The Sourcebook for Teaching Science

  • Sourcebook Home

Science Teaching Series

  • The Sourcebook for Teaching Science
  • Hands-On Physics Activities
  • Hands-On Chemistry Activities

Internet Resources

I. developing scientific literacy.

  • 1 - Building a Scientific Vocabulary
  • 2 - Developing Science Reading Skills
  • 3 - Developing Science Writing Skills
  • 4 - Science, Technology & Society

II. Developing Scientific Reasoning

  • 5 - Employing Scientific Methods
  • 6 - Developing Scientific Reasoning
  • 7 - Thinking Critically & Misconceptions

III. Developing Scientific Understanding

  • 8 - Organizing Science Information
  • 9 - Graphic Oganizers for Science
  • 10 - Learning Science with Analogies
  • 11 - Improving Memory in Science
  • 12 - Structure and Function in Science
  • 13 - Games for Learning Science

IV. Developing Scientific Problem Solving

  • 14 - Science Word Problems
  • 15 - Geometric Principles in Science
  • 16 - Visualizing Problems in Science
  • 17 - Dimensional Analysis
  • 18 - Stoichiometry

V. Developing Scientific Research Skills

  • 19 - Scientific Databases
  • 20 - Graphing & Data Analysis
  • 21 - Mapping & Visualizing Data
  • 22 - Science Inquiry & Research
  • 23 - Science Projects & Fairs

VI. Resources for Teaching Science

  • 24 - Science Curriculum & Instruction
  • 25 - Planning Science Instruction
  • 26 - The Science Laboratory
  • 27 - Science Reference Information

Chapter 7 - Thinking Critically & Resolving Misconceptions

(7.1) critical thinking.

  • Definition of critical thinking
  • Elements of Critical Thinking
  • Topics for Comparison Tables
  • Sample Comparison Table
  • Sudoku puzzles

(7.2) Evaluating Claims

  • Cigarette Ads | Alcohol Ads
  • Media Literarcy Clearinghouse
  • Myth-busters

(7.3) Using a Decision-Making Matrix

(7.4) misconceptions in physics, (7.5) misconceptions in chemistry, (7.6) misconceptions in biology, (7.7) misconceptions in earth and space sciences.

  • Misconceptions in astronomy

Additional Resources

  • Related CSCS activities
  • Chapter 7 (pdf) - (CSUN faculty only)
  • Misconceptions in Math
  • Norman Herr, Ph.D.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Prevent plagiarism. Run a free check.

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved September 9, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Critical Thinking in Reading and Composition

Glossary of Grammatical and Rhetorical Terms

gawrav/Getty Images

  • An Introduction to Punctuation
  • Ph.D., Rhetoric and English, University of Georgia
  • M.A., Modern English and American Literature, University of Leicester
  • B.A., English, State University of New York

Critical thinking is the process of independently analyzing, synthesizing, and evaluating information as a guide to behavior and beliefs.

The American Philosophical Association has defined critical thinking as "the process of purposeful, self-regulatory judgment. The process gives reasoned consideration to evidence , contexts , conceptualizations, methods, and criteria" (1990). Critical thinking is sometimes broadly defined as "thinking about thinking."

Critical thinking skills include the ability to interpret, verify, and reason, all of which involve applying the principles of logic . The process of using critical thinking to guide writing is called critical writing .

Observations

  • " Critical Thinking is essential as a tool of inquiry. As such, Critical Thinking is a liberating force in education and a powerful resource in one’s personal and civic life. While not synonymous with good thinking, Critical Thinking is a pervasive and self-rectifying human phenomenon. The ideal critical thinker is habitually inquisitive, well-informed, trustful of reason, open-minded, flexible, fair-minded in evaluation, honest in facing personal biases, prudent in making judgments, willing to reconsider, clear about issues, orderly in complex matters, diligent in seeking relevant information, reasonable in the selection of criteria, focused in inquiry, and persistent in seeking results which are as precise as the subject and the circumstances of inquiry permit." (American Philosophical Association, "Consensus Statement Regarding Critical Thinking," 1990)
  • Thought and Language "In order to understand reasoning [...], it is necessary to pay careful attention to the relationship between thought and language . The relationship seems to be straightforward: thought is expressed in and through language. But this claim, while true, is an oversimplification. People often fail to say what they mean. Everyone has had the experience of having their \ misunderstood by others. And we all use words not merely to express our thoughts but also to shape them. Developing our critical thinking skills, therefore, requires an understanding of the ways in which words can (and often fail to) express our thoughts." (William Hughes and Jonathan Lavery, Critical Thinking: An Introduction to the Basic Skills , 4th ed. Broadview, 2004)
  • Dispositions That Foster or Impede Critical thinking "Dispositions that foster critical thinking include [a] facility in perceiving irony , ambiguity , and multiplicity of meanings or points of view; the development of open-mindedness, autonomous thought, and reciprocity (Piaget's term for the ability to empathize with other individuals, social groups, nationalities, ideologies, etc.). Dispositions that act as impediments to critical thinking include defense mechanisms (such as absolutism or primary certitude, denial, projection), culturally conditioned assumptions, authoritarianism, egocentrism, and ethnocentrism, rationalization, compartmentalization, stereotyping and prejudice." (Donald Lazere, "Invention, Critical Thinking, and the Analysis of Political Rhetoric." Perspectives on Rhetorical Invention , ed. by Janet M. Atwill and Janice M. Lauer. University of Tennessee Press, 2002)
  • Critical Thinking and Composing - "[T]he most intensive and demanding tool for eliciting sustained critical thought is a well-designed writing assignment on a subject matter problem. The underlying premise is that writing is closely linked with thinking and that in presenting students with significant problems to write about—and in creating an environment that demands their best writing—we can promote their general cognitive and intellectual growth. When we make students struggle with their writing, we are making them struggle with thought itself. Emphasizing writing and critical thinking , therefore, generally increases the academic rigor of a course. Often the struggle of writing, linked as it is to the struggle of thinking and to the growth of a person's intellectual powers, awakens students to the real nature of learning." (John C. Bean,  Engaging Ideas: The Professor's Guide to Integrating Writing, Critical Thinking, and Active Learning in the Classroom , 2nd ed. Wiley, 2011) - "Finding a fresh approach to a writing assignment means that you must see the subject without the blinders of preconception. When people expect to see a thing in a certain way, it usually appears that way, whether or not that is its true image. Similarly, thinking based on prefabricated ideas produces writing that says nothing new, that offers nothing important to the reader. As a writer, you have a responsibility to go beyond the expected views and present your subject so that the reader sees it with fresh eyes. . . . [C]ritical thinking is a fairly systematic method of defining a problem and synthesizing knowledge about it, thereby creating the perspective you need to develop new ideas. . . . " Classical rhetoricians used a series of three questions to help focus an argument . Today these questions can still help writers understand the topic about which they are writing. An sit? (Is the problem a fact?); Quid sit (What is the definition of the problem?); and Quale sit? (What kind of problem is it?). By asking these questions, writers see their subject from many new angles before they begin to narrow the focus to one particular aspect." (Kristin R. Woolever, About Writing: A Rhetoric for Advanced Writers . Wadsworth, 1991)

Logical Fallacies

Ad Misericordiam

Appeal to Authority

Appeal to Force

Appeal to Humor

Appeal to Ignorance

Appeal to the People

Begging the Question

Circular Argument

Complex Question

Contradictory Premises

Dicto Simpliciter , Equivocation

False Analogy

False Dilemma

Gambler's Fallacy

Hasty Generalization

Name-Calling

Non Sequitur

Poisoning the Well

Red Herring

Slippery Slope

Stacking the Deck

  • Stipulative Definitions in English
  • What Is a Synopsis and How Do You Write One?
  • What is Disjunction in Grammar?
  • Definition and Examples of Explication (Analysis)
  • online reading
  • What Does It Mean to Make a Claim During an Argument?
  • Critical Analysis in Composition
  • What is Tu Quoque (Logical Fallacy) in Rhetoric?
  • The Meaning of Innuendo
  • Learn How to Use Extended Definitions in Essays and Speeches
  • Rhetorical Analysis Definition and Examples
  • What Is a Hasty Generalization?
  • Ware, Wear, and Where: How to Choose the Right Word
  • Definition and Examples of Paragraphing in Essays
  • Historic vs. Historical: How to Choose the Right Word
  • Persuasion and Rhetorical Definition

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Perspective
  • Published: 13 January 2020

The emergence and evolution of Earth System Science

  • Will Steffen   ORCID: orcid.org/0000-0003-1163-6736 1 , 2 ,
  • Katherine Richardson 3 ,
  • Johan Rockström 2 , 4 ,
  • Hans Joachim Schellnhuber 4 ,
  • Opha Pauline Dube 5 ,
  • Sébastien Dutreuil 6 ,
  • Timothy M. Lenton 7 &
  • Jane Lubchenco 8  

Nature Reviews Earth & Environment volume  1 ,  pages 54–63 ( 2020 ) Cite this article

23k Accesses

225 Citations

172 Altmetric

Metrics details

  • Climate sciences
  • Environmental sciences
  • Environmental social sciences
  • Scientific community

An Author Correction to this article was published on 03 September 2020

This article has been updated

Earth System Science (ESS) is a rapidly emerging transdisciplinary endeavour aimed at understanding the structure and functioning of the Earth as a complex, adaptive system. Here, we discuss the emergence and evolution of ESS, outlining the importance of these developments in advancing our understanding of global change. Inspired by early work on biosphere–geosphere interactions and by novel perspectives such as the Gaia hypothesis, ESS emerged in the 1980s following demands for a new ‘science of the Earth’. The International Geosphere-Biosphere Programme soon followed, leading to an unprecedented level of international commitment and disciplinary integration. ESS has produced new concepts and frameworks central to the global-change discourse, including the Anthropocene, tipping elements and planetary boundaries. Moving forward, the grand challenge for ESS is to achieve a deep integration of biophysical processes and human dynamics to build a truly unified understanding of the Earth System.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

111,21 € per year

only 9,27 € per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

earth science definition of critical thinking

Similar content being viewed by others

earth science definition of critical thinking

The evolving landscape of sea-level rise science from 1990 to 2021

earth science definition of critical thinking

A transdisciplinary and community-driven database to unravel subduction zone initiation

earth science definition of critical thinking

Safe and just Earth system boundaries

Change history, 03 september 2020.

A Correction to this paper has been published: https://doi.org/10.1038/s43017-020-0100-8

Vernadsky, V. I. La Géochimie (Librairie Félix Acan, 1924)

Vernadsky, V. I. The Biosphere (complete annotated edition: Foreword by Margulis, L. et al., Introduction by Grinevald, J., translated by Langmuir, D. B., revised and annotated by McMenamin, M. A. S.) (Springer, 1998)

Lovelock, J. Gaia: A New Look at Life on Earth (Oxford Univ. Press, 1979).

