend large volumes of data quickly and efficiently
  • Communicate insights and findings to non-data experts, making your data accessible and actionable
  • Tell a meaningful and impactful story, highlighting only the most relevant information for a given context

Now we know what data visualization is and why it matters, let’s take a look at when and why you might need to visualize your data.

3. When should you visualize your data?

Aside from exploratory data visualization which takes place in the early stages, data visualization usually comprises the final step in the data analysis process . To recap, the data analysis process can be set out as follows:

  • Define the question: What problem are you trying to solve?
  • Collect the data: Determine what kind of data you need and where you’ll find it.
  • Clean the data: Remove errors, duplicates, outliers, and unwanted data points—anything that might skew how your data is interpreted. You can learn more about data cleaning (and how to do it) in this guide .
  • Analyze the data: Determine the type of data analysis you need to carry out in order to find the insights you’re looking for.
  • Visualize the data and share your findings: Translate your key insights into visual format (e.g. graphs, charts, or heatmaps) and present them to the relevant audience(s).

Essentially, you visualize your data any time you want to summarize and highlight key findings and share them with others. With that in mind, let’s consider what kinds of insights you can convey with data visualizations.

What is data visualization used for?

Within the broader goal of conveying key insights, different visualizations can be used to tell different stories. Data visualizations can be used to:

  • Convey changes over time: For example, a line graph could be used to present how the value of Bitcoin changed over a certain time period.
  • Determine the frequency of events: You could use a histogram to visualize the frequency distribution of a single event over a certain time period (e.g. number of internet users per year from 2007 to 2021). Learn how to create a histogram in this guide .
  • Highlight interesting relationships or correlations between variables: If you wanted to highlight the relationship between two variables (e.g. marketing spend and revenue, or hours of weekly exercise vs. cardiovascular fitness), you could use a scatter plot to see, at a glance, if one increases as the other decreases (or vice versa).
  • Examine a network: If you want to understand what’s going on within a certain network (for example, your entire customer base), network visualizations can help you to identify (and depict) meaningful connections and clusters within your network of interest.
  • Analyze value and risk: If you want to weigh up value versus risk in order to figure out which opportunities or strategies are worth pursuing, data visualizations—such as a color-coded system—could help you to categorize and identify, at a glance, which items are feasible.

So far, we’ve taken a rather broad, high-level look at data visualization. Now let’s drill down to some specific types of data visualization and when to use them.

An example of data visualization, as seen in the Fitbit app.

4. How to visualize your data: Different types of data visualization (and when to use them)

There are many different options when it comes to visualizing your data. The visualization you choose depends on the type of data you’re working with and what you want to convey or highlight. It’s also important to consider the complexity of your data and how many different variables are involved. Not all types of data visualization lend themselves to elaborate or complex depictions, so it’s important to choose a suitable technique.

Before we explore some of the most common types of data visualization, let’s first introduce five main data visualization categories.

Five data visualization categories

When considering the different types of data viz, it helps to be aware of the different categories that these visualizations may fall into:

  • Temporal data visualizations are linear and one-dimensional. Examples include scatterplots, timelines, and line graphs.
  • Hierarchical visualizations organize groups within larger groups, and are often used to display clusters of information. Examples include tree diagrams, ring charts, and sunburst diagrams.
  • Network visualizations show the relationships and connections between multiple datasets. Examples include matrix charts, word clouds, and node-link diagrams.
  • Multidimensional or 3D visualizations are used to depict two or more variables. Examples include pie charts, Venn diagrams, stacked bar graphs, and histograms.
  • Geospatial visualizations convey various data points in relation to physical, real-world locations (for example, voting patterns across a certain country). Examples include heat maps, cartograms, and density maps.

With those categories in mind, let’s explore some of the most common types of data visualization.

Five common types of data visualization (and when to use them)

In this section, we’ll introduce some useful types of data visualization. We’ll also point you to our more comprehensive guide where you can learn about additional data visualization methods and how to use them.