National Research Council. Earth System Science. Overview: A Program for Global Change (National Academies Press, 1986).

Dutreuil, S. Gaïa: Hypothèse, Programme de Recherche pour le Système Terre, ou Philosophie de la Nature? Thesis, Univ. Paris 1 Panthéon-Sorbonne (2016).

Lenton, T. M. Earth System Science. A Very Short Introduction (Oxford Univ. Press, 2016).

Grinevald, J. La Biosphère de l’Anthropocène: Climat et Pétrole, la Double Menace. Repères Transdisciplinaires (1824–2007) (Georg Editeur, 2007).

Oreskes, N. & Krige, J. Science and Technology in the Global Cold War (MIT Press, 2014).

Doel, R. E. Constituting the postwar earth sciences: the military’s influence on the environmental sciences in the USA after 1945. Soc. Stud. Sci. 33 , 635–666 (2003).

Google Scholar  

Turchetti, S. & Roberts, P. The Surveillance Imperative: Geosciences During the Cold War and Beyond (Palgrave MacMillan, 2014)

Hamblin, J. D. Arming Mother Nature: The Birth of Catastrophic Environmentalism (Oxford Univ. Press, 2013).

Beynon, W. J. G. (ed.) Annals of the International Geophysical Year (Pergamon Press, 1970).

Oreskes, N. & Doel, R. E. in The Cambridge History of Science. Volume 5, The Modern Physical and Mathematical Sciences (ed. Nye, M. J.) 538–557 (Cambridge Univ. Press, 2008).

Edwards, P. N. A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming (MIT Press, 2010).

Oreskes, N. The Rejection of Continental Drift: Theory and Method in American Earth Science (Oxford Univ. Press, 1999).

Warde, P., Robin, L. & Sörlin, S. The Environment. A History of the Idea (Johns Hopkins Univ. Press, 2018)

Aronova, E., Baker, K. S. & Oreskes, N. Big science and big data in biology: from the International Geophysical Year through the International Biological Program to the Long Term Ecological Research (LTER) network, 1957–present. Hist. Stud. Nat. Sci. 40 , 183–224 (2010).

Grinevald, J. in Gaia in Action: Science of the Living Earth (ed. Bunyard, P.) 34–53 (Floris Books, 1996).

Grinevald, J. in The Biosphere (ed. Vernadsky V. I.) 20–32 (Springer, 1998).

Kwa, C. Representations of nature mediating between ecology and science policy: the case of the International Biological Programme. Soc. Stud. Sci. 17 , 413–442 (1987).

Kwa, C. Modeling the grasslands. Hist. Stud. Phys. Biol. Sci. 24 , 125–155 (1993).

Carson, R. Silent Spring (Houghton Mifflin, 1962).

Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Large losses of total ozone in Antarctica reveal seasonal interaction. Nature 315 , 207–210 (1985).

Besel, R. D. Accommodating climate change science: James Hansen and the rhetorical/political emergence of global warming. Sci. Cont. 26 , 137–152 (2013).

Meadows, D. H., Meadows, D. L., Randers, J. & Behrens III, W. W. Limits to Growth (Universe Books, 1972).

Vieille Blanchard, E. Les Limites à la Croissance dans un Monde Global: Modélisations, Prospectives, Refutations . Thesis, Ecole Hautes Etudes Sci. Soc. (2011).

Poole, R. Earthrise: How Man First Saw the Earth (Yale Univ. Press, 2008).

Grevsmühl, S. V. Images, imagination and the global environment: towards an interdisciplinary research agenda on global environmental images. Geo 3 , e00020 (2016).

Höhler, S. Spaceship Earth in the Environmental Age, 1960–1990 (Routledge, 2015).

Lovelock, J. & Margulis, L. Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus 26 , 2–10 (1974).

Doolittle, F. W. Is nature really motherly? Coevol. Q. 29 , 58–63 (1982).

Kirchner, J. The Gaia hypothesis: can it be tested? Rev. Geophys. 27 , 223–235 (1989).

Lovelock, J. & Whitfield, M. Life span of the biosphere. Nature 296 , 561–563 (1982).

Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326 , 655–661 (1987).

Dutreuil, S. in Dreamers, Visionaries and Revolutionaries in the Life Sciences (eds Dietrich, M. R. & Harman, O.) (Univ. Chicago Press, 2017).

Latour, B. Facing Gaia. Eight Lectures on the New Climatic Regime (Polity Press, 2017).

Waldrop, M. M. (1986) Washington embraces global earth sciences. Science 233 , 1040–1042 (1986).

Edelson, E. Laying the foundation. MOSAIC 19 , 4–11 (1988).

Conway, E. M. Atmospheric Science at NASA: a History (John Hopkins Univ. Press, 2008).

Bretherton, F. P. Earth system science and remote sensing. Proc. IEEE 73 , 1118–1127 (1985).

Kwa, C. Local ecologies and global science: discourses and strategies of the International Geosphere-Biosphere Programme. Soc. Stud. Sci. 35 , 923–950 (2005).

Kwa, C. The programming of interdisciplinary research through informal science-policy interactions. Sci. Public Policy 33 , 457–467 (2006).

Uhrqvist, O. Seeing and Knowing the Earth as a System: An Effective History of Global Environmental Change Research as Scientific and Political Practice . Thesis, Linköping Univ. (2014).

Richardson, K. & Steffen, W. in Handbook of Science and Technology Convergence (Springer, 2014).

Brundtland Commission. Our Common Future: Report of the World Commission on Environment and Development (Oxford Univ. Press, 1987).

Roederer, J. G. ICSU gives green light to IGBP. Eos Trans. Am. Geophys. Union 67 , 777–781 (1986).

Lubchenco, J. et al. The sustainable biosphere initiative: an ecological research agenda. Ecology 72 , 371–412 (1991).

Huntley, B. J. et al. A sustainable biosphere: the global imperative. The International Sustainable Biosphere Initiative. Ecol. Int. 20 , 1–14 (1991).

Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277 , 494–499 (1997).

Clark, W. C. & Munn, R. E. Sustainable Development of the Biosphere (Cambridge Univ. Press, 1986).

Kates, R. W. et al. Sustainability science. Science 292 , 641–642 (2001).

Schellnhuber, H. J. in Earth System Analysis. Integrating Science for Sustainability (eds Schellnhuber, H. J. & Wentzel, V.) 3–195 (Springer, 1998).

Schellnhuber, H. J. ‘Earth system’ analysis and the second Copernican revolution. Nature 402 , C19–C23 (1999).

Crutzen, P. J. M. in Nobel Lectures, Chemistry 1991–1995 (ed. Malmström, B. G.) 189–244 (World Scientific Publishing, 1997).

Steffen, W. et al. Global Change and the Earth System: A Planet Under Pressure (Springer, 2004).

Leemans, R. et al. Developing a common strategy for integrative global environmental change research and outreach: the Earth System Science Partnership (ESSP). Curr. Opin. Environ. Sust. 1 , 4–13 (2009).

Seitzinger, S. et al. International Geosphere–Biosphere Programme and Earth system science: three decades of co-evolution. Anthropocene 12 , 3–16 (2015).

Harris, D. C. Charles David Keeling and the story of atmospheric CO 2 measurements. Anal. Chem. 82 , 7865–7870 (2010).

Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10 , 2141–2194 (2018).

Conway, E. M. Drowning in data: Satellite oceanography and information overload in the Earth sciences. Hist. Stud. Phys. Biol. Sci. 37 , 127–151 (2006).

Toth, C. & Jóźków, G. Remote sensing platforms and sensors: a survey. ISPRS J. Photogr. Remote Sens. 115 , 22–36 (2016).

Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J. & Westberry, T. K. The CAFE model: A net production model for global ocean phytoplankton. Glob. Biogeochem. Cycles 30 , 1756–1777 (2016).

Yang, Y., Donohue, R. J. & McVicar, T. R. Global estimation of effective plant rooting depth: Implications for hydrological modeling. Water Resour. Res. 52 , 8260–8276 (2016).

Ramanathan, V., Crutzen, P. J., Mitra, A. P. & Sikka, D. The Indian Ocean experiment and the Asian brown cloud. Curr. Sci. 83 , 947–955 (2002).

Broecker, W. S., Takahashi, T., Simpson, H. J. & Peng, T.-H. Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206 , 409–418 (1979).

Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399 , 429–436 (1999).

PAGES (Past Interglacial Working Group of Past Global Changes). Interglacials of the last 800,000 years. Rev. Geophys. 54 , 162–219 (2016).

Summerhayes, C. P. Earth’s Climate Evolution (Wiley, 2015).

McInerney, F. A. & Wing, S. L. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Ann. Rev. Earth Planet. Sci. 39 , 489–516 (2011).

Williamson, P. et al. Ocean fertilization for geoengineering: a review of effectiveness, environmental impacts and emerging governance. Process Saf. Environ. Prot. 90 , 475–488 (2012).

Norby, R. J. & Zak, D. R. Ecological lessons from Free-Air CO 2 Enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42 , 181–203 (2011).

Aronson, E. & McNulty, S. G. Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agric. For. Meteorol. 149 , 1791–1799 (2009).

Levin, S. Fragile Dominion: Complexity and The Commons (Helix Books, 1999).

Lenton, T. M. et al. Tipping elements in Earth’s climate system. Proc. Natl Acad. Sci. USA 105 , 1786–1793 (2008).

Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).

Budyko, M. I. The effect of solar radiation variations on the climate of the Earth. Tellus 21 , 611–619 (1969).

Sellers, W. A climate model based on the energy balance of the earth-atmosphere system. J. Appl. Meteorol. 8 , 392–400 (1969).

Watson, A. & Lovelock, J. Biological homeostasis of the global environment: the parable of Daisyworld. Tellus B 35 , 284–289 (1983).

Dahan, A. Putting the Earth System in a numerical box? The evolution from climate modeling toward global change. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys. 41 , 282–292 (2010).

Flato, G. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

Kiehl, J. T. & Shields, C. A. Sensitivity of the Palaeocene–Eocene Thermal Maximum climate to cloud properties. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 371 , 20130093 (2013).

Kump, L. R. & Pollard, D. Amplification of Cretaceous warmth by biological cloud feedbacks. Science 320 , 195 (2008).

Heymann, M. & Dahan Dalmedico, A. Epistemology and politics in Earth system modelling: historical perspectives. J. Adv. Model. Earth Syst. 11 , 1139–1152 (2019).

van Vuuren, D. P. et al. How well do integrated assessment models simulate climate change? Clim. Change 104 , 255–285 (2011).