1. Scatterplots

Scatterplots (or scatter graphs) visualize the relationship between two variables. One variable is shown on the x-axis, and the other on the y-axis, with each data point depicted as a single “dot” or item on the graph. This creates a “scatter” effect, hence the name.

Source: displayr.com

Scatterplots are best used for large datasets when there’s no temporal element. For example, if you wanted to visualize the relationship between a person’s height and weight, or between how many carats a diamond measures and its monetary value, you could easily visualize this using a scatterplot.

It’s important to bear in mind that scatterplots simply describe the correlation between two variables; they don’t infer any kind of cause-and-effect relationship.

2. Bar charts

Bar charts are used to plot categorical data against discrete values.

Categorical data refers to data that is not numeric, and it’s often used to describe certain traits or characteristics. Some examples of categorical data include things like education level (e.g. high school, undergrad, or post-grad) and age group (e.g. under 30, under 40, under 50, or 50 and over).

Discrete values are those which can only take on certain values—there are no “half measures” or “gray areas.” For example, the number of people attending an event would be a discrete variable, as would the number of sales made in a certain time period (think about it: you can’t make “half a sale” or have “half an event attendee.”)

Source: chartio.com

So, with a bar chart, you have your categorical data on the x-axis plotted against your discrete values on the y-axis.

The height of the bars is directly proportional to the values they represent, making it easy to compare your data at a glance.

3. Pie charts

Just like bar charts, pie charts are used to visualize categorical data.

However, while bar charts represent multiple categories of data, pie charts are used to visualize just one single variable broken down into percentages or proportions. A pie chart is essentially a circle divided into different “slices,” with each slice representing the percentage it contributes to the whole.

Thus, the size of each pie slice is proportional to how much it contributes to the whole “pie.”

Imagine you have a class of thirty students and you want to divide them up based on what color t-shirt they’re wearing on a given day.

The possible “slices” are red, green, blue, and yellow, with each color representing 40%, 30%, 25%, and 5% of the class total respectively. You could easily visualize this using a pie chart—and the yellow slice (5%) would be considerably thinner than the red slice (40%)! Pie charts are best suited for data that can be split into a maximum of five or six categories.

4. Network graphs

Not all data is simple enough to be summarized in a bar or pie chart. For those more complex datasets, there are a range of more elaborate data visualizations at your disposal—network graphs being one of them.

Network graphs show how different elements or entities within a network relate to one another, with each element represented by an individual node. These nodes are connected to other, related nodes via lines.

Source: networkofthrones.wordpress.com

Network graphs are great for spotting and representing clusters within a large network of data.

Let’s imagine you have a huge database filled with customers, and you want to segment them into meaningful clusters for marketing purposes. You could use a network graph to draw connections and parallels between all your customers or customer groups.

With any luck, certain clusters and patterns would emerge, giving you a logical means by which to group your audience.

5. Geographical maps

Geo maps are used to visualize the distribution of data in relation to a physical, geographical area.

For example, you could use a color-coded map to see how natural oil reserves are distributed across the world, or to visualize how different states voted in a political election. Maps are an extremely versatile form of data visualization, and are an excellent way of communicating all kinds of location-related data.

Some other types of maps used in data visualization include dot distribution maps (think scatterplots combined with a map), and cartograms which distort the size of geographical areas to proportionally represent a given variable (population density, for example).

Source: pmfias.com

Here, we’ve introduced just a handful of data visualization types. If you want to learn more, check out our complete guide to different types of data visualization and when to use them .

5. Top data visualization tools

When it comes to creating informative, eye-catching visualizations, there are plenty of tools at your disposal.

When choosing a tool, it’s important to consider your needs in terms of the kinds of visualizations you want to create, as well as your own technical expertise; some tools will require coding knowledge, while others are more suited to non-technical users.