Shaman, J., Solomon, S., Colwell, R. R. & Field, C. B. Fostering advances in interdisciplinary climate science. Proc. Natl Acad. Sci. USA 110 , 3653–3656 (2013).

The Royal Society & National Academy of Sciences. Modeling Earth’s future: integrated assessments of linked human-natural systems (Royal Society, 2019).

Intergovernmental Panel on Climate Change. AR5 Climate Change 2014: mitigation of climate change (IPCC, 2014).

Prinn, R. et al. Integrated global system model for climate model assessment: feedbacks and sensitivity studies. Clim. Change 41 , 469–546 (1999).

Prinn, R. Development and application of earth system models. Proc. Natl Acad. Sci. USA 110 , 3673–3680 (2012).

Claussen, M. et al. Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim. Dyn. 18 , 579–586 (2002).

Ganopolski, A., Winkelmann, R. & Schellnhuber, H. J. Critical insolation–CO 2 relation for diagnosing past and future glacial inception. Nature 529 , 200–203 (2016).

Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6 , 360–369 (2016).

IPCC (Intergovernmental Panel on Climate Change) Special Report on Global Warming of 1.5 °C . http://ipcc.ch/report/sr15/ (2018).

Intergovernmental Panel on Climate Change. Special report on the ocean and cryosphere in a changing climate (IPCC, 2019).

Hoegh-Guldberg, O., Northrop, E. & Lubchenco, J. The ocean is key to achieving climate and societal goals. Science 365 , 1372–1374 (2019).

Reid, W. V. & Mooney, H. A. The millennium ecosystem assessment: testing the limits of interdisciplinary and multi-scale science. Curr. Opin. Environ. Sust. 19 , 40–46 (2016).

Walker, B., Steffen, W., Canadell, J. & Ingram, J. The Terrestrial Biosphere and Global Change (Cambridge Univ. Press, 1999).

Crossland, C. J. et al. (eds) Coastal Fluxes in the Anthropocene (Springer, 2005).

Fasham, M. J. R. Ocean Biogeochemistry (Springer, 2003).

Kabat, P. et al. (eds) Vegetation, Water, Humans and the Climate: A New Perspective on an Interactive System (Springer, 2004).

Alverson, K. D., Bradley, R. S. & Pedersen, T. F. Paleoclimate, Global Change and the Future (Springer, 2003).

Brasseur, G. P., Prinn, R. G. & Pszenny, A. A. P. Atmospheric Chemistry in a Changing World (Springer, 2003).

Lambin, E. F. & Geist, H. J. Land-Use and Land-Cover Change (Springer, 2006).

Brondizio, E. S. et al. Re-conceptualizing the Anthropocene: a call for collaboration. Glob. Environ. Change 39 , 318–327 (2016).

Dube, O. P. & Sivakumar, M. Global environmental change and vulnerability of Least Developed Countries to extreme events: Editorial on the special issue. Weather Clim. Extremes 7 , 2–7 (2015).

Palsson, G. et al. Reconceptualizing the ‘Anthropos’ in the Anthropocene: Integrating the social sciences and humanities in global environmental change research. Environ. Sci. Policy 28 , 3–13 (2013).

Biermann, F. et al. Down to Earth: contextualizing the Anthropocene. Glob. Environ. Change 39 , 341–350 (2015).

Malm, A. & Hornborg, A. The geology of mankind? A critique of the Anthropocene narrative. Anthrop. Rev. 1 , 62–69 (2014).

Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the Great Acceleration. Anthrop. Rev. 2 , 81–98 (2015).

Lövbrand, E., Stripple, J. & Wiman, B. Earth system governmentality: reflections on science in the Anthropocene. Glob. Environ. Change 19 , 7–13 (2009).

Steffen, W. et al. The Anthropocene: from global change to planetary stewardship. Ambio 40 , 739 (2011).

Schellnhuber, H. J. & Held, H. in The Eleventh Linacre Lectures (eds Briden, J. C. & Downing, T.) (Oxford Univ. Press, 2002).

Kriegler, E., Hall, J. W., Held, H., Dawson, R. & Schellnhuber, H. J. Imprecise probability assessment of tipping points in the climate system. Proc. Natl Acad. Sci. USA 106 , 5041–5046 (2009).

Schellnhuber, H. J., Rahmstorf, S. & Winkelmann, R. Why the right climate target was agreed in Paris. Nat. Clim. Change 6 , 649–653 (2016).

Cai, Y., Lenton, T. M. & Lontzek, T. S. Risk of multiple interacting tipping points should encourage rapid CO 2 emission reduction. Nat. Clim. Change 6 , 520–525 (2016).

Hansen, J. et al. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2°C global warming could be dangerous. Atmos. Chem. Phys. 16 , 3761–3812 (2016).

Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci. USA 115 , 8252–8259 (2018).

Aykut, S. Les “limites” du changement climatique. Cités 63 , 193–236 (2015).

Rockström, J. et al. A safe operating space for humanity. Nature 461 , 472–475 (2009).

Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112 , E5777–E5786 (2015).

Rocha, J. C., Peterson, G., Bodin, Ö. & Levin, S. Cascading regime shifts within and across scales. Science 362 , 1379–1383 (2018).

Lenton, T. M. et al. Climate tipping points — too risky to bet against. Nature 575 , 592–595 (2019).

Alvaredo, F., Chancel, L., Piketty, T., Saez, E. & Zucman, G. World Inequality Report 2018 (Belknap Press, 2018).

Levin, S. et al. Social-ecological systems as complex adaptive systems: modeling and policy implications. Environ. Dev. Econ. 18 , 111–132 (2013).

Lubchenco, J., Cerny-Chipman, E. B., Reimer, J. N. & Levin, S. A. The right incentives enable ocean sustainability successes and provide hope for the future. Proc. Natl Acad. Sci. USA 113 , 14507–14514 (2016).

Folke, C., Biggs, R., Norström, A. V., Reyers, B. & Rockström, J. Social-ecological resilience and biosphere-based sustainability science. Ecol. Soc. 21 , 41 (2016).

Carpenter, S. R., Folke, C., Scheffer, M. & Westley, F. R. Dancing on the volcano: social exploration in times of discontent. Ecol. Soc. 24 , 23 (2019).

Haff, P. Humans and technology in the Anthropocene: Six rules. Anthrop. Rev. 1 , 126–136 (2014).

Picketty, T. Capital in the Twenty-First Century (Harvard Univ. Press, 2014).

Magalhães, P., Steffen, W., Bosselmann, K., Aragão, A. & Soromenho-Marques, V. The Safe Operating Space Treaty: A New Approach to Managing our Use of the Earth System (Cambridge Scholars Publishing, 2016).

Rockström, J. & Klum, M. Big World, Small Planet: Abundance within Planetary Boundaries (Yale Univ. Press, 2015).

Crutzen, P. J. & Stoermer, E. F. The “Anthropocene”. IGBP Newsl. 41 , 17–18 (2000).

Crutzen, P. J. Geology of mankind—the Anthropocene. Nature 415 , 23 (2002).

Steffen, W. et al. Stratigraphic and Earth System approaches to defining the Anthropocene. Earths Future 4 , 324–345 (2016).

Steffen, W., Crutzen, P. J. & McNeill, J. R. The Anthropocene: are humans now overwhelming the great forces of Nature? AMBIO 36 , 614–621 (2007).

McNeill, J. R. Something New Under the Sun (W.W. Norton, 2000).

Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351 , aad2622 (2016).

Zalasiewicz, J. et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quat. Int. 383 , 196–203 (2015).

Malhi, Y. The concept of the Anthropocene. Annu. Rev. Environ. Resour. 42 , 77–99 (2017).

Bonneuil, C. & Fressoz, J. B. The Shock of the Anthropocene: The Earth, History and Us (Verso, 2016).

Bai, X. et al. (2016) Plausible and desirable futures in the Anthropocene: a new research agenda. Glob. Environ. Change 39 , 351–362 (2016).

Download references

Acknowledgements

JR was supported for this work by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Earth Resilience in the Anthropocene, grant no. ERC-2016-ADG 743080).

Author information

Authors and affiliations.

Australian National University, Canberra, Australian Capital Territory, Australia

Will Steffen

Stockholm Resilience Centre, Stockholm, Sweden

Will Steffen & Johan Rockström

Globe Institute, University of Copenhagen, Copenhagen, Denmark

Katherine Richardson

Potsdam Institute for Climate Impact Research, Potsdam, Germany

Johan Rockström & Hans Joachim Schellnhuber

University of Botswana, Gaborone, Botswana

Opha Pauline Dube

Centre Gilles Gaston Granger, Aix-Marseille Université, CNRS, Aix-en-Provence, France

Sébastien Dutreuil

Global Systems Institute, University of Exeter, Exeter, UK

Timothy M. Lenton

Oregon State University, Corvallis, OR, USA

Jane Lubchenco

You can also search for this author in PubMed   Google Scholar

Contributions

All authors contributed to the design and writing of the article. S.D. provided essential inputs on the history of ESS. T.M.L. helped W.S. to structure the article. W.S. drafted Figure 3.

Corresponding author

Correspondence to Will Steffen .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Peer review information.

Nature Reviews Earth & Environment thanks Sybil Seitzinger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Steffen, W., Richardson, K., Rockström, J. et al. The emergence and evolution of Earth System Science. Nat Rev Earth Environ 1 , 54–63 (2020). https://doi.org/10.1038/s43017-019-0005-6

Download citation

Accepted : 12 November 2019

Published : 13 January 2020

Issue Date : 13 January 2020

DOI : https://doi.org/10.1038/s43017-019-0005-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Anthropocene, planetary boundaries and tipping points: interdisciplinarity and values in earth system science.

  • Vincent Lam
  • Yannick Rousselot

European Journal for Philosophy of Science (2024)

Investigating monthly geopotential height changes and mid-latitude Northern Hemisphere westerlies

  • Hossein Asakereh
  • Arman Jahedi
  • Abdollah Faraji

Theoretical and Applied Climatology (2024)

Conceptualising Sustainability as the Pursuit of Life

  • Frederik Dahlmann

Journal of Business Ethics (2024)

Big Data in Earth system science and progress towards a digital twin

  • Huadong Guo

Nature Reviews Earth & Environment (2023)

Arctic weather variability and connectivity

  • Jingfang Fan
  • Jürgen Kurths

Nature Communications (2023)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

earth science definition of critical thinking

Understanding the Earth Systems: Expressions of Dynamic and Cyclic Thinking Among University Students

  • Published: 30 April 2015
  • Volume 24 , pages 761–775, ( 2015 )

Cite this article

earth science definition of critical thinking

  • Or Batzri 1 ,
  • Orit Ben Zvi Assaraf 1 ,
  • Carmit Cohen 2 &
  • Nir Orion 3  

1665 Accesses

40 Citations

3 Altmetric

Explore all metrics

In this two-part study, we examine undergraduate university students’ expression of two important system thinking characteristics—dynamic thinking and cyclic thinking—focusing particularly on students of geology. The study was conducted using an Earth systems questionnaire designed to elicit and reflect either dynamic or cyclic thinking. The study’s first part was quantitative. Its population consisted of a research group (223 students majoring in geology or physical geography) and a control group (312 students with no background in geology). The students were asked to rate their agreement with each statement on a Likert scale. Overall, the students in the research group expressed higher levels of dynamic thinking than those in the control group. The geology students showed relatively strong dynamic thinking toward the geosphere and hydrosphere, but not the biosphere. In cyclic thinking, their levels were significantly higher for all Earth systems, suggesting a connection between learning about different cycles in Earth systems, developing cyclic thinking and applying it to other Earth cycles. The second part was qualitative and administered only to the students who majored in geology. They were asked to freely explain their answers to the questionnaire’s statements. Our aim was to identify recurring patterns in how these students express their dynamic and cyclic thinking. Their explanations were given to four experts in the field of Earth science, who then presented, in a semi-structured interview, the recurring characteristics of dynamic thinking that they found in the students’ explanations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

earth science definition of critical thinking

Applying Quantitative and Covariational Reasoning to Think About Systems: The Example of Climate Change

earth science definition of critical thinking

Thinking in Terms of Change over Time: Opportunities and Challenges of Using System Dynamics Models

earth science definition of critical thinking

Supporting the development of scientific understanding when constructing an evolving explanation

Explore related subjects.

  • Digital Education and Educational Technology

Some water does still enter when meteorites enter Earth’s atmosphere, and water molecules are still broken down into oxygen and hydrogen, but both processes are inconsequential in their influence on the overall amount of water on Earth.

Ben-Zvi Assaraf O, Orion N (2005) Development of system thinking skills in the context of earth system education. J Res Sci Teach 42(5):518–560

Article   Google Scholar  

Cheek KA (2013) How geoscience novices reason about temporal duration: the role of spatial thinking and large numbers. J Geosci Educ 61(3):334–348

Google Scholar  

Chi MTH, Slotta JD, de Leeuw N (1994) From things to processes: a theory of conceptual change for learning science concepts. Learn Instr 4:27–43

Dodic J, Orion N (2003) Cognitive factors affecting students understanding of geological time. J Res Sci Teach 40(4):415–442

Eilam B (2012) Systems thinking and feeding relations: learning with a live ecosystem model. Instr Sci 40(2):213–239

Goel AK, Gomez de Silva Garza A, Gruşé N, Murdock JW, Recker MMT (1996) Towards design learning environments—I: exploring how devices work. In Intelligent tutoring systems. Lecture notes in computer science, vol 1086, pp 493–501

Gradstein FM, Ogg JG (2004) Geologic time scale 2004: why, how, and where next! Lethaia 37:175–181

Herbert BE (2006) Student understanding of complex earth systems. Geol Soc Am Spec Pap 413:95–104

Hidalgo AJ, Fernando SIES, Otero JICE (2004) An analysis of the understanding of geological time students at secondary and post-secondary level. Int J Sci Educ 26:845–857

Hmelo-Silver CE, Azevedo R (2006) Understanding complex systems: some core challenges. J Learn Sci 1:53–61. doi: 10.1207/s15327809jls1501_7

Hmelo-Silver CE, Pfeffer MG (2004) Comparing expert and novice understanding of a complex system from the perspective of structures, behaviors, and functions. Cogn Sci 28:127–138

Hmelo-Silver CE, Holton DL, Kolodner JL (2000) Designing learning about complex systems. J Learn Sci 9(1):247–298

Hmelo-Silver CE, Marathe S, Liu L (2007) Fish swim, rocks sit, and lungs breathe: expert-novice understanding in complex systems. J Learn Sci 16(3):307–331

Jacobson MJ (2001) Problem solving, cognition, and complex systems: differences between experts and novices. Complexity 6(2):1–9

Jacobson MJ, Wilensky U (2006) Complex systems in education: scientific and educational importance and implications for the learning sciences. J Learn Sci 15(1):11–34

Kali Y, Orion N, Elon B (2003) The effect of knowledge integration activities on students’ perception of the earth’s crust as a cyclic system. J Res Sci Teach 40:545–565

Kastens KA, Ishikawa T (2006) Spatial thinking in the geosciences and cognitive sciences: a cross-disciplinary look at the intersection of the two fields. In: Manduca CA, Mogk DW (eds) Earth and mind—how geologists think and learn about the earth: geological society of America, vol 413, pp 53–76

Kastens KA, Manduca CA, Cervato C, Frodeman R, Goodwin C, Liben LS (2009) How geoscientists think and learn. Eos 90:265–272

King C (2008) Geoscience education: an overview. Stud Sci Educ 44:187–222

Libarkin JC, Kurdzeil JP (2006) Ontology and the teaching of Earth system science. J Geosci Educ 54:408–413

Libarkin JC, Anderson SW, Dahl J, Beilfuss M, Boone W (2005) Qualitative analysis of college students’ ideas about the Earth: interviews and open-ended questionnaires. J Geosci Educ 53:17–26

Lock S, Libarkin J, Chang CY (2012) Geoscience education and global development. J Geosci Educ 60:199–200

Lövbrand E, Stripple J, Wiman B (2009) Earth system governmentality: reflections on science in the Anthropocene. Glob Environ Change 19(1):7–13

Lyell C (1835) Principels of geology. Murry and Street, London

Mayer VJ (1995) Using the earth system for integrating the science curriculum. Sci Educ 79:375–391

Orion N (2002) An earth systems curriculum development model. In: Mayer VJ (ed) Global science literacy. Kluwer Academic Publishers, Dordrecht, pp 159–168

Chapter   Google Scholar  

Orion N, Ault C (2007) Learning earth sciences. In: Abell S, Lederman N (eds) Handbook of research on science teaching and learning, Lawrence Erlbaum Associates, USA, pp 653–688

Ossimitz G (2001) The development of systems thinking skills using system dynamics modeling tools. http://www-sci.uni-klu.ac.at/∼gossimit/sdyn/gdm_eng.htm

Raia F (2005) Students’ understanding of complex dynamic systems. J Geosci Educ 53(3):297–308

Raia F (2008) Causality in complex dynamic systems: a challenge in earth systems science education. J Geosci Educ 56:81–94

Richmond B (1993) Systems thinking: critical thinking skills for the 1990’s and beyond. Syst Dyn Rev 9(2):113–133

Sibley DF, Anderson CW, Heidemann M, Merrill JE, Parker JM, Szymanski DW (2007) Box diagrams to assess students’ systems thinking about the rock, water and carbon cycles. J Geosci Educ 55:138–146

Trend RD (2001) Deep time framework: a preliminary study of U.K. primary teachers’ conceptions of geological time and perceptions of geosciences. J Res Sci Teach 38:191–221

Download references

Author information

Authors and affiliations.

Science Education Department, Ben Gurion University of the Negev, Beersheba, Israel

Or Batzri & Orit Ben Zvi Assaraf

The Dead Sea-Arava Science Center (DSASC), Mitzpe Ramon, Israel

Carmit Cohen

Department of Science Teaching, Weizmann Institute of Science, Rehovot, Israel

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Orit Ben Zvi Assaraf .

Rights and permissions

Reprints and permissions

About this article

Batzri, O., Ben Zvi Assaraf, O., Cohen, C. et al. Understanding the Earth Systems: Expressions of Dynamic and Cyclic Thinking Among University Students. J Sci Educ Technol 24 , 761–775 (2015). https://doi.org/10.1007/s10956-015-9562-8

Download citation

Published : 30 April 2015

Issue Date : December 2015

DOI : https://doi.org/10.1007/s10956-015-9562-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • System thinking
  • Earth system
  • Geoscience education
  • Higher education
  • Find a journal
  • Publish with us
  • Track your research

Serious Science

where Innovation meets Impact

  • Share Share -->

What is Critical Thinking?

' src=

Critical thinking is the ability to systematically doubt, scrutinize what you hear or read, and filter out false information, accepting nothing by default. It also encompasses the ability to highlight the main points, generalize, and compare phenomena or events. Moreover, critical thinking includes the right to make mistakes, acknowledging that our perspective might also be far from reality and thus requires scrutiny. If you possess these skills, you are capable of critical thinking.

The Origins of Critical Thinking

Critique

The roots of the concept of critical thinking trace back to ancient Greek philosophers. Their assumptions, conclusions, and methods gradually formed a cohesive understanding of the subject.

In the 17th century, French philosopher René Descartes described the method of radical doubt in his work “Discourse on the Method.” This method is based on “skepticism” or “doubt in everything.” Descartes is also credited with the famous statement: “I think, therefore I am.” According to him, this proposition requires no proof and serves as the primary truth from which new truths can be derived.

One of the founders of the principle of “critical thinking” is considered to be the American philosopher and educator John Dewey from the early 20th century. In his research, Dewey described methods and tools that allowed individuals to solve diverse tasks. He used the concept of “inquiry” to describe a set of purposeful actions aimed at transforming an unclear problematic situation into a well-structured and thus solvable one. This process involves several sequential steps: formulating the problem (i.e., the essence of the difficulty), proposing hypotheses, and testing them through action.

Imperfections and Obstacles

There are few studies on this topic, but Lev Vygotsky emphasized that the psyche is inherently biased and aligns with the subject’s lifestyle. It is designed to filter and alter reality so that the subject can act more effectively in the world.

The diversity of such cognitive traps was best described by Daniel Kahneman, who received the Nobel Prize for his research in 2002, and his colleague Amos Tversky, who did not live to see the award. In Kahneman’s theory of bounded rationality, he highlighted cognitive heuristics—mental shortcuts that are supposed to help us adapt effectively but can lead to erroneous conclusions.

For example, when we use minimal context or a “frame” as a reference point, rather than the broader context in which our decision is made. Or when we rely only on information available at the moment and do not seek more detailed or comprehensive data. Another example is when we choose only information that confirms our viewpoint and ignores information that challenges it. The good news is that if we understand the cause of the error, we can learn to overcome it. Sometimes, it’s simply important to be aware of its existence.

earth science definition of critical thinking

Transmedia Storytelling

Media Scientist Renira Rampazzo Gambarato on multiplatform production, crossmedia and the world of Harry Potte...

earth science definition of critical thinking

Cognitive-Enhancing Drugs

Neuropsychologist Barbara Sahakian on episodic memory, the symptoms of schizophrenia, and the drugs used in Al...

earth science definition of critical thinking

Contradictions of Security

Sociologist Harvey Molotch on security measures in the New York subway, 9/11 survivors, and airport lawbreaker...

geology

Home » Geology Articles » What Is Earth Science?