In this section, we’ll briefly introduce some of the most popular data visualization tools. If you’re on the market for a data viz tool and want a more thorough comparison, this guide to the seven best data visualization tools will help you. For now, here are our top three data viz tools to get familiar with:

  • Plotly: Open-source software built on Python. Plotly is ideal if you’ve got some coding knowledge and want to create highly customizable visualizations.
  • D3.js: A free, open-source data viz library built using JavaScript. As with Plotly, you’ll need some programming knowledge in order to use this data viz tool.
  • Tableau: Perhaps one of the most popular data analytics tools , Tableau is known for its user-friendliness—you don’t need any coding knowledge to create beautiful visualizations in Tableau. And, unlike some other BI tools, it’s good at handling large volumes of data.

Before deciding on a tool, it’s worth trying out a few options. The good news is that there are plenty of data viz tools on the market— as well as a number of free tools —allowing you to create beautiful and informative visualizations—even if you’re a newcomer to the field.

What are data dashboards?

Dashboards are another useful tool for data tracking and visualization. A data dashboard essentially allows you to keep track of multiple data sources, visualizing them in one single location for easy viewing.

A common example is the Google Analytics dashboard , which displays a whole host of visualizations on one page—a geo map showing where your website visitors are located, for example, or a pie chart showing what percentage of your users access your website using specific devices.

If you want multiple stakeholders to be able to access and view certain data insights, a dashboard can help you to create a single hub with easy-to-understand visualizations.

A snapshot of a data dashboard, taken from Google Analytics.

6. What are some data visualization best practices?

Data visualization truly is an art form—but the goal is always, first and foremost, to provide valuable information and insights.

If you can do this by way of beautiful visualizations, you’re onto a winner. So, when creating data visualizations, it’s important to adhere to certain best practices.

These will help you strike the right balance, keeping your audience engaged and informed. Here’s how to excel at data visualization.

1. Define a clear purpose

Like any data analytics project, it’s important to define a clear purpose for your data visualizations.

What are the priorities in terms of what you want to convey and communicate? What should your audience take away from your visualization? It’s essential to have this defined from the outset; that way, you can ensure that you’re only presenting the most valuable information—and giving your audience something they can use and act upon.

2. Know your audience

The purpose of data visualization is to communicate insights to a specific audience, so you’ll want to give some thought to who your audience is and how familiar they are with the information you’re presenting.

What kind of context can you provide around your visualizations in order to help your audience understand them? What types of visualization are likely to be most accessible to this particular group of people? Keep your audience in mind at all times.

3. Keep it simple

When creating visualizations, it’s often the case that less is more.

Ultimately, you want your visualizations to be as digestible as possible, and that means trimming away any unnecessary information while presenting key insights clearly and succinctly. The goal is to keep cognitive load to a minimum—that is, the amount of “brainpower” or mental effort it takes to process information.

Even if the data is complex, your visualizations don’t have to be, so strive for simplicity at all times.

4. Avoid distorting the data

You should strive to present your findings as accurately as possible, so avoid any kind of visual “tricks” that could bias how your data is perceived and interpreted.

Think about the labels you use, as well as how you scale your visualizations. For example, things like “blowing up” certain data segments to make them appear more significant, or starting your graph axis on a number other than zero are both bad practices which could mislead your audience. Prioritize integrity and accuracy!

5. Ensure your visualizations are inclusive

Last but by no means least, make sure that your visualizations are accessible and inclusive.

Think about how colors, contrasts, font sizes, and the use of white space affect the readability of your visualization. Is it easy for your users to distinguish between the data and see what’s going on, regardless of whether they have twenty-twenty vision or a visual impairment?

Inclusivity and accessibility are central to good data visualization, so don’t overlook this step.

7. Getting started with data visualization

By now, you hopefully have a good understanding of what data visualization is and why it matters.

Of course, the best way to get to grips with it is to see it in action. Check out our round-up of some of the most beautiful and informative data visualization examples from around the web.

Keen to give it a go yourself? Why not download a free dataset and see what you can do! If you’d like to learn it more, then check out this list of data visualization courses out there to try.

Data visualization is an excellent skill to have, whether you’re forging a career in the data industry or just want to share valuable insights with your colleagues. If you are pursuing a career as a data analyst or data scientist, be sure to include data visualizations in your data portfolio —it’s something that employers will be looking out for.

CareerFoundry’s  Data Visualizations with Python course is designed to ease you into this vital area of data analytics. You can take it as a standalone course as well as a specialization within our full Data Analytics Program, you’ll learn and apply the principles of data viz in a real-world project, as well as getting to grips with various data visualization libraries.

Want to learn more? Try your hand at this free, introductory data analytics short course , and check out the following guides:

  • What is data quality and why is it important?
  • What is web scraping? A beginner’s guide
  • An introduction to multivariate analysis

What is Data Visualization? Definition, Examples, Best Practices

This guide provides an introduction to data visualization, including real-world examples, best practices and editable templates.

  • Share on LinkedIn
  • Share through Email
  • Print this page
  • Bookmark this page

Resource Details

June 5, 2020

Data visualization is the visual presentation of data or information. The goal of data visualization is to communicate data or information clearly and effectively to readers. Typically, data is visualized in the form of a chart, infographic, diagram, or map.

The field of data visualization combines both art and data science. While data visualization can be creative and pleasing to look at, it should also be functional in its visual communication of the data.

This resource explains the fundamentals of data visualization, including examples of different types of data visualizations and when and how to use them to illustrate findings and insights.

Do you have feedback on this resource?

Thank you for your feedback as we strive to curate and publish resources to help social impact organizations succeed with data.

Send us a note

Explore More

Related Guides & Resources

Getting started with data visualization.

Visualizing data is one of the most effective ways of communicating data. This can take many forms from live digital data dashboards to static charts shared in social media channels.

Communicating Results: Design your Visualization

Let’s get visual: nonprofit data visualization.

COMMENTS

  1. What is: Data Representation Explained in Detail

    Data representation refers to the methods and techniques used to visually or symbolically depict data. This can include various formats such as graphs, charts, tables, and diagrams. Effective data representation is crucial for data analysis and data science, as it allows for easier interpretation and communication of complex information. ...

  2. Data Representation: Definition, Types, Examples

    Data Representation in Maths. Definition: After collecting the data, the investigator has to condense them in tabular form to study their salient features.Such an arrangement is known as the presentation of data. Any information gathered may be organised in a frequency distribution table, and then shown using pictographs or bar graphs.

  3. What is Data Representation?

    With 177,855 graduates, the Interaction Design Foundation is the biggest online design school globally. We were founded in 2002. What is Data Representation? A definition and a full list of UX literature that deals with Data Representation, from the world's biggest and most authoritative library of UX design resources.

  4. Data representation

    Data representation refers to the methods and formats used to visually depict information, making complex datasets more understandable and accessible. It involves the use of various visual forms, such as charts, graphs, and tables, to communicate data insights effectively. This concept is crucial for identifying patterns, trends, and correlations within data, enhancing decision-making processes.

  5. Data Representation

    Data Representation. Data representation refers to the way data is structured and formatted for processing and storage, such as using models like event, RDF, and REST API to provide a common format for applications like the Web of Things (WoT). It focuses on integrating multiple simple models to support intelligent interactions and semantic ...

  6. Data Representation

    This guide to data representation covers all the key concepts you need to know to understand the principles of representing data in computer systems. Whether you're a GCSE, IB or A-level computer science student, our guide provides a detailed explanation of how data is represented in binary, hexadecimal, and ASCII formats, as well as the ...

  7. PDF Data Representation

    Data Representation Data Representation Eric Roberts CS 106A February 10, 2016 Claude Shannon Claude Shannon was one of the pioneers who shaped computer science in its early years. In his master's thesis, Shannon showed how it was possible to use Boolean logic and switching circuits to perform arithmetic calculations. That work led

  8. What Is Data Visualization: Definition, Types, Tips, and Examples

    Data Visualization is a graphic representation of data that aims to communicate numerous heavy data in an efficient way that is easier to grasp and understand. In a way, data visualization is the mapping between the original data and graphic elements that determine how the attributes of these elements vary. The visualization is usually made by ...