What Is Earth Science?

Article by: hobart m. king , phd, rpg.

The Science of Earth
and its Neighbors in Space

What is Earth Science?

Earth Science is the study of Earth and its neighbors in space. The image above is the first full-hemisphere view of Earth captured in the 21st Century. It was acquired by NOAA's GOES-8 satellite on January 1, 2000 at 12:45 AM Eastern Standard Time. Image by the GOES project.

Introduction

Earth Science is the study of the Earth and its neighbors in space. It is an exciting science with many interesting and practical applications. Some Earth scientists use their knowledge of the Earth to locate and develop energy and mineral resources. Others study the impact of human activity on Earth's environment, and design methods to protect the planet. Some use their knowledge about Earth processes such as volcanoes, earthquakes, and hurricanes to plan communities that will not expose people to these dangerous events.

The Four Earth Sciences

Many different sciences are used to learn about the Earth; however, the four basic areas of Earth science study are: geology, meteorology, oceanography, and astronomy. A brief explanation of these sciences is provided below.

Earth Scientists Study the Subsurface

Earth scientists study the subsurface

Mapping the inside of a volcano: Dr. Catherine Snelson, Assistant Professor of Geophysics at New Mexico Tech, sets off small explosions on the flank of Mount Erebus (a volcano in Antarctica). Vibrations from the explosions travel into the Earth and reflect off of structures below. Her instruments record the vibrations. She uses the data to prepare maps of the volcano's interior. Photo courtesy of Martin Reed, the National Science Foundation and the United States Antarctic Program . Learn more about what Dr. Snelson and others are doing to learn about Mount Erebus .

Geology: Science of the Earth

Geology is the primary Earth science. The word means "study of the Earth." Geology deals with the composition of Earth materials, Earth structures, and Earth processes. It is also concerned with the organisms of the planet and how the planet has changed over time. Geologists search for fuels and minerals, study natural hazards, and work to protect Earth's environment.

Earth Scientists Map the Surface

earth scientist mapping in the field

Mapping lava flows: Charlie Bacon, a USGS volcanologist, draws the boundaries of prehistoric lava flows from Mount Veniaminof, Alaska, onto a map. This map will show the areas covered by past lava eruptions and can be used to estimate the potential impact of future eruptions. Scientists in Alaska often carry firearms (foreground) and pepper spray as protection against grizzly bears. The backpack contains food and survival gear, and a two-way radio to call his helicopter pilot. Charlie's orange overalls help the pilot find him on pick-up day. Image by Charlie Bacon, USGS / Alaska Volcano Observatory.

Meteorology: Science of the Atmosphere

Meteorology is the study of the atmosphere and how processes in the atmosphere determine Earth's weather and climate. Meteorology is a very practical science because everyone is concerned about the weather. How climate changes over time in response to the actions of people is a topic of urgent worldwide concern. The study of meteorology is of critical importance in protecting Earth's environment.

The Hydrologic Cycle - An Earth Science System

Hydrologic cycle: An Earth science system

Hydrologic Cycle: Earth Science involves the study of systems such as the hydrologic cycle. This type of system can only be understood by using a knowledge of geology (groundwater), meteorology (weather and climate), oceanography (ocean systems) and astronomy (energy input from the sun). The hydrologic cycle is always in balance - inputs and withdrawals must be equal. Earth scientists would determine the impact of any human input or withdraw from the system. NOAA image created by Peter Corrigan.

Oceanography: Science of the Oceans

Oceanography is the study of Earth's oceans - their composition, movement, organisms and processes. The oceans cover most of our planet and are important resources for food and other commodities. They are increasingly being used as an energy source. The oceans also have a major influence on the weather, and changes in the oceans can drive or moderate climate change. Oceanographers work to develop the ocean as a resource and protect it from human impact. The goal is to utilize the oceans while minimizing the effects of our actions.

Astronomy: Science of the Universe

Astronomy is the study of the universe. Here are some examples of why studying space beyond Earth is important: the moon drives the ocean's tidal system, asteroid impacts have repeatedly devastated Earth's inhabitants, and energy from the sun drives our weather and climates. A knowledge of astronomy is essential to understanding the Earth. Astronomers can also use a knowledge of Earth materials, processes and history to understand other planets - even those outside of our own solar system.

The Importance of Earth Science

Today we live in a time when the Earth and its inhabitants face many challenges. Our climate is changing, and that change is being caused by human activity. Earth scientists recognized this problem and will play a key role in efforts to resolve it. We are also challenged to: develop new sources of energy that will have minimal impact on climate; locate new sources of metals and other mineral resources as known sources are depleted; and, determine how Earth's increasing population can live and avoid serious threats such as volcanic activity, earthquakes, landslides, floods and more. These are just a few of the problems where solutions depend upon a deep understanding of Earth science.

Earth Science Careers

If you are a pre-college student, you can start preparing for a career in Earth science by enrolling in the college preparation program and doing well in all of your courses. Science courses are especially important, but math, writing, and other disciplines are also used by Earth scientists during every working day.

Some universities have Earth Science programs but most offer more specific training in programs such as geology, meteorology, oceanography or astronomy. In these programs you will be required to take some challenging courses such as chemistry, physics, biology and math. Earth science is an integrated science, and professionals in that field must solve problems that require a knowledge of several fields of science.

If you already have a degree in another discipline such as biology, chemistry, geography, or physics, you might be able to go to graduate school and obtain a Master's degree in one of the Earth sciences. That will most likely require taking some undergraduate courses to meet program entry requirements. However, if you have a strong interest in Earth science it is probably worth doing.

At present, job opportunities in many areas of the Earth sciences are better than average. Opportunities in geology are especially good.

Visit the website of a school that offers a geology degree, get in touch with the geology department, let them know you are interested, and make arrangements to visit the campus. Don't be hesitant. Good schools and professors want to be contacted by interested students.

More General Geology
 
 
 
 
 
 
 
 

Find Other Topics on Geology.com:

Galleries of igneous, sedimentary and metamorphic rock photos with descriptions.

Minerals

Information about ore minerals, gem materials and rock-forming minerals.

Volcanoes

Articles about volcanoes, volcanic hazards and eruptions past and present.

Gemstones

Colorful images and articles about diamonds and colored stones.

General Geology

Articles about geysers, maars, deltas, rifts, salt domes, water, and much more!

Geology Store

Hammers, field bags, hand lenses, maps, books, hardness picks, gold pans.

Earth Science Records

Highest mountain, deepest lake, biggest tsunami and more.

Diamond

Learn about the properties of diamond, its many uses, and diamond discoveries.

JavaScript seems to be disabled in your browser. For the best experience on our site, be sure to turn on Javascript in your browser.

  • Order Tracking
  • Create an Account

earth science definition of critical thinking

200+ Award-Winning Educational Textbooks, Activity Books, & Printable eBooks!

  • Compare Products

Reading, Writing, Math, Science, Social Studies

  • Search by Book Series
  • Algebra I & II  Gr. 7-12+
  • Algebra Magic Tricks  Gr. 2-12+
  • Algebra Word Problems  Gr. 7-12+
  • Balance Benders  Gr. 2-12+
  • Balance Math & More!  Gr. 2-12+
  • Basics of Critical Thinking  Gr. 4-7
  • Brain Stretchers  Gr. 5-12+
  • Building Thinking Skills  Gr. Toddler-12+
  • Building Writing Skills  Gr. 3-7
  • Bundles - Critical Thinking  Gr. PreK-9
  • Bundles - Language Arts  Gr. K-8
  • Bundles - Mathematics  Gr. PreK-9
  • Bundles - Multi-Subject Curriculum  Gr. PreK-12+
  • Bundles - Test Prep  Gr. Toddler-12+
  • Can You Find Me?  Gr. PreK-1
  • Complete the Picture Math  Gr. 1-3
  • Cornell Critical Thinking Tests  Gr. 5-12+
  • Cranium Crackers  Gr. 3-12+
  • Creative Problem Solving  Gr. PreK-2
  • Critical Thinking Activities to Improve Writing  Gr. 4-12+
  • Critical Thinking Coloring  Gr. PreK-2
  • Critical Thinking Detective  Gr. 3-12+
  • Critical Thinking Tests  Gr. PreK-6
  • Critical Thinking for Reading Comprehension  Gr. 1-5
  • Critical Thinking in United States History  Gr. 6-12+
  • CrossNumber Math Puzzles  Gr. 4-10
  • Crypt-O-Words  Gr. 2-7
  • Crypto Mind Benders  Gr. 3-12+
  • Daily Mind Builders  Gr. 5-12+
  • Dare to Compare Math  Gr. 2-7
  • Developing Critical Thinking through Science  Gr. 1-8
  • Dr. DooRiddles  Gr. PreK-12+
  • Dr. Funster's  Gr. 2-12+
  • Editor in Chief  Gr. 2-12+
  • Fun-Time Phonics!  Gr. PreK-2
  • Half 'n Half Animals  Gr. K-4
  • Hands-On Thinking Skills  Gr. K-1
  • Inference Jones  Gr. 1-6
  • James Madison  Gr. 10-12+
  • Jumbles  Gr. 3-5
  • Language Mechanic  Gr. 4-7
  • Language Smarts  Gr. 1-4
  • Mastering Logic & Math Problem Solving  Gr. 6-9
  • Math Analogies  Gr. K-9
  • Math Detective  Gr. 3-8
  • Math Games  Gr. 3-8
  • Math Mind Benders  Gr. 5-12+
  • Math Ties  Gr. 4-8
  • Math Word Problems  Gr. 4-10
  • Mathematical Reasoning  Gr. Toddler-11
  • Middle School Science  Gr. 6-8
  • Mind Benders  Gr. PreK-12+
  • Mind Building Math  Gr. K-1
  • Mind Building Reading  Gr. K-1
  • Novel Thinking  Gr. 3-6
  • OLSAT® Test Prep  Gr. PreK-K
  • Organizing Thinking  Gr. 2-8
  • Pattern Explorer  Gr. 3-9
  • Practical Critical Thinking  Gr. 8-12+
  • Punctuation Puzzler  Gr. 3-8
  • Reading Detective  Gr. 3-12+
  • Red Herring Mysteries  Gr. 4-12+
  • Red Herrings Science Mysteries  Gr. 4-9
  • Science Detective  Gr. 3-6
  • Science Mind Benders  Gr. PreK-3
  • Science Vocabulary Crossword Puzzles  Gr. 4-6
  • Sciencewise  Gr. 4-12+
  • Scratch Your Brain  Gr. 2-12+
  • Sentence Diagramming  Gr. 3-12+
  • Smarty Pants Puzzles  Gr. 3-12+
  • Snailopolis  Gr. K-4
  • Something's Fishy at Lake Iwannafisha  Gr. 5-9
  • Teaching Technology  Gr. 3-12+
  • Tell Me a Story  Gr. PreK-1
  • Think Analogies  Gr. 3-12+
  • Think and Write  Gr. 3-8
  • Think-A-Grams  Gr. 4-12+
  • Thinking About Time  Gr. 3-6
  • Thinking Connections  Gr. 4-12+
  • Thinking Directionally  Gr. 2-6
  • Thinking Skills & Key Concepts  Gr. PreK-2
  • Thinking Skills for Tests  Gr. PreK-5
  • U.S. History Detective  Gr. 8-12+
  • Understanding Fractions  Gr. 2-6
  • Visual Perceptual Skill Building  Gr. PreK-3
  • Vocabulary Riddles  Gr. 4-8
  • Vocabulary Smarts  Gr. 2-5
  • Vocabulary Virtuoso  Gr. 2-12+
  • What Would You Do?  Gr. 2-12+
  • Who Is This Kid? Colleges Want to Know!  Gr. 9-12+
  • Word Explorer  Gr. 4-8
  • Word Roots  Gr. 3-12+
  • World History Detective  Gr. 6-12+
  • Writing Detective  Gr. 3-6
  • You Decide!  Gr. 6-12+

earth science definition of critical thinking

  • Special of the Month
  • Sign Up for our Best Offers
  • Bundles = Greatest Savings!
  • Sign Up for Free Puzzles
  • Sign Up for Free Activities
  • Toddler (Ages 0-3)
  • PreK (Ages 3-5)
  • Kindergarten (Ages 5-6)
  • 1st Grade (Ages 6-7)
  • 2nd Grade (Ages 7-8)
  • 3rd Grade (Ages 8-9)
  • 4th Grade (Ages 9-10)
  • 5th Grade (Ages 10-11)
  • 6th Grade (Ages 11-12)
  • 7th Grade (Ages 12-13)
  • 8th Grade (Ages 13-14)
  • 9th Grade (Ages 14-15)
  • 10th Grade (Ages 15-16)
  • 11th Grade (Ages 16-17)
  • 12th Grade (Ages 17-18)
  • 12th+ Grade (Ages 18+)
  • Test Prep Directory
  • Test Prep Bundles
  • Test Prep Guides
  • Preschool Academics
  • Store Locator
  • Submit Feedback/Request
  • Sales Alerts Sign-Up
  • Technical Support
  • Mission & History
  • Articles & Advice
  • Testimonials
  • Our Guarantee
  • New Products
  • Free Activities
  • Libros en Español

What is Critical Thinking?

Critical Thinking Definition

September 2, 2005, by The Critical Thinking Co. Staff

The Critical Thinking Co.™ "Critical thinking is the identification and evaluation of evidence to guide decision making. A critical thinker uses broad in-depth analysis of evidence to make decisions and communicate their beliefs clearly and accurately."

Other Definitions of Critical Thinking: Robert H. Ennis , Author of The Cornell Critical Thinking Tests "Critical thinking is reasonable, reflective thinking that is focused on deciding what to believe and do."

A SUPER-STREAMLINED CONCEPTION OF CRITICAL THINKING Robert H. Ennis, 6/20/02

Assuming that critical thinking is reasonable reflective thinking focused on deciding what to believe or do, a critical thinker:

1. Is open-minded and mindful of alternatives 2. Tries to be well-informed 3. Judges well the credibility of sources 4. Identifies conclusions, reasons, and assumptions 5. Judges well the quality of an argument, including the acceptability of its reasons, assumptions, and evidence 6. Can well develop and defend a reasonable position 7. Asks appropriate clarifying questions 8. Formulates plausible hypotheses; plans experiments well 9. Defines terms in a way appropriate for the context 10. Draws conclusions when warranted, but with caution 11. Integrates all items in this list when deciding what to believe or do

Critical Thinkers are disposed to:

1. Care that their beliefs be true, and that their decisions be justified; that is, care to "get it right" to the extent possible. This includes the dispositions to

a. Seek alternative hypotheses, explanations, conclusions, plans, sources, etc., and be open to them b. Endorse a position to the extent that, but only to the extent that, it is justified by the information that is available c. Be well informed d. Consider seriously other points of view than their own

2. Care to present a position honestly and clearly, theirs as well as others'. This includes the dispositions to

a. Be clear about the intended meaning of what is said, written, or otherwise communicated, seeking as much precision as the situation requires b. Determine, and maintain focus on, the conclusion or question c. Seek and offer reasons d. Take into account the total situation e. Be reflectively aware of their own basic beliefs

3. Care about the dignity and worth of every person (a correlative disposition). This includes the dispositions to

a. Discover and listen to others' view and reasons b. Avoid intimidating or confusing others with their critical thinking prowess, taking into account others' feelings and level of understanding c. Be concerned about others' welfare

Critical Thinking Abilities:

Ideal critical thinkers have the ability to (The first three items involve elementary clarification.)

1. Focus on a question

a. Identify or formulate a question b. Identify or formulate criteria for judging possible answers c. Keep the situation in mind

2. Analyze arguments

a. Identify conclusions b. Identify stated reasons c. Identify unstated reasons d. Identify and handle irrelevance e. See the structure of an argument f. Summarize

3. Ask and answer questions of clarification and/or challenge, such as,

a. Why? b. What is your main point? c. What do you mean by…? d. What would be an example? e. What would not be an example (though close to being one)? f. How does that apply to this case (describe a case, which might well appear to be a counter example)? g. What difference does it make? h. What are the facts? i. Is this what you are saying: ____________? j. Would you say some more about that?

(The next two involve the basis for the decision.)

4. Judge the credibility of a source. Major criteria (but not necessary conditions):

a. Expertise b. Lack of conflict of interest c. Agreement among sources d. Reputation e. Use of established procedures f. Known risk to reputation g. Ability to give reasons h. Careful habits

5. Observe, and judge observation reports. Major criteria (but not necessary conditions, except for the first):

a. Minimal inferring involved b. Short time interval between observation and report c. Report by the observer, rather than someone else (that is, the report is not hearsay) d. Provision of records. e. Corroboration f. Possibility of corroboration g. Good access h. Competent employment of technology, if technology is useful i. Satisfaction by observer (and reporter, if a different person) of the credibility criteria in Ability # 4 above.

(The next three involve inference.)

6. Deduce, and judge deduction

a. Class logic b. Conditional logic c. Interpretation of logical terminology in statements, including (1) Negation and double negation (2) Necessary and sufficient condition language (3) Such words as "only", "if and only if", "or", "some", "unless", "not both".

7. Induce, and judge induction

a. To generalizations. Broad considerations: (1) Typicality of data, including sampling where appropriate (2) Breadth of coverage (3) Acceptability of evidence b. To explanatory conclusions (including hypotheses) (1) Major types of explanatory conclusions and hypotheses: (a) Causal claims (b) Claims about the beliefs and attitudes of people (c) Interpretation of authors’ intended meanings (d) Historical claims that certain things happened (including criminal accusations) (e) Reported definitions (f) Claims that some proposition is an unstated reason that the person actually used (2) Characteristic investigative activities (a) Designing experiments, including planning to control variables (b) Seeking evidence and counter-evidence (c) Seeking other possible explanations (3) Criteria, the first five being essential, the sixth being desirable (a) The proposed conclusion would explain the evidence (b) The proposed conclusion is consistent with all known facts (c) Competitive alternative explanations are inconsistent with facts (d) The evidence on which the hypothesis depends is acceptable. (e) A legitimate effort should have been made to uncover counter-evidence (f) The proposed conclusion seems plausible

8. Make and judge value judgments: Important factors:

a. Background facts b. Consequences of accepting or rejecting the judgment c. Prima facie application of acceptable principles d. Alternatives e. Balancing, weighing, deciding

(The next two abilities involve advanced clarification.)

9. Define terms and judge definitions. Three dimensions are form, strategy, and content.

a. Form. Some useful forms are: (1) Synonym (2) Classification (3) Range (4) Equivalent expression (5) Operational (6) Example and non-example b. Definitional strategy (1) Acts (a) Report a meaning (b) Stipulate a meaning (c) Express a position on an issue (including "programmatic" and "persuasive" definitions) (2) Identifying and handling equivocation c. Content of the definition

10. Attribute unstated assumptions (an ability that belongs under both clarification and, in a way, inference)

(The next two abilities involve supposition and integration.)

11. Consider and reason from premises, reasons, assumptions, positions, and other propositions with which they disagree or about which they are in doubt -- without letting the disagreement or doubt interfere with their thinking ("suppositional thinking")

12. Integrate the other abilities and dispositions in making and defending a decision

(The first twelve abilities are constitutive abilities. The next three are auxiliary critical thinking abilities: Having them, though very helpful in various ways, is not constitutive of being a critical thinker.)

13. Proceed in an orderly manner appropriate to the situation. For example:

a. Follow problem solving steps b. Monitor one's own thinking (that is, engage in metacognition) c. Employ a reasonable critical thinking checklist

14. Be sensitive to the feelings, level of knowledge, and degree of sophistication of others

15. Employ appropriate rhetorical strategies in discussion and presentation (orally and in writing), including employing and reacting to "fallacy" labels in an appropriate manner.

Examples of fallacy labels are "circularity," "bandwagon," "post hoc," "equivocation," "non sequitur," and "straw person."

Dewey, John Critical thinking is "active, persistent, and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends (Dewey 1933: 118)."

Glaser (1) an attitude of being disposed to consider in a thoughtful way the problems and subjects that come within the range of one's experiences, (2) knowledge of the methods of logical inquiry and reasoning, and (3) some skill in applying those methods. Critical thinking calls for a persistent effort to examine any belief or supposed form of knowledge in the light of the evidence that supports it and the further conclusions to which it tends. (Glaser 1941, pp. 5-6).

Abilities include: "(a) to recognize problems, (b) to find workable means for meeting those problems, (c) to gather and marshal pertinent information, (d) to recognize unstated assumptions and values, (e) to comprehend and use language with accuracy, clarity and discrimination, (f) to interpret data, (g) to appraise evidence and evaluate statements, (h) to recognize the existence of logical relationships between propositions, (i) to draw warranted conclusions and generalizations, (j) to put to test the generalizations and conclusions at which one arrives, (k) to reconstruct one's patterns of beliefs on the basis of wider experience; and (l) to render accurate judgments about specific things and qualities in everyday life." (p.6)

MCC General Education Initiatives "Critical thinking includes the ability to respond to material by distinguishing between facts and opinions or personal feelings, judgments and inferences, inductive and deductive arguments, and the objective and subjective. It also includes the ability to generate questions, construct, and recognize the structure of arguments, and adequately support arguments; define, analyze, and devise solutions for problems and issues; sort, organize, classify, correlate, and analyze materials and data; integrate information and see relationships; evaluate information, materials, and data by drawing inferences, arriving at reasonable and informed conclusions, applying understanding and knowledge to new and different problems, developing rational and reasonable interpretations, suspending beliefs and remaining open to new information, methods, cultural systems, values and beliefs and by assimilating information."