  9. Data representation 1: Introduction

    This is a hexadecimal (base-16) number indicating the value of the address of the object. A line contains one to sixteen bytes of memory starting at this address. The contents of memory starting at the given address, such as 3d 00 00 00. Memory is printed as a sequence of bytes, which are 8-bit numbers between 0 and 255.

  10. What is Data Representation in the Software Development Process?

    Definition. Data representation is the method of storing and accessing data in an application or system, impacting how software developers work with data in the development process. Using it can enhance development times and application efficiency. Various types of representations exist, each possessing distinct benefits and drawbacks.

  11. Data Visualization: Definition, Benefits, and Examples

    Data visualization is the representation of information and data using charts, graphs, maps, and other visual tools. These visualizations allow us to easily understand any patterns, trends, or outliers in a data set. Data visualization also presents data to the general public or specific audiences without technical knowledge in an accessible ...

  12. 2.1: Types of Data Representation

    2.1: Types of Data Representation. Page ID. Two common types of graphic displays are bar charts and histograms. Both bar charts and histograms use vertical or horizontal bars to represent the number of data points in each category or interval. The main difference graphically is that in a bar chart there are spaces between the bars and in a ...

  13. Data and information visualization

    Data and information visualization (data viz/vis or info viz/vis) [2] is the practice of designing and creating easy-to-communicate and easy-to-understand graphic or visual representations of a large amount [3] of complex quantitative and qualitative data and information with the help of static, dynamic or interactive visual items.

  14. What is Data Visualization? (Definition, Examples, Best Practices)

    A simple definition of data visualization: Data visualization is the visual presentation of data or information. The goal of data visualization is to communicate data or information clearly and effectively to readers. Typically, data is visualized in the form of a chart, infographic, diagram or map. The field of data visualization combines both ...

  15. What Is Data Visualization? Definition & Examples

    Data visualization is the graphical representation of information and data. By using v isual elements like charts, graphs, and maps, data visualization tools provide an accessible way to see and understand trends, outliers, and patterns in data. Additionally, it provides an excellent way for employees or business owners to present data to non ...

  16. What Is Data Visualization?

    Data visualization is the representation of data through use of common graphics, such as charts, plots, infographics and even animations. These visual displays of information communicate complex data relationships and data-driven insights in a way that is easy to understand.

  17. What are the different ways of Data Representation?

    Data Representation. The word data refers to constituting people, things, events, ideas. It can be a title, an integer, or anycast. After collecting data the investigator has to condense them in tabular form to study their salient features. Such an arrangement is known as the presentation of data.

  18. Data visualization vs. data representation

    Data visualization crunches numbers. Putting it simply, data visualization is the process of taking information and representing it graphically. Common in insights and market research reporting, data visualization makes it easier to communicate the story in the data. When one is looking at a complex, large and perhaps varied data set, data ...

  19. What Is Data Visualization? A Complete Introductory Guide

    A definition. Data visualization is the graphical or visual representation of data. It helps to highlight the most useful insights from a dataset, making it easier to spot trends, patterns, outliers, and correlations. Imagine you're presented with a spreadsheet containing rows and rows of data.

  20. What is Data Visualization? Definition, Examples, Best Practices

    Overview. Data visualization is the visual presentation of data or information. The goal of data visualization is to communicate data or information clearly and effectively to readers. Typically, data is visualized in the form of a chart, infographic, diagram, or map. The field of data visualization combines both art and data science.

  21. Data (computer science)

    In computer science, data (treated as singular, plural, or as a mass noun) is any sequence of one or more symbols; datum is a single symbol of data. Data requires interpretation to become information. Digital data is data that is represented using the binary number system of ones (1) and zeros (0), instead of analog representation.

  22. Data Organization and Representation

    Data Organization and Representation. Explore different ways of representing, analyzing, and interpreting data, including line plots, frequency tables, cumulative and relative frequency tables, and bar graphs. Learn how to use intervals to describe variation in data. Learn how to determine and understand the median. View Transcript.