Nickerson, Perkins and Smith (1985) "The ability to judge the plausibility of specific assertions, to weigh evidence, to assess the logical soundness of inferences, to construct counter-arguments and alternative hypotheses."

Moore and Parker , Critical Thinking Critical Thinking is "the careful, deliberate determination of whether we should accept, reject, or suspend judgment about a claim, and the degree of confidence with which we accept or reject it."

Delphi Report "We understand critical thinking to be purposeful, self-regulatory judgment which results in interpretation, analysis, evaluation, and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or contextual considerations upon which that judgment is based. CT is essential as a tool of inquiry. As such, CT is a liberating force in education and a powerful resource in one's personal and civic life. While not synonymous with good thinking, CT is a pervasive and self-rectifying human phenomenon. The ideal critical thinker is habitually inquisitive, well-informed, trustful of reason, open-minded, flexible, fair-minded in evaluation, honest in facing personal biases, prudent in making judgments, willing to reconsider, clear about issues, orderly in complex matters, diligent in seeking relevant information, reasonable in the selection of criteria, focused in inquiry, and persistent in seeking results which are as precise as the subject and the circumstances of inquiry permit. Thus, educating good critical thinkers means working toward this ideal. It combines developing CT skills with nurturing those dispositions which consistently yield useful insights and which are the basis of a rational and democratic society."

A little reformatting helps make this definition more comprehensible:

We understand critical thinking to be purposeful, self-regulatory judgment which results in

  • interpretation

as well as explanation of the

  • methodological
  • criteriological

considerations upon which that judgment is based.

Francis Bacon (1605) "For myself, I found that I was fitted for nothing so well as for the study of Truth; as having a mind nimble and versatile enough to catch the resemblances of things … and at the same time steady enough to fix and distinguish their subtler differences; as being gifted by nature with desire to seek, patience to doubt, fondness to meditate, slowness to assert, readiness to consider, carefulness to dispose and set in order; and as being a man that neither affects what is new nor admires what is old, and that hates every kind of imposture."

A shorter version is "the art of being right."

Or, more prosaically: critical thinking is "the skillful application of a repertoire of validated general techniques for deciding the level of confidence you should have in a proposition in the light of the available evidence."

HELPFUL REFERENCE: http://plato.stanford.edu/entries/logic-informal/

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction & Top Questions
  • Origins in prehistoric times
  • Knowledge of Earth composition and structure
  • Knowledge of Earth history
  • Knowledge of landforms and of land-sea relations
  • Knowledge of the hydrologic cycle
  • The origin of the Nile
  • Knowledge of the tides
  • Prospecting for groundwater
  • Ore deposits and mineralogy
  • Paleontology and stratigraphy
  • Earth history according to Werner and James Hutton
  • The rise of subterranean water
  • Evaporation from the sea
  • Water vapour in the atmosphere
  • Pressure, temperature, and atmospheric circulation
  • Crystallography and the classification of minerals and rocks
  • William Smith and faunal succession
  • Charles Lyell and uniformitarianism
  • Louis Agassiz and the ice age
  • Geologic time and the age of Earth
  • Concepts of landform evolution
  • Gravity, isostasy, and Earth’s figure
  • Darcy’s law
  • Surface water discharge
  • Foundations of oceanography
  • Composition of the atmosphere
  • Understanding of clouds, fog, and dew
  • Observation and study of storms
  • Weather and climate
  • Radiometric dating
  • Experimental study of rocks
  • Crystallography
  • The chemical analysis of rocks and minerals
  • Micropaleontology
  • Seismology and the structure of Earth
  • The theory of plate tectonics
  • Water resources and seawater chemistry
  • Desalinization, tidal power, and minerals from the sea
  • Ocean bathymetry
  • Ocean circulation, currents, and waves
  • Glacier motion and the high-latitude ice sheets
  • Probes, satellites, and data transmission
  • Weather forecasting
  • Cloud physics
  • Properties and structure of the atmosphere
  • Weather modification

volcanology

What are Earth sciences?

What do the earth sciences entail, what are earth science topics.

High-oblique view of the extra-tropical unnamed cyclone that merged with Hurricane Earl is featured in this image taken by an Expedition 24 crew member on the International Space Station (Sept. 2010).

Earth sciences

Our editors will review what you’ve submitted and determine whether to revise the article.

  • LiveScience - What is Earth Science?
  • earth sciences - Student Encyclopedia (Ages 11 and up)
  • Table Of Contents

volcanology

Earth sciences are the fields of study concerned with the solid Earth , its waters , and the air that envelops it. They include the geologic , hydrologic , and atmospheric sciences with the broad aim of understanding Earth’s present features and past evolution and using this knowledge to benefit humankind. Earth scientists observe, describe, and classify all features of Earth to generate hypotheses with which to explain their presence and their development.

Earth sciences study largely inaccessible objects: many rocks , water bodies, and oil reservoirs are at great depths in the Earth, while air masses circulate high above it. Also required is an understanding of time , as Earth scientists consider how Earth evolved, examining such matters as the physical and chemical conditions operating on Earth and on the Moon billions of years ago and the evolution of the oceans , the atmosphere , and life itself.

There are six groups of Earth science topics. One includes disciplines examining water and air at or above Earth’s surface, while another studies the makeup of the solid Earth. A third group considers landforms , and another examines Earth’s history . A fifth group considers Earth science’s beneficial practical applications—whether related to energy use and construction or guarding against natural hazards—whereas a sixth, made up of astrogeology and similar disciplines, studies celestial bodies’ rock record.

Earth sciences , the fields of study concerned with the solid Earth , its waters, and the air that envelops it. Included are the geologic, hydrologic, and atmospheric sciences.

The broad aim of the Earth sciences is to understand the present features and past evolution of Earth and to use this knowledge, where appropriate, for the benefit of humankind. Thus, the basic concerns of the Earth scientist are to observe, describe, and classify all the features of Earth, whether characteristic or not, to generate hypotheses with which to explain their presence and their development, and to devise means of checking opposing ideas for their relative validity. In this way the most plausible, acceptable, and long-lasting ideas are developed.

The physical environment in which humans live includes not only the immediate surface of the solid Earth but also the ground beneath it and the water and air above it. Early humans were more involved with the practicalities of life than with theories, and, thus, their survival depended on their ability to obtain metals from the ground to produce, for example, alloys, such as bronze from copper and tin, for tools and armour, to find adequate water supplies for establishing dwelling sites, and to forecast the weather , which had a far greater bearing on human life in earlier times than it has today. Such situations represent the foundations of the three principal component disciplines of the modern Earth sciences.

The rapid development of science as a whole over the past century and a half has given rise to an immense number of specializations and subdisciplines, with the result that the modern Earth scientist, perhaps unfortunately, tends to know a great deal about a very small area of study but only a little about most other aspects of the entire field . It is therefore very important for the layperson and the researcher alike to be aware of the complex interlinking network of disciplines that make up the Earth sciences today, and that is the purpose of this article. Only when one is aware of the marvelous complexity of the Earth sciences and yet can understand the breakdown of the component disciplines is one in a position to select those parts of the subject that are of greatest personal interest.

iceberg illustration.

It is worth emphasizing two important features that the three divisions of the Earth sciences have in common. First is the inaccessibility of many of the objects of study. Many rocks, as well as water and oil reservoirs, are at great depths in Earth, while air masses circulate at vast heights above it. Thus, the Earth scientist has to have a good three-dimensional perspective. Second, there is the fourth dimension: time. The Earth scientist is responsible for working out how Earth evolved over millions of years. For example, What were the physical and chemical conditions operating on Earth and the Moon 3.5 billion years ago? How did the oceans form, and how did their chemical composition change with time? How has the atmosphere developed? And finally, How did life on Earth begin? and From what did humankind evolve?

Today the Earth sciences are divided into many disciplines, which are themselves divisible into six groups:

  • Those subjects that deal with the water and air at or above the solid surface of Earth. These include the study of the water on and within the ground (hydrology), the glaciers and ice caps (glaciology), the oceans (oceanography), the atmosphere and its phenomena (meteorology), and the world’s climates (climatology). In this article such fields of study are grouped under the hydrologic and atmospheric sciences and are treated separately from the geologic sciences, which focus on the solid Earth.
  • Disciplines concerned with the physical-chemical makeup of the solid Earth, which include the study of minerals (mineralogy), the three main groups of rocks (igneous, sedimentary, and metamorphic petrology), the chemistry of rocks (geochemistry), the structures in rocks (structural geology), and the physical properties of rocks at Earth’s surface and in its interior (geophysics).
  • The study of landforms (geomorphology), which is concerned with the description of the features of the present terrestrial surface and an analysis of the processes that gave rise to them.
  • Disciplines concerned with the geologic history of Earth , including the study of fossils and the fossil record (paleontology), the development of sedimentary strata deposited typically over millions of years (stratigraphy), and the isotopic chemistry and age dating of rocks (geochronology).
  • Applied Earth sciences dealing with current practical applications beneficial to society. These include the study of fossil fuels (oil, natural gas , and coal); oil reservoirs; mineral deposits; geothermal energy for electricity and heating; the structure and composition of bedrock for the location of bridges, nuclear reactors, roads, dams, and skyscrapers and other buildings; hazards involving rock and mud avalanches, volcanic eruptions, earthquakes, and the collapse of tunnels; and coastal, cliff , and soil erosion .
  • The study of the rock record on the Moon and the planets and their satellites (astrogeology). This field includes the investigation of relevant terrestrial features—namely, tektites (glassy objects resulting from meteorite impacts) and astroblemes (meteorite craters).

earth science definition of critical thinking

With such intergradational boundaries between the divisions of the Earth sciences (which, on a broader scale, also intergrade with physics , chemistry, biology , mathematics , and certain branches of engineering), researchers today must be versatile in their approach to problems. Hence, an important aspect of training within the Earth sciences is an appreciation of their multidisciplinary nature.

Bookmark this page

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

Our Concept and Definition of Critical Thinking








Identify its purpose, and question at issue, as well as its information, inferences(s), assumptions, implications, main concept(s), and point of view.


Check it for clarity, accuracy, precision, relevance, depth, breadth, significance, logic, and fairness.






attempts to reason at the highest level of quality in a fair-minded way. People who think critically consistently attempt to live rationally, reasonably, empathically. They are keenly aware of the inherently flawed nature of human thinking when left unchecked. They strive to diminish the power of their egocentric and sociocentric tendencies. They use the intellectual tools that critical thinking offers – concepts and principles that enable them to analyze, assess, and improve thinking. They work diligently to develop the intellectual virtues of intellectual integrity, intellectual humility, intellectual civility, intellectual empathy, intellectual sense of justice and confidence in reason. 
~ Linda Elder, September 2007

Critical thinking definition

earth science definition of critical thinking

Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement.

Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process, which is why it's often used in education and academics.

Some even may view it as a backbone of modern thought.

However, it's a skill, and skills must be trained and encouraged to be used at its full potential.

People turn up to various approaches in improving their critical thinking, like:

  • Developing technical and problem-solving skills
  • Engaging in more active listening
  • Actively questioning their assumptions and beliefs
  • Seeking out more diversity of thought
  • Opening up their curiosity in an intellectual way etc.

Is critical thinking useful in writing?

Critical thinking can help in planning your paper and making it more concise, but it's not obvious at first. We carefully pinpointed some the questions you should ask yourself when boosting critical thinking in writing:

  • What information should be included?
  • Which information resources should the author look to?
  • What degree of technical knowledge should the report assume its audience has?
  • What is the most effective way to show information?
  • How should the report be organized?
  • How should it be designed?
  • What tone and level of language difficulty should the document have?

Usage of critical thinking comes down not only to the outline of your paper, it also begs the question: How can we use critical thinking solving problems in our writing's topic?

Let's say, you have a Powerpoint on how critical thinking can reduce poverty in the United States. You'll primarily have to define critical thinking for the viewers, as well as use a lot of critical thinking questions and synonyms to get them to be familiar with your methods and start the thinking process behind it.

Are there any services that can help me use more critical thinking?

We understand that it's difficult to learn how to use critical thinking more effectively in just one article, but our service is here to help.

We are a team specializing in writing essays and other assignments for college students and all other types of customers who need a helping hand in its making. We cover a great range of topics, offer perfect quality work, always deliver on time and aim to leave our customers completely satisfied with what they ordered.

The ordering process is fully online, and it goes as follows:

  • Select the topic and the deadline of your essay.
  • Provide us with any details, requirements, statements that should be emphasized or particular parts of the essay writing process you struggle with.
  • Leave the email address, where your completed order will be sent to.
  • Select your prefered payment type, sit back and relax!

With lots of experience on the market, professionally degreed essay writers , online 24/7 customer support and incredibly low prices, you won't find a service offering a better deal than ours.

SEP logo

  • Table of Contents
  • New in this Archive
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment. Political and business leaders endorse its importance.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o'clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68-69; 1933: 91-92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot's position, it must appear to project far out in front of the boat. Morevoer, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69-70; 1933: 92-93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond line from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009), others on the resulting judgment (Facione 1990a), and still others on the subsequent emotive response (Siegel 1988).

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in frequency in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the frequency of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Critical thinking dispositions can usefully be divided into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started) (Facione 1990a: 25). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), and Black (2012).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work.

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? Abrami et al. (2015) found that in the experimental and quasi-experimental studies that they analyzed dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), and Bailin et al. (1999b).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Casserly, Megan, 2012, “The 10 Skills That Will Get You Hired in 2013”, Forbes , Dec. 10, 2012. Available at https://www.forbes.com/sites/meghancasserly/2012/12/10/the-10-skills-that-will-get-you-a-job-in-2013/#79e7ff4e633d ; accessed 2017 11 06.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; accessed 2017 09 26.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; accessed 2018 04 09.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; accessed 2018 04 14.
  • Dumke, Glenn S., 1980, Chancellor’s Executive Order 338 , Long Beach, CA: California State University, Chancellor’s Office. Available at https://www.calstate.edu/eo/EO-338.pdf ; accessed 2017 11 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”. Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; accessed 2017 12 02.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://drive.google.com/file/d/0BzUoP_pmwy1gdEpCR05PeW9qUzA/view ; accessed 2017 12 01.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • Obama, Barack, 2014, State of the Union Address , January 28, 2014. [ Obama 2014 available online ]
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Information available at http://www.ocr.org.uk/qualifications/as-a-level-gce-critical-thinking-h052-h452/ ; accessed 2017 10 12.
  • OECD [Organization for Economic Cooperation and Development] Centre for Educational Research and Innovation, 2018, Fostering and Assessing Students’ Creative and Critical Thinking Skills in Higher Education , Paris: OECD. Available at http://www.oecd.org/education/ceri/Fostering-and-assessing-students-creative-and-critical-thinking-skills-in-higher-education.pdf ; accessed 2018 04 22.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; accessed 2017 11 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; accessed 2017 11 29.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2011, Curriculum for the Compulsory School, Preschool Class and the Recreation Centre , Stockholm: Ordförrådet AB. Available at http://malmo.se/download/18.29c3b78a132728ecb52800034181/pdf2687.pdf ; accessed 2017 11 16.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up this entry topic at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Center for Teaching Thinking (CTT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach (criticalTHINKING.net)
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2018 by David Hitchcock < hitchckd @ mcmaster . ca >

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

Stanford Center for the Study of Language and Information

The Stanford Encyclopedia of Philosophy is copyright © 2016 by The Metaphysics Research Lab , Center for the Study of Language and Information (CSLI), Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

IMAGES

  1. Intro 3: Critical Thinking in Earth Sciences

    earth science definition of critical thinking

  2. (PDF) Thinking the Earth: Critical Reflections on Quentin Meillassoux’s

    earth science definition of critical thinking

  3. Basic Elements of Critical Thinking

    earth science definition of critical thinking

  4. PPT

    earth science definition of critical thinking

  5. Definition and Examples of Critical Thinking

    earth science definition of critical thinking

  6. Science Critical Thinking Posters by Science Adventures

    earth science definition of critical thinking

VIDEO

  1. Critical thinking and deferring to experts

  2. Critical Thinking

  3. What does critical thinking involve? #literacy #criticalthinking

  4. What is critical thinking

  5. Axxeluss Mavens Training Updates Decision Making And Critical Thinking

  6. What Is Critical Thinking?

COMMENTS

  1. Full article: Conceptualisations of 'critical thinking' in

    In light of critical thinking, true critical thinking will not be inherent; however, the teacher can work with parts of critical thinking, such as systematic learning of skills. In ESE, the non-participatory level aligns with earlier notions of ESE, often referred to as education for sustainable development 1 (ESD 1) (Vare and Scott Citation ...

  2. Critical Thinking

    Critical Thinking

  3. Critical thinking

    Critical thinking | Definition, History, Criticism, & Skills

  4. Chapter 7

    Resources for Teaching Science. 24 - Science ... 27 - Science Reference Information; Chapter 7 - Thinking Critically & Resolving Misconceptions (7.1) Critical Thinking . Definition of critical thinking; Elements of Critical Thinking ... (7.5) Misconceptions in Chemistry (7.6) Misconceptions in Biology (7.7) Misconceptions in Earth and Space ...

  5. PDF The barriers to developing critical thinking in life and earth ...

    the life and earth sciences programs in Tunisia are not the exception by recommending to develop a scientific attitude characterized by curiosity, precision, objective judgment and critical thinking. The most popular definition of critical thought is that given by Ennis (1991): critical thinking is "reasonable and

  6. What Is Critical Thinking?

    What Is Critical Thinking? | Definition & Examples

  7. Scientific Thinking and Critical Thinking in Science Education

    Scientific Thinking and Critical Thinking in Science Education

  8. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  9. Definition and Examples of Critical Thinking

    Critical thinking is the process of independently analyzing, synthesizing, and evaluating information as a guide to behavior and beliefs. The American Philosophical Association has defined critical thinking as "the process of purposeful, self-regulatory judgment. The process gives reasoned consideration to evidence, contexts, conceptualizations ...

  10. The emergence and evolution of Earth System Science

    The emergence and evolution of Earth System Science

  11. PDF Our Concept and Definition of Critical Thinking

    The Etymology & Dictionary Definition of "Critical Thinking" The concept of critical thinking we adhere to reflects a concept embedded not only in a core body of research over the last 30 to 50 years but also derived from roots in ancient Greek. The word "critical'' derives etymologically from two Greek roots: "kriticos"

  12. Defining Critical Thinking

    Foundation for Critical Thinking. PO Box 31080 • Santa Barbara, CA 93130 . Toll Free 800.833.3645 • Fax 707.878.9111. [email protected]

  13. Understanding the Earth Systems: Expressions of Dynamic and Cyclic

    In this two-part study, we examine undergraduate university students' expression of two important system thinking characteristics—dynamic thinking and cyclic thinking—focusing particularly on students of geology. The study was conducted using an Earth systems questionnaire designed to elicit and reflect either dynamic or cyclic thinking. The study's first part was quantitative. Its ...

  14. What is Critical Thinking?

    Critical thinking is the ability to systematically doubt, scrutinize what you hear or read, and filter out false information, accepting nothing by default. It also encompasses the ability to highlight the main points, generalize, and compare phenomena or events. Moreover, critical thinking includes the right to make mistakes, acknowledging that ...

  15. What Are Critical Thinking Skills and Why Are They Important?

    What Are Critical Thinking Skills and Why Are They ...

  16. Critical Thinking: Where to Begin

    Critical Thinking: Where to Begin

  17. What is Earth Science?

    What is Earth Science?

  18. What is Critical Thinking?

    Critical thinking is the identification and evaluation of evidence to guide decision making. A critical thinker uses broad in-depth analysis of evidence to make decisions and communicate his/her beliefs clearly and accurately. Other Definitions of Critical Thinking:Robert H. Ennis, Author of The Cornell Critical Thinking Tests "Critical ...

  19. What is Critical Thinking?

    Critical thinking is "thinking about thinking". It is a way of deciding if a claim is true, false, or sometimes true and sometimes false, or partly true and partly false. It can be split into two important areas, Logical Fallacies and Cognitive Bias. A cognitive bias is when someone makes a bad choice that they think is a good choice.

  20. Earth sciences

    Earth sciences | Definition, Topics, & Facts

  21. Our Conception of Critical Thinking

    A Definition. Critical thinking is that mode of thinking — about any subject, content, or problem — in which the thinker improves the quality of his or her thinking by skillfully analyzing, assessing, and reconstructing it. Critical thinking is self-directed, self-disciplined, self-monitored, and self-corrective thinking.

  22. Using Critical Thinking in Essays and other Assignments

    Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement. Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process ...

  23. Critical Thinking

    Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking ...