SELECT COUNTRY

  • Overview of OWIS Singapore
  • Mission, Vision and Values
  • Creating Global Citizens
  • Parent Partnerships
  • Global Schools Group (GSG)
  • Academic & Examination Board (AEB)
  • Awards & Accreditations
  • Admissions Overview
  • Apply Online
  • Book a Tour
  • Application Process
  • School Fees
  • Scholarship
  • Admissions Events and Webinars
  • Entry Requirements
  • Student Contract & CPE-related Information
  • Agent Connect Programme
  • Learning & Curricula at OWIS
  • IB Primary Years Programme (Ages 3 to 11)
  • Modified Cambridge (Ages 12 to 14)
  • Cambridge IGCSE (Ages 15 to 16)
  • IB Diploma Programme (Ages 17 to 18)
  • Chinese-English Bilingual Programme (Ages 9 to 11)
  • Co-scholastic Learning Programmes
  • English as an Additional Language (EAL) Programme
  • After-School Programme (CCAs)
  • Overview of OWIS Nanyang
  • Welcome Message
  • Early Childhood
  • Primary School
  • Secondary School
  • Learning Environment
  • Academic Results & University Offers
  • Pastoral Care & Student Well-Being
  • School Calendar
  • Join Our Open House
  • Overview of OWIS Digital Campus
  • Skills Studios
  • Pastoral Care and Student Well-Being
  • Blogs & Insights
  • School Stories
  • In the Media
  • E-books & Downloads
  • Public vs Private School
  • Relocating to Singapore

OWIS SINGAPORE

Strategies to develop problem-solving skills in students.

David Swanson

  • November 14, 2023

OWIS Nanyang | Secondary Students in Maths Lesson | Problem-Solving Skills | International School in Singapore

Students need the freedom to brainstorm, develop solutions and make mistakes — this is truly the only way to prepare them for life outside the classroom. When students are immersed in a learning environment that only offers them step-by-step guides and encourages them to focus solely on memorisation, they are not gaining the skills necessary to help them navigate in the complex, interconnected environment of the real world.

Choosing a school that emphasises the importance of future-focussed skills will ensure your child has the abilities they need to survive and thrive anywhere in the world. What are future-focussed skills? Students who are prepared for the future need to possess highly developed communication skills, self-management skills, research skills, thinking skills, social skills and problem-solving skills. In this blog, I would like to focus on problem-solving skills.

What Are Problem-Solving Skills?

The Forage defines problem-solving skills as those that allow an individual to identify a problem, come up with solutions, analyse the options and collaborate to find the best solution for the issue.

Importance of Problem-Solving in the Classroom Setting

Learning how to solve problems effectively and positively is a crucial part of child development. When children are allowed to solve problems in a classroom setting, they can test those skills in a safe and nurturing environment. Generally, when they face age-appropriate issues, they can begin building those skills in a healthy and positive manner.

Without exposure to challenging situations and scenarios, children will not be equipped with the foundational problem-solving skills needed to tackle complex issues in the real world. Experts predict that problem-solving skills will eventually be more sought after in job applicants than hard skills related to that specific profession. Students must be given opportunities in school to resolve conflicts, address complex problems and come up with their own solutions in order to develop these skills.

Benefits of Problem-Solving Skills for Students

how to develop problem solving skills in students

Learning how to solve problems offers students many advantages, such as:

Improving Academic Results

When students have a well-developed set of problem-solving skills, they are often better critical and analytical thinkers as well. They are able to effectively use these 21st-century skills when completing their coursework, allowing them to become more successful in all academic areas. By prioritising problem-solving strategies in the classroom, teachers often find that academic performance improves.

Developing Confidence

Giving students the freedom to solve problems and create their own solutions is essentially permitting them to make their own choices. This sense of independence — and the natural resilience that comes with it — allows students to become confident learners who aren’t intimidated by new or challenging situations. Ultimately, this prepares them to take on more complex challenges in the future, both on a professional and social level.

Preparing Students for Real-World Challenges

The challenges we are facing today are only growing more complex, and by the time students have graduated, they are going to be facing issues that we may not even have imagined. By arming them with real-world problem-solving experience, they will not feel intimidated or stifled by those challenges; they will be excited and ready to address them. They will know how to discuss their ideas with others, respect various perspectives and collaborate to develop a solution that best benefits everyone involved.

The Best Problem-Solving Strategies for Students

how to develop problem solving skills in students

No single approach or strategy will instil a set of problem-solving skills in students.  Every child is different, so educators should rely on a variety of strategies to develop this core competency in their students.  It is best if these skills are developed naturally.

These are some of the best strategies to support students problem-solving skills:

Project-Based Learning

By providing students with project-based learning experiences and allowing plenty of time for discussion, educators can watch students put their problem-solving skills into action inside their classrooms. This strategy is one of the most effective ways to fine-tune problem-solving skills in students.  During project-based learning, teachers may take notes on how the students approach a problem and then offer feedback to students for future development. Teachers can address their observations of interactions during project-based learning at the group level or they can work with students on an individual basis to help them become more effective problem-solvers.

Encourage Discussion and Collaboration in the Classroom Setting

Another strategy to encourage the development of problem-solving skills in students is to allow for plenty of discussion and collaboration in the classroom setting.  When students interact with one another, they are naturally developing problem solving skills.  Rather than the teacher delivering information and requiring the students to passively receive information, students can share thoughts and ideas with one another.  Getting students to generate their own discussion and communication requires thinking skills. 

Utilising an Inquiry-Based approach to Learning

Students should be presented with situations in which their curiosity is sparked and they are motivated to inquire further. Teachers should ask open-ended questions and encourage students to develop responses which require problem-solving. By providing students with complex questions for which a variety of answers may be correct, teachers get students to consider different perspectives and deal with potential disagreement, which requires problem-solving skills to resolve.

Model Appropriate Problem-Solving Skills

One of the simplest ways to instil effective problem-solving skills in students is to model appropriate and respectful strategies and behaviour when resolving a conflict or addressing an issue. Teachers can showcase their problem-solving skills by:

  • Identifying a problem when they come across one for the class to see
  • Brainstorming possible solutions with students
  • Collaborating with students to decide on the best solution
  • Testing that solution and examining the results with the students
  • Adapting as necessary to improve results or achieve the desired goal

Prioritise Student Agency in Learning

Recent research shows that self-directed learning is one of the most effective ways to nurture 21st-century competency development in young learners. Learning experiences that encourage student agency often require problem-solving skills.  When creativity and innovation are needed, students often encounter unexpected problems along the way that must be solved. Through self-directed learning, students experience challenges in a natural situation and can fine-tune their problem-solving skills along the way.  Self-directed learning provides them with a foundation in problem-solving that they can build upon in the future, allowing them to eventually develop more advanced and impactful problem-solving skills for real life.

21st-Century Skill Development at OWIS Singapore

Problem-solving has been identified as one of the core competencies that young learners must develop to be prepared to meet the dynamic needs of a global environment.  At OWIS Singapore, we have implemented an inquiry-driven, skills-based curriculum that allows students to organically develop critical future-ready skills — including problem-solving.  Our hands-on approach to education enables students to collaborate, explore, innovate, face-challenges, make mistakes and adapt as necessary.  As such, they learn problem-solving skills in an authentic manner.

For more information about 21st-century skill development, schedule a campus tour today.

About Author

David swanson, latest blogs.

International Secondary School for IBDP in Singapore | Exploring Knowledge in the TOK Lesson

  • August 13, 2024

Transitioning From the Australian Curriculum to IB Programmes at OWIS Nanyang

how to develop problem solving skills in students

  • July 18, 2024

Understanding the IBDP: An In-Depth Guide

how to develop problem solving skills in students

  • July 12, 2024

Discovering Recreational Spaces at OWIS Digital Campus

how to develop problem solving skills in students

  • July 9, 2024

Transitioning From the Korean Curriculum to IB at OWIS Nanyang

how to develop problem solving skills in students

  • July 4, 2024

An In-depth Look at the Cambridge IGCSE at OWIS

how to develop problem solving skills in students

  • June 28, 2024

Leading the Way: Sustainable Innovations at OWIS Digital Campus

Related blog posts.

how to develop problem solving skills in students

  • Culture & Values
  • Holistic development
  • Testimonial

Fostering Confidence in Education: The Dynamic Blend of Diversity and Academic Excellence at OWIS Digital Campus*

  • December 18, 2023

how to develop problem solving skills in students

Embarking on a Journey Through the Art Spaces at OWIS Digital Campus*

  • March 11, 2024

how to develop problem solving skills in students

Transforming Experiential Learning Through Skill Studios at OWIS Digital Campus

  • April 8, 2024

how to develop problem solving skills in students

Cultivating Student Well-Being at OWIS Digital Campus for a Positive Educational Journey

  • May 14, 2024

nanyang Campus

  • +65 6914 6700
  • [email protected]
  • 21 Jurong West Street 81, Singapore 649075
  • +65 8318 3027

Digital Campus

  • #01-02, Global Campus Village, 27 Punggol Field Walk, Singapore 828649

OWIS Nanyang is accredited for the IB PYP, Cambridge IGCSE and IB DP. OWIS Digital Campus is accredited for the IB PYP and Cambridge IGCSE. CPE Registration Number: 200800495N | Validity Period: 24 February 2023 to 23 February 2027.

how to develop problem solving skills in students

Quick Links:

Virtual and in-person Campus Tours Available

The teacher's logo for schools and students.

The Will to Teach

4 Strategies to Build Your Students’ Problem Solving Skills

Every teacher understands the importance of fostering problem-solving skills in their students. These skills not only help students navigate academic challenges, but they also translate into valuable tools for life beyond the classroom. In this article, we’ll delve into the reasons why it’s crucial to develop these skills and provide practical strategies you can implement in your classroom right away.

Why is Developing Problem Solving Skills Important?

Strategies to develop problem solving skills, real-world example, concluding thoughts.

Problem-solving skills are a crucial part of a well-rounded education. They encourage critical thinking, enhance creativity and flexibility, and equip students with the resilience needed to tackle obstacles head-on.

  • Real-World Application:  Problem-solving skills aren’t confined to solving math problems or decoding a science experiment. They are applicable in everyday life situations, from resolving conflicts to making important decisions.
  • Enhances Creativity and Critical Thinking:  Problem-solving activities often require students to think outside the box and use their critical thinking abilities. This stimulates creativity and fosters innovative thought.
  • Boosts Confidence:  As students improve their problem-solving abilities, they gain confidence in their skills. This confidence can positively influence their academic performance and personal life.

how to develop problem solving skills in students

There are numerous ways to incorporate problem-solving skill development into your classroom. Here are a few effective strategies:

  • Project-Based Learning:  Projects that require planning, execution, and evaluation naturally involve problem-solving. For example, a project where students need to build a model bridge within a budget encourages them to solve logistical and financial problems.
  • Group Work :  Group work allows students to face and solve problems together. It encourages communication, cooperation, and collective problem-solving. For example, a group assignment on preparing a presentation on an environmental issue can encourage problem-solving related to information gathering, presentation design, and time management.
  • Encourage Questions :  Encourage students to ask and answer their own questions. This promotes independent thinking and problem solving. For example, instead of giving the answer to a complicated math problem, guide them towards the solution by prompting them with questions.
  • Role-play Scenarios:  Role-play scenarios can help students develop problem-solving skills by putting them in hypothetical situations and asking them to come up with solutions. For example, a role-play scenario where a student has to navigate a disagreement between friends can help them develop conflict resolution skills.

As a school leader, I’ve seen the power of problem-solving skills firsthand. I remember a group of students who were working on a community garden project. They faced numerous challenges, like budget constraints and unpredictable weather. Despite the hurdles, they didn’t give up. Instead, they came up with creative solutions, such as fundraising to cover costs and building a small greenhouse for year-round gardening. This project not only enhanced their problem-solving skills but also their resilience and team collaboration.

Developing problem-solving skills in students is a crucial aspect of education that extends beyond academic success. By incorporating problem-solving activities into your teaching, you’re equipping your students with a tool that will serve them in all facets of life. Remember, the best learning happens when students are actively engaged , so make problem-solving a fun and integral part of your classroom culture.

1. What are problem-solving skills? Problem-solving skills are abilities that help individuals define problems, analyze potential solutions, and implement effective strategies to solve problems.

2. Why are problem-solving skills important for students? Problem-solving skills are important as they foster creativity, critical thinking, and resilience. They are applicable in real-world situations and can boost student confidence.

3. What are some strategies to develop problem-solving skills in students? Strategies can include project-based learning, group work, encouraging questions, and role-play scenarios.

4. How can I make problem-solving activities engaging for students? Making problem-solving part of a larger project or group work can make it more engaging. Also, try to relate problems to real-world situations that students find relevant.

5. How can I assess my students’ problem-solving skills? You can assess problem-solving skills through direct observation, group project participation, and individual assignments that require problem-solving.

' src=

Related Posts

7 simple strategies for strong student-teacher relationships.

Getting to know your students on a personal level is the first step towards building strong relationships. Show genuine interest in their lives outside the classroom.

Students observing a teacher in a classroom.

Connecting Learning to Real-World Contexts: Strategies for Teachers

When students see the relevance of their classroom lessons to their everyday lives, they are more likely to be motivated, engaged, and retain information.

A young girl is using a tablet computer for school.

Encouraging Active Involvement in Learning: Strategies for Teachers

Active learning benefits students by improving retention of information, enhancing critical thinking skills, and encouraging a deeper understanding of the subject matter.

Students raising their hands in a classroom.

Collaborative and Cooperative Learning: A Guide for Teachers

These methods encourage students to work together, share ideas, and actively participate in their education.

A group of students are doing a science experiment in school, guided by their teacher.

Experiential Teaching: Role-Play and Simulations in Teaching

These interactive techniques allow students to immerse themselves in practical, real-world scenarios, thereby deepening their understanding and retention of key concepts.

In a school classroom, a teacher engages with her students while delivering a lesson.

Project-Based Learning Activities: A Guide for Teachers

Project-Based Learning is a student-centered pedagogy that involves a dynamic approach to teaching, where students explore real-world problems or challenges.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Developing Problem-Solving Skills for Kids | Strategies & Tips

how to develop problem solving skills in students

We've made teaching problem-solving skills for kids a whole lot easier! Keep reading and comment below with any other tips you have for your classroom!

Problem-Solving Skills for Kids: The Real Deal

Picture this: You've carefully created an assignment for your class. The step-by-step instructions are crystal clear. During class time, you walk through all the directions, and the response is awesome. Your students are ready! It's finally time for them to start working individually and then... 8 hands shoot up with questions. You hear one student mumble in the distance, "Wait, I don't get this" followed by the dreaded, "What are we supposed to be doing again?"

When I was a new computer science teacher, I would have this exact situation happen. As a result, I would end up scrambling to help each individual student with their problems until half the class period was eaten up. I assumed that in order for my students to learn best, I needed to be there to help answer questions immediately so they could move forward and complete the assignment.

Here's what I wish I had known when I started teaching coding to elementary students - the process of grappling with an assignment's content can be more important than completing the assignment's product. That said, not every student knows how to grapple, or struggle, in order to get to the "aha!" moment and solve a problem independently. The good news is, the ability to creatively solve problems is not a fixed skill. It can be learned by students, nurtured by teachers, and practiced by everyone!

Your students are absolutely capable of navigating and solving problems on their own. Here are some strategies, tips, and resources that can help:

Problem-Solving Skills for Kids: Student Strategies

These are strategies your students can use during independent work time to become creative problem solvers.

1. Go Step-By-Step Through The Problem-Solving Sequence 

Post problem-solving anchor charts and references on your classroom wall or pin them to your Google Classroom - anything to make them accessible to students. When they ask for help, invite them to reference the charts first.

Problem-solving skills for kids made easy using the problem solving sequence.

2. Revisit Past Problems

If a student gets stuck, they should ask themself, "Have I ever seen a problem like this before? If so, how did I solve it?" Chances are, your students have tackled something similar already and can recycle the same strategies they used before to solve the problem this time around.

3. Document What Doesn’t Work

Sometimes finding the answer to a problem requires the process of elimination. Have your students attempt to solve a problem at least two different ways before reaching out to you for help. Even better, encourage them write down their "Not-The-Answers" so you can see their thought process when you do step in to support. Cool thing is, you likely won't need to! By attempting to solve a problem in multiple different ways, students will often come across the answer on their own.

4. "3 Before Me"

Let's say your students have gone through the Problem Solving Process, revisited past problems, and documented what doesn't work. Now, they know it's time to ask someone for help. Great! But before you jump into save the day, practice "3 Before Me". This means students need to ask 3 other classmates their question before asking the teacher. By doing this, students practice helpful 21st century skills like collaboration and communication, and can usually find the info they're looking for on the way.

Problem-Solving Skills for Kids: Teacher Tips

These are tips that you, the teacher, can use to support students in developing creative problem-solving skills for kids.

1. Ask Open Ended Questions

When a student asks for help, it can be tempting to give them the answer they're looking for so you can both move on. But what this actually does is prevent the student from developing the skills needed to solve the problem on their own. Instead of giving answers, try using open-ended questions and prompts. Here are some examples:

how to develop problem solving skills in students

2. Encourage Grappling

Grappling  is everything a student might do when faced with a problem that does not have a clear solution. As explained in this article from Edutopia , this doesn't just mean perseverance! Grappling is more than that - it includes critical thinking, asking questions, observing evidence, asking more questions, forming hypotheses, and constructing a deep understanding of an issue.

how to develop problem solving skills in students

There are lots of ways to provide opportunities for grappling. Anything that includes the Engineering Design Process is a good one! Examples include:

  • Engineering or Art Projects
  • Design-thinking challenges
  • Computer science projects
  • Science experiments

3. Emphasize Process Over Product

For elementary students, reflecting on the process of solving a problem helps them develop a growth mindset . Getting an answer "wrong" doesn't need to be a bad thing! What matters most are the steps they took to get there and how they might change their approach next time. As a teacher, you can support students in learning this reflection process.

how to develop problem solving skills in students

4. Model The Strategies Yourself! 

As creative problem-solving skills for kids are being learned, there will likely be moments where they are frustrated or unsure. Here are some easy ways you can model what creative problem-solving looks and sounds like.

  • Ask clarifying questions if you don't understand something
  • Admit when don't know the correct answer
  • Talk through multiple possible outcomes for different situations 
  • Verbalize how you’re feeling when you find a problem

Practicing these strategies with your students will help create a learning environment where grappling, failing, and growing is celebrated!

Problem-Solving Skill for Kids

Did we miss any of your favorites? Comment and share them below!

Looking to add creative problem solving to your class?

Learn more about Kodable's free educator plan or create your free account today to get your students coding!

Kodable Education has everything you need to teach kids to code!

In just a few minutes a day, kids can learn all about the fundamentals of Computer Science - and so much more! With lessons ranging from zero to JavaScript, Kodable's suite of learning apps help prepare children for a digital future.

ISHCMC logo

Energized – Engaged – Empowered

Problem Solving Skills for Students: Top 8 Proven Strategies

Problem Solving Skills for Students: Top 8 Proven Strategies

Table of Contents

1. Follow the Problem Solving Process Step-by-Step

2. review previous challenges, 3. “3 before me” rule, 4. enhance problem solving elements, 5. apply proven methods from established theories, 6. create an open, non-critical setting, 7. be a good role model, 8. observe, evaluate, and share feedback, ishcmc – nurturing future problem solvers, faqs on problem solving skills for students.

This article explores eight proven strategies that enhance problem solving capabilities in students, gives problem solving skills examples for students , and provides a guide on how to improve problem solving skills in students .

Educators who use these strategies with their students can give them the knowledge and abilities to approach challenges bravely and creatively, establishing the foundation for lifelong learning and adaptability.

  • Follow the Problem Solving Process Step-by-Step
  • Review Previous Challenges
  • “3 Before Me” Rule
  • Enhance Problem Solving Elements
  • Apply Proven Methods from Established Theories
  • Create an Open, Non-Critical Setting
  • Be a Good Role Model
  • Observe, Evaluate, And Share Feedback

The problem solving process is a structured approach that systematically guides students to tackle challenges. It involves:

  • Identifying the Problem: Clearly state the problem. What are you trying to solve? Be specific about the issue(s).
  • Considering Different Perspectives: Practice active listening to understand various viewpoints.
  • Brainstorming: Generate potential solutions without evaluation.
  • Evaluating Options: Assess the pros and cons of each solution.
  • Selecting the Best Solution: Choose the option with the highest potential for success and consider its consequences.
  • Implementing the Decision: Develop a plan and execute it.
  • Monitoring Progress: Track the implementation and adjust as necessary.

Follow the Problem Solving Process Step-by-Step

Encourage students to reflect on past experiences when they encountered similar problems. Students can draw from their previous solutions by asking themselves, “Have I ever seen a problem like this before?”. Self-reflection can promote self-reliance and build confidence in problem solving skills for students . When instructors have pupils journal their challenges and solutions, it can help speed up the process.

Review Previous Challenges

Additionally, discussing case studies or real-life examples in class allows students to apply their knowledge to new situations . Reviewing past challenges strengthens students’ problem solving abilities and helps them better understand how to approach various problem types.

Implementing the “3 Before Me” rule can foster a collaborative learning environment where students support each other in problem solving endeavors. Educators promote autonomy, resourcefulness, active peer learning, and communication by encouraging students to seek peer help with 3 classmates before approaching the teacher.

"3 Before Me" Rule

During class activities, teachers might model the application of this rule and explain its rationale.  Through the practice of “3 Before Me,” students can use their peers’ combined knowledge and experience, which improves their problem solving skills and builds a sense of support and community.

Provide kids with options in various circumstances to encourage them to make judgments . Let them weigh their advantages and disadvantages, stimulating critical thinking and decision-making skills.

Incorporate decision-making opportunities into everyday activities, such as selecting food or planning leisure activities. Students who participate in these exercises can improve their analytical skills and learn to predict the effects of their decisions.

Enhance Problem Solving Elements

Furthermore, educators can introduce structured decision-making frameworks, such as cost-benefit analysis or SWOT analysis, to provide students with a systematic approach to evaluating options. Only when educators empower students with these tools and methods can the students make informed decisions and efficiently overcome complicated challenges.

Integrating psychological theories into problem solving approaches can broaden students’ perspectives and enhance problem solving skills . For instance, the “psychological distancing” theory suggests detaching emotions from problem solving to facilitate objective analysis.

Educators can assist students in getting a better knowledge of underlying issues, seeking potential solutions, and eliminating the chances of biases or preferences by encouraging them to approach situations objectively.

Apply Proven Methods from Established Theories

Similarly, the “ heuristic framework ” can help students break down complex problems into manageable components, facilitating strategic planning and problem decomposition .

Educators can incorporate components of this framework, such as backward planning, into classroom activities to encourage students to approach problems systematically. By applying these theories in practical contexts, students can develop adaptable problem solving strategies across various domains and situations

Furthermore, educators can leverage established pedagogical frameworks, such as the International Baccalaureate (IB) programme of ISHCMC, to promote critical thinking and problem solving skills for students . ISHCMC’s IB curriculum emphasizes inquiry-based learning, encouraging students to explore complex issues, ask probing questions, and develop analytical reasoning skills.

ISHCMC educators promote active learning by engaging students in inquiry-based activities, helping them develop a thorough comprehension of essential topics. The IB’s holistic approach to education also prioritizes the entire student body’s academic, emotional, and social growth.

Creating a supportive environment for students to express ideas freely fosters problem solving skills . Educators achieve this through open communication , risk-taking encouragement , and valuing diverse perspectives . With constructive comments and positive reinforcement, educators assist students in developing resilience and self-assurance when confronting obstacles.

Create an Open, Non-Critical Setting

Additionally, incorporating collaborative learning activities, such as group discussions and peer feedback sessions, can enhance problem solving skills by encouraging students to engage with different viewpoints and approaches . Educators create an open, non-critical setting to empower students to explore innovative solutions and develop creative problem solving strategies.

Educators, as role models, can significantly shape students’ problem solving skills through their behaviors and attitudes . By demonstrating effective techniques and decision-making processes, teachers offer effective guidance to students. Involving students in discussions and activities allows them to practice critical thinking and problemsolving in real-world scenarios.

Be a Good Role Model

For instance, educators can create opportunities for students to observe problem solving in action, such as case studies or simulations. By modeling structured problem solving approaches and offering feedback and encouragement, educators inspire students to develop their problem solving abilities and become confident, independent learners.

Educators should observe students’ problem solving processes, offer timely feedback , and encourage continuous reflection and improvement to identify strategies, specify areas for growth, and provide support.

Observe, Evaluate, And Share Feedback

Constructive feedback that highlights students’ strengths and areas for improvement helps refine their problem solving skills . A culture of ongoing feedback and reflection enables students to take responsibility for their education and develop the resilience and adaptability to navigate challenging situations effectively.

Through observation, assessment, and feedback, educators help students become competent and self-assured problem solvers.

How to teach problem solving skills for students is paramount in preparing them for the challenges they will encounter academically and in their future careers. By implementing proven strategies such as following a structured problem solving process, reviewing previous challenges , and encouraging an open and collaborative learning environment , educators can empower students to become confident and adept problem solvers.

ISHCMC - Nurturing Future Problem Solvers

At ISHCMC, we strive to nurture future problem solvers through our rigorous academic standards and holistic approach to education .

As the first fully authorized IB World School in Ho Chi Minh City , we provide students opportunities to develop their problem solving skills through inquiry-based learning, collaborative projects, and real-world applications .

Apply to ISHCMC today to nurture your children for success in a rapidly changing world!

Besides how to assess problem solving skills in students , and examples of problem solving skills for students , we will delve into other common questions about students’ problem solving skills for academic and personal growth.

Problem Solving Skills for Students

1. What are problem solving skills for students?

Problem solving skills for students involve more than just applying learned procedures. entail understanding the environment, identifying complex problems, reviewing information, developing and evaluating strategies, and implementing solutions to achieve desired outcomes. True problem solving involves applying a method to a specific problem under certain conditions that the solver hasn’t encountered before.

Teaching problem solving should involve modeling effective methods, contextualizing skills within specific subjects, aiding students in problem understanding, allocating sufficient time for practice, and prompting analytical thinking through questions and suggestions while linking errors to misconceptions for learning.

This approach promotes critical thinking and decision-making abilities crucial for addressing genuine challenges.

2. At what age do children start developing problem solving skills?

Problem solving skills begin to develop around the age of 2 to 3 . By age three, children start to apply problem solving skills in particular situations. However, very young children’s problem solving skills are constrained by three factors: a short attention span, challenges in understanding cause-and-effect relationships, and lack of experience in tackling problems independently.

Such foundational skills continue to develop and become more sophisticated throughout childhood and adolescence. Influences such as education, personal experiences, and overall cognitive development shape and enhance problem solving abilities.

By adolescence, individuals usually have a more developed capacity to handle problems at a higher level of complexity, think critically, and come up with innovative solutions.

3. What are the benefits of problem solving skills for students?

Problem solving skills offer numerous benefits for students:

  • Improved Academic Performance: Enhance critical and analytical thinking, improving academic results across subjects.
  • Increased Confidence: Encourage independence, fostering resilient learners unafraid of challenges, preparing them for future complexities.
  • Real-World Preparedness: Equip students to tackle evolving challenges by fostering collaboration, respect for diverse perspectives, and innovative problem solving approaches.
  • Distinguishing Between Issues: Help differentiate solvable problems from unsolvable ones, promoting effective decision-making.
  • Enhanced Understanding: Encourage deeper comprehension of causality, fostering resilience and adaptability.
  • Social and Situational Awareness: Promote better time management, patience, curiosity, resourcefulness, and determination.
  • Employability: Develop essential skills for working in teams, adapting to new and unique challenges, and meeting employer demands.

More articles

8 Effective Back to School Anxiety Tips for Child

8 Effective Back to School Anxiety Tips for Child

Primary and Secondary Schools Overview

Primary and Secondary Schools Overview

7 Common Challenges in Early Childhood Education (ECE)

7 Common Challenges in Early Childhood Education (ECE)

5 Benefits of Outdoor Education in Primary Schools

5 Benefits of Outdoor Education in Primary Schools

how to develop problem solving skills in students

Center for Teaching

Teaching problem solving.

Print Version

Tips and Techniques

Expert vs. novice problem solvers, communicate.

  • Have students  identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
  • If students are unable to articulate their concerns, determine where they are having trouble by  asking them to identify the specific concepts or principles associated with the problem.
  • In a one-on-one tutoring session, ask the student to  work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
  • When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)

Encourage Independence

  • Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
  • Have students work through problems on their own. Ask directing questions or give helpful suggestions, but  provide only minimal assistance and only when needed to overcome obstacles.
  • Don’t fear  group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others

Be sensitive

  • Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing  positive reinforcement to let students know when they have mastered a new concept or skill.

Encourage Thoroughness and Patience

  • Try to communicate that  the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.

Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills,  a teacher should be aware of principles and strategies of good problem solving in his or her discipline .

The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book  How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes  a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.

how to develop problem solving skills in students

Teaching Guides

  • Online Course Development Resources
  • Principles & Frameworks
  • Pedagogies & Strategies
  • Reflecting & Assessing
  • Challenges & Opportunities
  • Populations & Contexts

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules

Why Every Educator Needs to Teach Problem-Solving Skills

Strong problem-solving skills will help students be more resilient and will increase their academic and career success .

Want to learn more about how to measure and teach students’ higher-order skills, including problem solving, critical thinking, and written communication?

Problem-solving skills are essential in school, careers, and life.

Problem-solving skills are important for every student to master. They help individuals navigate everyday life and find solutions to complex issues and challenges. These skills are especially valuable in the workplace, where employees are often required to solve problems and make decisions quickly and effectively.

Problem-solving skills are also needed for students’ personal growth and development because they help individuals overcome obstacles and achieve their goals. By developing strong problem-solving skills, students can improve their overall quality of life and become more successful in their personal and professional endeavors.

how to develop problem solving skills in students

Problem-Solving Skills Help Students…

   develop resilience.

Problem-solving skills are an integral part of resilience and the ability to persevere through challenges and adversity. To effectively work through and solve a problem, students must be able to think critically and creatively. Critical and creative thinking help students approach a problem objectively, analyze its components, and determine different ways to go about finding a solution.  

This process in turn helps students build self-efficacy . When students are able to analyze and solve a problem, this increases their confidence, and they begin to realize the power they have to advocate for themselves and make meaningful change.

When students gain confidence in their ability to work through problems and attain their goals, they also begin to build a growth mindset . According to leading resilience researcher, Carol Dweck, “in a growth mindset, people believe that their most basic abilities can be developed through dedication and hard work—brains and talent are just the starting point. This view creates a love of learning and a resilience that is essential for great accomplishment.”

icon-resilience

    Set and Achieve Goals

Students who possess strong problem-solving skills are better equipped to set and achieve their goals. By learning how to identify problems, think critically, and develop solutions, students can become more self-sufficient and confident in their ability to achieve their goals. Additionally, problem-solving skills are used in virtually all fields, disciplines, and career paths, which makes them important for everyone. Building strong problem-solving skills will help students enhance their academic and career performance and become more competitive as they begin to seek full-time employment after graduation or pursue additional education and training.

CAE Portal Icon 280

  Resolve Conflicts

In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes “thinking outside the box” and approaching a conflict by searching for different solutions. This is a very different (and more effective!) method than a more stagnant approach that focuses on placing blame or getting stuck on elements of a situation that can’t be changed.

While it’s natural to get frustrated or feel stuck when working through a conflict, students with strong problem-solving skills will be able to work through these obstacles, think more rationally, and address the situation with a more solution-oriented approach. These skills will be valuable for students in school, their careers, and throughout their lives.

Perspectives

    Achieve Success

We are all faced with problems every day. Problems arise in our personal lives, in school and in our jobs, and in our interactions with others. Employers especially are looking for candidates with strong problem-solving skills. In today’s job market, most jobs require the ability to analyze and effectively resolve complex issues. Students with strong problem-solving skills will stand out from other applicants and will have a more desirable skill set.

In a recent opinion piece published by The Hechinger Report , Virgel Hammonds, Chief Learning Officer at KnowledgeWorks, stated “Our world presents increasingly complex challenges. Education must adapt so that it nurtures problem solvers and critical thinkers.” Yet, the “traditional K–12 education system leaves little room for students to engage in real-world problem-solving scenarios.” This is the reason that a growing number of K–12 school districts and higher education institutions are transforming their instructional approach to personalized and competency-based learning, which encourage students to make decisions, problem solve and think critically as they take ownership of and direct their educational journey.

graduate-icon

Problem-Solving Skills Can Be Measured and Taught

Research shows that problem-solving skills can be measured and taught. One effective method is through performance-based assessments which require students to demonstrate or apply their knowledge and higher-order skills to create a response or product or do a task.

What Are Performance-Based Assessments?

how to develop problem solving skills in students

With the No Child Left Behind Act (2002), the use of standardized testing became the primary way to measure student learning in the U.S. The legislative requirements of this act shifted the emphasis to standardized testing, and this led to a  decline in nontraditional testing methods .

But   many educators, policy makers, and parents have concerns with standardized tests. Some of the top issues include that they don’t provide feedback on how students can perform better, they don’t value creativity, they are not representative of diverse populations, and they can be disadvantageous to lower-income students.

While standardized tests are still the norm, U.S. Secretary of Education Miguel Cardona is encouraging states and districts to move away from traditional multiple choice and short response tests and instead use performance-based assessment, competency-based assessments, and other more authentic methods of measuring students abilities and skills rather than rote learning. 

Performance-based assessments  measure whether students can apply the skills and knowledge learned from a unit of study. Typically, a performance task challenges students to use their higher-order skills to complete a project or process. Tasks can range from an essay to a complex proposal or design.

Preview a Performance-Based Assessment

Want a closer look at how performance-based assessments work?  Preview CAE’s K–12 and Higher Education assessments and see how CAE’s tools help students develop critical thinking, problem-solving, and written communication skills.

Performance-Based Assessments Help Students Build and Practice Problem-Solving Skills

In addition to effectively measuring students’ higher-order skills, including their problem-solving skills, performance-based assessments can help students practice and build these skills. Through the assessment process, students are given opportunities to practically apply their knowledge in real-world situations. By demonstrating their understanding of a topic, students are required to put what they’ve learned into practice through activities such as presentations, experiments, and simulations. 

This type of problem-solving assessment tool requires students to analyze information and choose how to approach the presented problems. This process enhances their critical thinking skills and creativity, as well as their problem-solving skills. Unlike traditional assessments based on memorization or reciting facts, performance-based assessments focus on the students’ decisions and solutions, and through these tasks students learn to bridge the gap between theory and practice.

Performance-based assessments like CAE’s College and Career Readiness Assessment (CRA+) and Collegiate Learning Assessment (CLA+) provide students with in-depth reports that show them which higher-order skills they are strongest in and which they should continue to develop. This feedback helps students and their teachers plan instruction and supports to deepen their learning and improve their mastery of critical skills.

how to develop problem solving skills in students

Explore CAE’s Problem-Solving Assessments

CAE offers performance-based assessments that measure student proficiency in higher-order skills including problem solving, critical thinking, and written communication.

  • College and Career Readiness Assessment (CCRA+) for secondary education and
  • Collegiate Learning Assessment (CLA+) for higher education.

Our solution also includes instructional materials, practice models, and professional development.

We can help you create a program to build students’ problem-solving skills that includes:

  • Measuring students’ problem-solving skills through a performance-based assessment    
  • Using the problem-solving assessment data to inform instruction and tailor interventions
  • Teaching students problem-solving skills and providing practice opportunities in real-life scenarios
  • Supporting educators with quality professional development

Get started with our problem-solving assessment tools to measure and build students’ problem-solving skills today! These skills will be invaluable to students now and in the future.

how to develop problem solving skills in students

Ready to Get Started?

Learn more about cae’s suite of products and let’s get started measuring and teaching students important higher-order skills like problem solving..

Teaching Problem-Solving Skills

Many instructors design opportunities for students to solve “problems”. But are their students solving true problems or merely participating in practice exercises? The former stresses critical thinking and decision­ making skills whereas the latter requires only the application of previously learned procedures.

Problem solving is often broadly defined as "the ability to understand the environment, identify complex problems, review related information to develop, evaluate strategies and implement solutions to build the desired outcome" (Fissore, C. et al, 2021). True problem solving is the process of applying a method – not known in advance – to a problem that is subject to a specific set of conditions and that the problem solver has not seen before, in order to obtain a satisfactory solution.

Below you will find some basic principles for teaching problem solving and one model to implement in your classroom teaching.

Principles for teaching problem solving

  • Model a useful problem-solving method . Problem solving can be difficult and sometimes tedious. Show students how to be patient and persistent, and how to follow a structured method, such as Woods’ model described below. Articulate your method as you use it so students see the connections.
  • Teach within a specific context . Teach problem-solving skills in the context in which they will be used by students (e.g., mole fraction calculations in a chemistry course). Use real-life problems in explanations, examples, and exams. Do not teach problem solving as an independent, abstract skill.
  • Help students understand the problem . In order to solve problems, students need to define the end goal. This step is crucial to successful learning of problem-solving skills. If you succeed at helping students answer the questions “what?” and “why?”, finding the answer to “how?” will be easier.
  • Take enough time . When planning a lecture/tutorial, budget enough time for: understanding the problem and defining the goal (both individually and as a class); dealing with questions from you and your students; making, finding, and fixing mistakes; and solving entire problems in a single session.
  • Ask questions and make suggestions . Ask students to predict “what would happen if …” or explain why something happened. This will help them to develop analytical and deductive thinking skills. Also, ask questions and make suggestions about strategies to encourage students to reflect on the problem-solving strategies that they use.
  • Link errors to misconceptions . Use errors as evidence of misconceptions, not carelessness or random guessing. Make an effort to isolate the misconception and correct it, then teach students to do this by themselves. We can all learn from mistakes.

Woods’ problem-solving model

Define the problem.

  • The system . Have students identify the system under study (e.g., a metal bridge subject to certain forces) by interpreting the information provided in the problem statement. Drawing a diagram is a great way to do this.
  • Known(s) and concepts . List what is known about the problem, and identify the knowledge needed to understand (and eventually) solve it.
  • Unknown(s) . Once you have a list of knowns, identifying the unknown(s) becomes simpler. One unknown is generally the answer to the problem, but there may be other unknowns. Be sure that students understand what they are expected to find.
  • Units and symbols . One key aspect in problem solving is teaching students how to select, interpret, and use units and symbols. Emphasize the use of units whenever applicable. Develop a habit of using appropriate units and symbols yourself at all times.
  • Constraints . All problems have some stated or implied constraints. Teach students to look for the words "only", "must", "neglect", or "assume" to help identify the constraints.
  • Criteria for success . Help students consider, from the beginning, what a logical type of answer would be. What characteristics will it possess? For example, a quantitative problem will require an answer in some form of numerical units (e.g., $/kg product, square cm, etc.) while an optimization problem requires an answer in the form of either a numerical maximum or minimum.

Think about it

  • “Let it simmer”.  Use this stage to ponder the problem. Ideally, students will develop a mental image of the problem at hand during this stage.
  • Identify specific pieces of knowledge . Students need to determine by themselves the required background knowledge from illustrations, examples and problems covered in the course.
  • Collect information . Encourage students to collect pertinent information such as conversion factors, constants, and tables needed to solve the problem.

Plan a solution

  • Consider possible strategies . Often, the type of solution will be determined by the type of problem. Some common problem-solving strategies are: compute; simplify; use an equation; make a model, diagram, table, or chart; or work backwards.
  • Choose the best strategy . Help students to choose the best strategy by reminding them again what they are required to find or calculate.

Carry out the plan

  • Be patient . Most problems are not solved quickly or on the first attempt. In other cases, executing the solution may be the easiest step.
  • Be persistent . If a plan does not work immediately, do not let students get discouraged. Encourage them to try a different strategy and keep trying.

Encourage students to reflect. Once a solution has been reached, students should ask themselves the following questions:

  • Does the answer make sense?
  • Does it fit with the criteria established in step 1?
  • Did I answer the question(s)?
  • What did I learn by doing this?
  • Could I have done the problem another way?

If you would like support applying these tips to your own teaching, CTE staff members are here to help.  View the  CTE Support  page to find the most relevant staff member to contact. 

  • Fissore, C., Marchisio, M., Roman, F., & Sacchet, M. (2021). Development of problem solving skills with Maple in higher education. In: Corless, R.M., Gerhard, J., Kotsireas, I.S. (eds) Maple in Mathematics Education and Research. MC 2020. Communications in Computer and Information Science, vol 1414. Springer, Cham. https://doi.org/10.1007/978-3-030-81698-8_15
  • Foshay, R., & Kirkley, J. (1998). Principles for Teaching Problem Solving. TRO Learning Inc., Edina MN.  (PDF) Principles for Teaching Problem Solving (researchgate.net)
  • Hayes, J.R. (1989). The Complete Problem Solver. 2nd Edition. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Woods, D.R., Wright, J.D., Hoffman, T.W., Swartman, R.K., Doig, I.D. (1975). Teaching Problem solving Skills.
  • Engineering Education. Vol 1, No. 1. p. 238. Washington, DC: The American Society for Engineering Education.

teaching tips

Catalog search

Teaching tip categories.

  • Assessment and feedback
  • Blended Learning and Educational Technologies
  • Career Development
  • Course Design
  • Course Implementation
  • Inclusive Teaching and Learning
  • Learning activities
  • Support for Student Learning
  • Support for TAs
  • Learning activities ,

Teaching problem solving: Let students get ‘stuck’ and ‘unstuck’

Subscribe to the center for universal education bulletin, kate mills and km kate mills literacy interventionist - red bank primary school helyn kim helyn kim former brookings expert.

October 31, 2017

This is the second in a six-part  blog series  on  teaching 21st century skills , including  problem solving ,  metacognition , critical thinking , and collaboration , in classrooms.

In the real world, students encounter problems that are complex, not well defined, and lack a clear solution and approach. They need to be able to identify and apply different strategies to solve these problems. However, problem solving skills do not necessarily develop naturally; they need to be explicitly taught in a way that can be transferred across multiple settings and contexts.

Here’s what Kate Mills, who taught 4 th grade for 10 years at Knollwood School in New Jersey and is now a Literacy Interventionist at Red Bank Primary School, has to say about creating a classroom culture of problem solvers:

Helping my students grow to be people who will be successful outside of the classroom is equally as important as teaching the curriculum. From the first day of school, I intentionally choose language and activities that help to create a classroom culture of problem solvers. I want to produce students who are able to think about achieving a particular goal and manage their mental processes . This is known as metacognition , and research shows that metacognitive skills help students become better problem solvers.

I begin by “normalizing trouble” in the classroom. Peter H. Johnston teaches the importance of normalizing struggle , of naming it, acknowledging it, and calling it what it is: a sign that we’re growing. The goal is for the students to accept challenge and failure as a chance to grow and do better.

I look for every chance to share problems and highlight how the students— not the teachers— worked through those problems. There is, of course, coaching along the way. For example, a science class that is arguing over whose turn it is to build a vehicle will most likely need a teacher to help them find a way to the balance the work in an equitable way. Afterwards, I make it a point to turn it back to the class and say, “Do you see how you …” By naming what it is they did to solve the problem , students can be more independent and productive as they apply and adapt their thinking when engaging in future complex tasks.

After a few weeks, most of the class understands that the teachers aren’t there to solve problems for the students, but to support them in solving the problems themselves. With that important part of our classroom culture established, we can move to focusing on the strategies that students might need.

Here’s one way I do this in the classroom:

I show the broken escalator video to the class. Since my students are fourth graders, they think it’s hilarious and immediately start exclaiming, “Just get off! Walk!”

When the video is over, I say, “Many of us, probably all of us, are like the man in the video yelling for help when we get stuck. When we get stuck, we stop and immediately say ‘Help!’ instead of embracing the challenge and trying new ways to work through it.” I often introduce this lesson during math class, but it can apply to any area of our lives, and I can refer to the experience and conversation we had during any part of our day.

Research shows that just because students know the strategies does not mean they will engage in the appropriate strategies. Therefore, I try to provide opportunities where students can explicitly practice learning how, when, and why to use which strategies effectively  so that they can become self-directed learners.

For example, I give students a math problem that will make many of them feel “stuck”. I will say, “Your job is to get yourselves stuck—or to allow yourselves to get stuck on this problem—and then work through it, being mindful of how you’re getting yourselves unstuck.” As students work, I check-in to help them name their process: “How did you get yourself unstuck?” or “What was your first step? What are you doing now? What might you try next?” As students talk about their process, I’ll add to a list of strategies that students are using and, if they are struggling, help students name a specific process. For instance, if a student says he wrote the information from the math problem down and points to a chart, I will say: “Oh that’s interesting. You pulled the important information from the problem out and organized it into a chart.” In this way, I am giving him the language to match what he did, so that he now has a strategy he could use in other times of struggle.

The charts grow with us over time and are something that we refer to when students are stuck or struggling. They become a resource for students and a way for them to talk about their process when they are reflecting on and monitoring what did or did not work.

For me, as a teacher, it is important that I create a classroom environment in which students are problem solvers. This helps tie struggles to strategies so that the students will not only see value in working harder but in working smarter by trying new and different strategies and revising their process. In doing so, they will more successful the next time around.

Related Content

Esther Care, Helyn Kim, Alvin Vista

October 17, 2017

David Owen, Alvin Vista

November 15, 2017

Loren Clarke, Esther Care

December 5, 2017

Global Education K-12 Education

Global Economy and Development

Center for Universal Education

Sudha Ghimire

August 22, 2024

Online only

11:00 am - 12:00 pm EDT

August 20, 2024

Resilient Educator logo

ChatGPT for Teachers

Trauma-informed practices in schools, teacher well-being, cultivating diversity, equity, & inclusion, integrating technology in the classroom, social-emotional development, covid-19 resources, invest in resilience: summer toolkit, civics & resilience, all toolkits, degree programs, trauma-informed professional development, teacher licensure & certification, how to become - career information, classroom management, instructional design, lifestyle & self-care, online higher ed teaching, current events, 5 problem-solving activities for the classroom.

5 Problem-Solving Activities for the Classroom

Problem-solving skills are necessary in all areas of life, and classroom problem solving activities can be a great way to get students prepped and ready to solve real problems in real life scenarios. Whether in school, work or in their social relationships, the ability to critically analyze a problem, map out all its elements and then prepare a workable solution is one of the most valuable skills one can acquire in life.

Educating your students about problem solving skills from an early age in school can be facilitated through classroom problem solving activities. Such endeavors encourage cognitive as well as social development, and can equip students with the tools they’ll need to address and solve problems throughout the rest of their lives. Here are five classroom problem solving activities your students are sure to benefit from as well as enjoy doing:

1. Brainstorm bonanza

Having your students create lists related to whatever you are currently studying can be a great way to help them to enrich their understanding of a topic while learning to problem-solve. For example, if you are studying a historical, current or fictional event that did not turn out favorably, have your students brainstorm ways that the protagonist or participants could have created a different, more positive outcome. They can brainstorm on paper individually or on a chalkboard or white board in front of the class.

2. Problem-solving as a group

Have your students create and decorate a medium-sized box with a slot in the top. Label the box “The Problem-Solving Box.” Invite students to anonymously write down and submit any problem or issue they might be having at school or at home, ones that they can’t seem to figure out on their own. Once or twice a week, have a student draw one of the items from the box and read it aloud. Then have the class as a group figure out the ideal way the student can address the issue and hopefully solve it.

3. Clue me in

This fun detective game encourages problem-solving, critical thinking and cognitive development. Collect a number of items that are associated with a specific profession, social trend, place, public figure, historical event, animal, etc. Assemble actual items (or pictures of items) that are commonly associated with the target answer. Place them all in a bag (five-10 clues should be sufficient.) Then have a student reach into the bag and one by one pull out clues. Choose a minimum number of clues they must draw out before making their first guess (two- three). After this, the student must venture a guess after each clue pulled until they guess correctly. See how quickly the student is able to solve the riddle.

4. Survivor scenarios

Create a pretend scenario for students that requires them to think creatively to make it through. An example might be getting stranded on an island, knowing that help will not arrive for three days. The group has a limited amount of food and water and must create shelter from items around the island. Encourage working together as a group and hearing out every child that has an idea about how to make it through the three days as safely and comfortably as possible.

5. Moral dilemma

Create a number of possible moral dilemmas your students might encounter in life, write them down, and place each item folded up in a bowl or bag. Some of the items might include things like, “I saw a good friend of mine shoplifting. What should I do?” or “The cashier gave me an extra $1.50 in change after I bought candy at the store. What should I do?” Have each student draw an item from the bag one by one, read it aloud, then tell the class their answer on the spot as to how they would handle the situation.

Classroom problem solving activities need not be dull and routine. Ideally, the problem solving activities you give your students will engage their senses and be genuinely fun to do. The activities and lessons learned will leave an impression on each child, increasing the likelihood that they will take the lesson forward into their everyday lives.

You may also like to read

  • Classroom Activities for Introverted Students
  • Activities for Teaching Tolerance in the Classroom
  • 5 Problem-Solving Activities for Elementary Classrooms
  • 10 Ways to Motivate Students Outside the Classroom
  • Motivating Introverted Students to Excel in the Classroom
  • How to Engage Gifted and Talented Students in the Classroom

Explore careers and degrees on Noodle.com - Find your next career

Categorized as: Tips for Teachers and Classroom Resources

Tagged as: Assessment Tools ,  Engaging Activities

  • Online & Campus Doctorate (EdD) in Higher Edu...
  • Degrees and Certificates for Teachers & Educa...
  • Programming Teacher: Job Description and Sala...

Subscribe for Updates

7 ways to cultivate students’ problem-solving skills.

 alt=

Parents, teachers, and other adults have developed a lot of skills and knowledge that can make it easy for us to solve problems. We’ve seen the situation before, and the solution may seem obvious to us, but young people are likely encountering the challenge for the first time. How do we help them tackle the problems themselves so that they develop the expertise they’ll need to solve other problems in the future?

Use these tips to help you think about how you support young people in solving challenges they encounter.

  • Encourage “playing with” the problem. Encourage young people to throw out lots of ideas, make conjectures, and consider many different possibilities–even some that are outlandish. Look at the problem from many perspectives. This flexible thinking is an important skill for forming better solutions than the first that come to mind.
  • Guide the young person to break a big problem into its parts. Then focus on aspects of the problem that the young person doesn’t understand or that seem like they have more potential to be solved.
  • Ask the young person to work through the problem out loud. Not only does this help you coach the young person, but it also slows down the thinking process.
  • Model and talk about the problem solving process, rather than focusing on getting the right answer. Talk through the steps you take and ask the young person to do the same so that it’s easier to learn.
  • Have the student work through the problem on her or his own. Give only as much assistance as you need to when the young person is really stuck. And when you do so, limit your guidance to questions or suggestions that will help the young person move through a specific issue without solving the whole problem for her or him.
  • Ask open-ended questions. Instead of, “Do you think that will fit in there?” you might ask a more open-ended question, such as, “What do you think it will take to get everything to fit inside?” Ask follow-up questions that encourage the young person to articulate their problem-solving process. This not only helps you learn and guide, but it reinforces the skills.
  • Give positive reinforcement when young people overcome an obstacle or master a new problem-solving skill. Be specific in highlighting what they have done or learned.

Positive Classroom Tools

Visit the store now >>

*Discount automatically applied at checkout.

Search Institute

3001 Broadway Street NE #310

Minneapolis, MN 55413

  • 800.888.7828
  • 612.376.8955

[email protected]

how to develop problem solving skills in students

  • Practical Solutions
  • Funders & Partners
  • Subscribe to our Newsletter
  • Cancellations, Returns & Refunds
  • Public Records
  • Permissions Request Form
  • Keep Connected
  • Existing Customer Store Login

© 2021 Search Institute |

Privacy Policy | Terms of Use

Search Institute is a 501(c)(3) nonprofit charitable corporation. All contributions are tax deductible.

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Happiness Hub Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • Happiness Hub
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • Personal Development
  • Problem Solving

How to Improve Problem Solving Skills

Last Updated: July 24, 2024 Fact Checked

This article was co-authored by Erin Conlon, PCC, JD . Erin Conlon is an Executive Life Coach, the Founder of Erin Conlon Coaching, and the host of the podcast "This is Not Advice." She specializes in aiding leaders and executives to thrive in their career and personal lives. In addition to her private coaching practice, she teaches and trains coaches and develops and revises training materials to be more diverse, equitable, and inclusive. She holds a BA in Communications and History and a JD from The University of Michigan. Erin is a Professional Certified Coach with The International Coaching Federation. There are 11 references cited in this article, which can be found at the bottom of the page. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 239,928 times.

The ability to solve problems applies to more than just mathematics homework. Analytical thinking and problem-solving skills are a part of many jobs, ranging from accounting and computer programming to detective work and even creative occupations like art, acting, and writing. While individual problems vary, there are certain general approaches to problem-solving like the one first proposed by mathematician George Polya in 1945. By following his principles of understanding the problem, devising a plan, carrying out the plan, and looking back, you can improve your problem-solving and tackle any issue systematically.

Define the problem clearly.

This is an outwardly simple but vital step.

  • Try to formulate questions. Say that as a student you have very little money and want to find an effective solution. What is at issue? Is it one of income – are you not making enough money? Is it one of over-spending? Or perhaps you have run into unexpected expenses or your financial situation has changed?

State your objective.

This is another means to reach the nature of the problem.

  • Say that your problem is still money. What is your goal? Perhaps you never have enough to go out on the weekend and have fun at the movies or a club. You decide that your goal is to have more spending cash. Good! With a clear goal, you have better defined the problem.

Gather information systematically.

Gathering facts helps you get a clear picture of your problem and goal.

  • To solve your money shortage, for example, you would want to get as detailed a picture of your financial situation as possible. Collect data through your latest bank statements and to talk to a bank teller. Track your earnings and spending habits in a notebook, and then create a spreadsheet or chart to show your income alongside your expenditures.

Analyze information.

Looking for links and relationships in your data can help you better understand your situation.

  • Say you have now collected all your bank statements. Look at them. When, how, and from where is your money coming? Where, when, and how are you spending it? What is the overall pattern of your finances? Do you have a net surplus or deficit? Are there any unexplained items?

Generate possible solutions.

This is a great time to consider all of your options.

  • Your problem is a lack of money. Your goal is to have more spending cash. What are your options? Without evaluating them, come up with possible options. Perhaps you can acquire more money by getting a part-time job or by taking out a student loan. On the other hand, you might try to save by cutting your spending or by lowering other costs.
  • Divide and conquer. Break the problem into smaller problems and brainstorm solutions for them separately, one by one.
  • Use analogies and similarities. Try to find a resemblance with a previously solved or common problem. If you can find commonalities between your situation and one you've dealt with before, you may be able to adapt some of the solutions for use now.

Evaluate the solutions and choose.

A thorough analysis helps you make the best possible choice.

  • How can you raise money? Look at expenditures – you aren’t spending much outside of basic needs like tuition, food, and housing. Can you cut costs in other ways like finding a roommate to split rent? Can you afford to take a student loan just to have fun on the weekend? Can you spare time from your studies to work part-time?
  • Each solution will produce its own set of circumstances that need evaluation. Run projections. Your money problem will require you to draw up budgets. But it will also take personal consideration. For example, can you cut back on basic things like food or housing? Are you willing to prioritize money over school or to take on debt?

Implement a solution.

This gives you a chance to see how effective your solution really is.

  • You decide to cut costs, because you were unwilling to take on debt, to divert time away from school, or to live with a roommate. You draw up a detailed budget, cutting a few dollars here and there, and commit to a month-long trial.

Review and evaluate the outcome.

Ask yourself if the solution is working, or if it needs to be adjusted.

  • The results of your trial are mixed. On one hand, you have saved enough during the month for fun weekend activities. But there are new problems. You find that you must choose between spending cash and buying basics like food. You also need a new pair of shoes but can’t afford it, according to your budget. You may need to a different solution.

Adjust if necessary.

It’s okay if your first solution doesn’t work out.

  • After a month, you decide to abandon your first budget and to look for part-time work. You find a work-study job on campus. Making a new budget, you now have extra money without taking too much time away from your studies. You may have an effective solution.

Do regular mental exercises.

Like a muscle in your body, you will need to work on problem solving regularly.

  • Word games work great. In a game like “Split Words,” for example, you have to match word fragments to form words under a given theme like “philosophy.” In the game, “Tower of Babel,” you will need to memorize and then match words in a foreign language to the proper picture.
  • Mathematical games will also put your problem solving to the test. Whether it be number or word problems, you will have to activate the parts of your brain that analyze information. For instance: “James is half as old now as he will be when he is 60 years older than he was six years before he was half as old as he is now. How old will James be when his age is twice what it was 10 years after he was half his current age?”

Play video games.

New research shows that playing video games can improve parts of your thinking.

  • Play something that will force you to think strategically or analytically. Try a puzzle game like Tetris. Or, perhaps you would rather prefer a role-playing or strategy game. In that case, something like “Civilization” or “Sim-City” might suit you better.

Take up a hobby.

A hobby is another way that you can continue to improve your problem solving skills.

  • Web design, software programming, jigsaw puzzles, Sudoku, and chess are also hobbies that will force you to think strategically and systematically. Any of these will help you improve your overall problem solving.

Expert Q&A

You Might Also Like

Deal With Problems

  • ↑ https://www.healthywa.wa.gov.au/Articles/N_R/Problem-solving
  • ↑ https://asq.org/quality-resources/problem-solving
  • ↑ https://ctb.ku.edu/en/table-of-contents/evaluate/evaluate-community-interventions/collect-analyze-data/main
  • ↑ https://www.mindtools.com/pages/article/newCT_96.htm
  • ↑ https://www.skillsyouneed.com/ips/problem-solving.html
  • ↑ Erin Conlon, PCC, JD. Executive Life Coach. Expert Interview. 31 August 2021.
  • ↑ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5930973/
  • ↑ https://www.theguardian.com/lifeandstyle/2018/oct/13/mental-exercises-to-keep-your-brain-sharp
  • ↑ https://www.apa.org/monitor/2014/02/video-game
  • ↑ https://www.nature.com/articles/d41586-018-05449-7

About This Article

Erin Conlon, PCC, JD

To improve your problem-solving skills, start by clearly defining the problem and your objective or goal. Next, gather as much information as you can about the problem and organize the data by rewording, condensing, or summarizing it. Then, analyze the information you've gathered, looking for important links, patterns, and relationships in the data. Finally, brainstorm possible solutions, evaluate the solutions, and choose one to implement. For tips on implementing solutions successfully, read on! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Georgia Williams

Georgia Williams

Mar 10, 2023

Did this article help you?

Georgia Williams

Mar 8, 2017

Alexis Stevens

Alexis Stevens

Sep 23, 2016

Do I Have a Dirty Mind Quiz

Featured Articles

Protect Yourself from Predators (for Kids)

Trending Articles

Reading Women’s Body Language: Signs & Signals That She’s Flirting

Watch Articles

Wear a Headband

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Don’t miss out! Sign up for

wikiHow’s newsletter

BLOG | PODCAST NETWORK | ADMIN. MASTERMIND | SWAG & MERCH | ONLINE TRAINING

Teach Better

  • Meet the Team
  • Join the Team
  • Our Philosophy
  • Teach Better Mindset
  • Custom Professional Development
  • Livestream Shows & Videos
  • Administrator Mastermind
  • Academy Online Courses
  • EDUcreator Club+
  • Podcast Network
  • Speakers Network
  • Free Downloads
  • Ambassador Program
  • Free Facebook Group
  • Professional Development
  • Request Training
  • Speakers Network Home
  • Keynote Speakers

Strategies to Increase Critical Thinking Skills in students

Teach Better Team October 2, 2019 Blog , Engage Better , Lesson Plan Better , Personalize Student Learning Better

how to develop problem solving skills in students

In This Post:

  • The importance of helping students increase critical thinking skills.
  • Ways to promote the essential skills needed to analyze and evaluate.
  • Strategies to incorporate critical thinking into your instruction.

We ask our teachers to be “future-ready” or say that we are teaching “for jobs that don’t exist yet.” These are powerful statements. At the same time, they give teachers the impression that we have to drastically change what we are doing .

So how do we plan education for an unknown job market or unknown needs?

My answer: We can’t predict the jobs, but whatever they are, students will need to think critically to do them. So, our job is to teach our students HOW to think, not WHAT to think.

Helping Students Become Critical Thinkers

My answer is rooted in the call to empower our students to be critical thinkers. I believe that to be critical thinkers, educators need to provide students with the strategies they need. And we need to ask more than just surface-level questions.

Questions to students must motivate them to dig up background knowledge. They should inspire them to make connections to real-world scenarios. These make the learning more memorable and meaningful.

Critical thinking is a general term. I believe this term means that students effectively identify, analyze, and evaluate content or skills. In this process, they (the students) will discover and present convincing reasons in support of their answers or thinking.

You can look up critical thinking and get many definitions like this one from Wikipedia: “ Critical thinking consists of a mental process of analyzing or evaluating information, particularly statements or propositions that people have offered as true. ”

Essential Skills for Critical Thinking

In my current role as director of curriculum and instruction, I work to promote the use of 21st-century tools and, more importantly, thinking skills. Some essential skills that are the basis for critical thinking are:

  • Communication and Information skills
  • Thinking and Problem-Solving skills
  • Interpersonal and Self- Directional skills
  • Collaboration skills

These four bullets are skills students are going to need in any field and in all levels of education. Hence my answer to the question. We need to teach our students to think critically and for themselves.

One of the goals of education is to prepare students to learn through discovery . Providing opportunities to practice being critical thinkers will assist students in analyzing others’ thinking and examining the logic of others.

Understanding others is an essential skill in collaboration and in everyday life. Critical thinking will allow students to do more than just memorize knowledge.

Ask Questions

So how do we do this? One recommendation is for educators to work in-depth questioning strategies into a lesson launch.

Ask thoughtful questions to allow for answers with sound reasoning. Then, word conversations and communication to shape students’ thinking. Quick answers often result in very few words and no eye contact, which are skills we don’t want to promote.

When you are asking students questions and they provide a solution, try some of these to promote further thinking:

  • Could you elaborate further on that point?
  • Will you express that point in another way?
  • Can you give me an illustration?
  • Would you give me an example?
  • Will you you provide more details?
  • Could you be more specific?
  • Do we need to consider another point of view?
  • Is there another way to look at this question?

Utilizing critical thinking skills could be seen as a change in the paradigm of teaching and learning. Engagement in education will enhance the collaboration among teachers and students. It will also provide a way for students to succeed even if the school system had to start over.

[scroll down to keep reading]

Promoting critical thinking into all aspects of instruction.

Engagement, application, and collaboration are skills that withstand the test of time. I also promote the integration of critical thinking into every aspect of instruction.

In my experience, I’ve found a few ways to make this happen.

Begin lessons/units with a probing question: It shouldn’t be a question you can answer with a ‘yes’ or a ‘no.’ These questions should inspire discovery learning and problem-solving.

Encourage Creativity: I have seen teachers prepare projects before they give it to their students many times. For example, designing snowmen or other “creative” projects. By doing the design work or by cutting all the circles out beforehand, it removes creativity options.

It may help the classroom run more smoothly if every child’s material is already cut out, but then every student’s project looks the same. Students don’t have to think on their own or problem solve.

Not having everything “glue ready” in advance is a good thing. Instead, give students all the supplies needed to create a snowman, and let them do it on their own.

Giving independence will allow students to become critical thinkers because they will have to create their own product with the supplies you give them. This might be an elementary example, but it’s one we can relate to any grade level or project.

Try not to jump to help too fast – let the students work through a productive struggle .

Build in opportunities for students to find connections in learning.  Encouraging students to make connections to a real-life situation and identify patterns is a great way to practice their critical thinking skills. The use of real-world scenarios will increase rigor, relevance, and critical thinking.

A few other techniques to encourage critical thinking are:

  • Use analogies
  • Promote interaction among students
  • Ask open-ended questions
  • Allow reflection time
  • Use real-life problems
  • Allow for thinking practice

Critical thinking prepares students to think for themselves for the rest of their lives. I also believe critical thinkers are less likely to go along with the crowd because they think for themselves.

About Matthew X. Joseph, Ed.D.

Dr. Matthew X. Joseph has been a school and district leader in many capacities in public education over his 25 years in the field. Experiences such as the Director of Digital Learning and Innovation in Milford Public Schools (MA), elementary school principal in Natick, MA and Attleboro, MA, classroom teacher, and district professional development specialist have provided Matt incredible insights on how to best support teaching and learning. This experience has led to nationally publishing articles and opportunities to speak at multiple state and national events. He is the author of Power of Us: Creating Collaborative Schools and co-author of Modern Mentoring , Reimagining Teacher Mentorship (Due out, fall 2019). His master’s degree is in special education and his Ed.D. in Educational Leadership from Boston College.

Visit Matthew’s Blog

how to develop problem solving skills in students

How it works

Transform your enterprise with the scalable mindsets, skills, & behavior change that drive performance.

Explore how BetterUp connects to your core business systems.

We pair AI with the latest in human-centered coaching to drive powerful, lasting learning and behavior change.

Build leaders that accelerate team performance and engagement.

Unlock performance potential at scale with AI-powered curated growth journeys.

Build resilience, well-being and agility to drive performance across your entire enterprise.

Transform your business, starting with your sales leaders.

Unlock business impact from the top with executive coaching.

Foster a culture of inclusion and belonging.

Accelerate the performance and potential of your agencies and employees.

See how innovative organizations use BetterUp to build a thriving workforce.

Discover how BetterUp measurably impacts key business outcomes for organizations like yours.

Daring Leadership Institute: a groundbreaking partnership that amplifies Brené Brown's empirically based, courage-building curriculum with BetterUp’s human transformation platform.

Brené Brown and Alexi Robichaux on Stage at Uplift

  • What is coaching?

Learn how 1:1 coaching works, who its for, and if it's right for you.

Accelerate your personal and professional growth with the expert guidance of a BetterUp Coach.

Types of Coaching

Navigate career transitions, accelerate your professional growth, and achieve your career goals with expert coaching.

Enhance your communication skills for better personal and professional relationships, with tailored coaching that focuses on your needs.

Find balance, resilience, and well-being in all areas of your life with holistic coaching designed to empower you.

Discover your perfect match : Take our 5-minute assessment and let us pair you with one of our top Coaches tailored just for you.

Find your coach

BetterUp coaching session happening

Research, expert insights, and resources to develop courageous leaders within your organization.

Best practices, research, and tools to fuel individual and business growth.

View on-demand BetterUp events and learn about upcoming live discussions.

The latest insights and ideas for building a high-performing workplace.

  • BetterUp Briefing

The online magazine that helps you understand tomorrow's workforce trends, today.

Innovative research featured in peer-reviewed journals, press, and more.

Founded in 2022 to deepen the understanding of the intersection of well-being, purpose, and performance

We're on a mission to help everyone live with clarity, purpose, and passion.

Join us and create impactful change.

Read the buzz about BetterUp.

Meet the leadership that's passionate about empowering your workforce.

Request a demo

For Business

For Individuals

10 Problem-solving strategies to turn challenges on their head

Find my Coach

Jump to section

What is an example of problem-solving?

What are the 5 steps to problem-solving, 10 effective problem-solving strategies, what skills do efficient problem solvers have, how to improve your problem-solving skills.

Problems come in all shapes and sizes — from workplace conflict to budget cuts.

Creative problem-solving is one of the most in-demand skills in all roles and industries. It can boost an organization’s human capital and give it a competitive edge. 

Problem-solving strategies are ways of approaching problems that can help you look beyond the obvious answers and find the best solution to your problem . 

Let’s take a look at a five-step problem-solving process and how to combine it with proven problem-solving strategies. This will give you the tools and skills to solve even your most complex problems.

Good problem-solving is an essential part of the decision-making process . To see what a problem-solving process might look like in real life, let’s take a common problem for SaaS brands — decreasing customer churn rates.

To solve this problem, the company must first identify it. In this case, the problem is that the churn rate is too high. 

Next, they need to identify the root causes of the problem. This could be anything from their customer service experience to their email marketing campaigns. If there are several problems, they will need a separate problem-solving process for each one. 

Let’s say the problem is with email marketing — they’re not nurturing existing customers. Now that they’ve identified the problem, they can start using problem-solving strategies to look for solutions. 

This might look like coming up with special offers, discounts, or bonuses for existing customers. They need to find ways to remind them to use their products and services while providing added value. This will encourage customers to keep paying their monthly subscriptions.

They might also want to add incentives, such as access to a premium service at no extra cost after 12 months of membership. They could publish blog posts that help their customers solve common problems and share them as an email newsletter.

The company should set targets and a time frame in which to achieve them. This will allow leaders to measure progress and identify which actions yield the best results.

team-meeting-problem-solving-strategies

Perhaps you’ve got a problem you need to tackle. Or maybe you want to be prepared the next time one arises. Either way, it’s a good idea to get familiar with the five steps of problem-solving. 

Use this step-by-step problem-solving method with the strategies in the following section to find possible solutions to your problem.

1. Identify the problem

The first step is to know which problem you need to solve. Then, you need to find the root cause of the problem. 

The best course of action is to gather as much data as possible, speak to the people involved, and separate facts from opinions. 

Once this is done, formulate a statement that describes the problem. Use rational persuasion to make sure your team agrees .

2. Break the problem down 

Identifying the problem allows you to see which steps need to be taken to solve it. 

First, break the problem down into achievable blocks. Then, use strategic planning to set a time frame in which to solve the problem and establish a timeline for the completion of each stage.

3. Generate potential solutions

At this stage, the aim isn’t to evaluate possible solutions but to generate as many ideas as possible. 

Encourage your team to use creative thinking and be patient — the best solution may not be the first or most obvious one.

Use one or more of the different strategies in the following section to help come up with solutions — the more creative, the better.

4. Evaluate the possible solutions

Once you’ve generated potential solutions, narrow them down to a shortlist. Then, evaluate the options on your shortlist. 

There are usually many factors to consider. So when evaluating a solution, ask yourself the following questions:

  • Will my team be on board with the proposition?
  • Does the solution align with organizational goals ?
  • Is the solution likely to achieve the desired outcomes?
  • Is the solution realistic and possible with current resources and constraints?
  • Will the solution solve the problem without causing additional unintended problems?

woman-helping-her-colleague-problem-solving-strategies

5. Implement and monitor the solutions

Once you’ve identified your solution and got buy-in from your team, it’s time to implement it. 

But the work doesn’t stop there. You need to monitor your solution to see whether it actually solves your problem. 

Request regular feedback from the team members involved and have a monitoring and evaluation plan in place to measure progress.

If the solution doesn’t achieve your desired results, start this step-by-step process again.

There are many different ways to approach problem-solving. Each is suitable for different types of problems. 

The most appropriate problem-solving techniques will depend on your specific problem. You may need to experiment with several strategies before you find a workable solution.

Here are 10 effective problem-solving strategies for you to try:

  • Use a solution that worked before
  • Brainstorming
  • Work backward
  • Use the Kipling method
  • Draw the problem
  • Use trial and error
  • Sleep on it
  • Get advice from your peers
  • Use the Pareto principle
  • Add successful solutions to your toolkit

Let’s break each of these down.

1. Use a solution that worked before

It might seem obvious, but if you’ve faced similar problems in the past, look back to what worked then. See if any of the solutions could apply to your current situation and, if so, replicate them.

2. Brainstorming

The more people you enlist to help solve the problem, the more potential solutions you can come up with.

Use different brainstorming techniques to workshop potential solutions with your team. They’ll likely bring something you haven’t thought of to the table.

3. Work backward

Working backward is a way to reverse engineer your problem. Imagine your problem has been solved, and make that the starting point.

Then, retrace your steps back to where you are now. This can help you see which course of action may be most effective.

4. Use the Kipling method

This is a method that poses six questions based on Rudyard Kipling’s poem, “ I Keep Six Honest Serving Men .” 

  • What is the problem?
  • Why is the problem important?
  • When did the problem arise, and when does it need to be solved?
  • How did the problem happen?
  • Where is the problem occurring?
  • Who does the problem affect?

Answering these questions can help you identify possible solutions.

5. Draw the problem

Sometimes it can be difficult to visualize all the components and moving parts of a problem and its solution. Drawing a diagram can help.

This technique is particularly helpful for solving process-related problems. For example, a product development team might want to decrease the time they take to fix bugs and create new iterations. Drawing the processes involved can help you see where improvements can be made.

woman-drawing-mind-map-problem-solving-strategies

6. Use trial-and-error

A trial-and-error approach can be useful when you have several possible solutions and want to test them to see which one works best.

7. Sleep on it

Finding the best solution to a problem is a process. Remember to take breaks and get enough rest . Sometimes, a walk around the block can bring inspiration, but you should sleep on it if possible.

A good night’s sleep helps us find creative solutions to problems. This is because when you sleep, your brain sorts through the day’s events and stores them as memories. This enables you to process your ideas at a subconscious level. 

If possible, give yourself a few days to develop and analyze possible solutions. You may find you have greater clarity after sleeping on it. Your mind will also be fresh, so you’ll be able to make better decisions.

8. Get advice from your peers

Getting input from a group of people can help you find solutions you may not have thought of on your own. 

For solo entrepreneurs or freelancers, this might look like hiring a coach or mentor or joining a mastermind group. 

For leaders , it might be consulting other members of the leadership team or working with a business coach .

It’s important to recognize you might not have all the skills, experience, or knowledge necessary to find a solution alone. 

9. Use the Pareto principle

The Pareto principle — also known as the 80/20 rule — can help you identify possible root causes and potential solutions for your problems.

Although it’s not a mathematical law, it’s a principle found throughout many aspects of business and life. For example, 20% of the sales reps in a company might close 80% of the sales. 

You may be able to narrow down the causes of your problem by applying the Pareto principle. This can also help you identify the most appropriate solutions.

10. Add successful solutions to your toolkit

Every situation is different, and the same solutions might not always work. But by keeping a record of successful problem-solving strategies, you can build up a solutions toolkit. 

These solutions may be applicable to future problems. Even if not, they may save you some of the time and work needed to come up with a new solution.

three-colleagues-looking-at-computer-problem-solving-strategies

Improving problem-solving skills is essential for professional development — both yours and your team’s. Here are some of the key skills of effective problem solvers:

  • Critical thinking and analytical skills
  • Communication skills , including active listening
  • Decision-making
  • Planning and prioritization
  • Emotional intelligence , including empathy and emotional regulation
  • Time management
  • Data analysis
  • Research skills
  • Project management

And they see problems as opportunities. Everyone is born with problem-solving skills. But accessing these abilities depends on how we view problems. Effective problem-solvers see problems as opportunities to learn and improve.

Ready to work on your problem-solving abilities? Get started with these seven tips.

1. Build your problem-solving skills

One of the best ways to improve your problem-solving skills is to learn from experts. Consider enrolling in organizational training , shadowing a mentor , or working with a coach .

2. Practice

Practice using your new problem-solving skills by applying them to smaller problems you might encounter in your daily life. 

Alternatively, imagine problematic scenarios that might arise at work and use problem-solving strategies to find hypothetical solutions.

3. Don’t try to find a solution right away

Often, the first solution you think of to solve a problem isn’t the most appropriate or effective.

Instead of thinking on the spot, give yourself time and use one or more of the problem-solving strategies above to activate your creative thinking. 

two-colleagues-talking-at-corporate-event-problem-solving-strategies

4. Ask for feedback

Receiving feedback is always important for learning and growth. Your perception of your problem-solving skills may be different from that of your colleagues. They can provide insights that help you improve. 

5. Learn new approaches and methodologies

There are entire books written about problem-solving methodologies if you want to take a deep dive into the subject. 

We recommend starting with “ Fixed — How to Perfect the Fine Art of Problem Solving ” by Amy E. Herman. 

6. Experiment

Tried-and-tested problem-solving techniques can be useful. However, they don’t teach you how to innovate and develop your own problem-solving approaches. 

Sometimes, an unconventional approach can lead to the development of a brilliant new idea or strategy. So don’t be afraid to suggest your most “out there” ideas.

7. Analyze the success of your competitors

Do you have competitors who have already solved the problem you’re facing? Look at what they did, and work backward to solve your own problem. 

For example, Netflix started in the 1990s as a DVD mail-rental company. Its main competitor at the time was Blockbuster. 

But when streaming became the norm in the early 2000s, both companies faced a crisis. Netflix innovated, unveiling its streaming service in 2007. 

If Blockbuster had followed Netflix’s example, it might have survived. Instead, it declared bankruptcy in 2010.

Use problem-solving strategies to uplevel your business

When facing a problem, it’s worth taking the time to find the right solution. 

Otherwise, we risk either running away from our problems or headlong into solutions. When we do this, we might miss out on other, better options.

Use the problem-solving strategies outlined above to find innovative solutions to your business’ most perplexing problems.

If you’re ready to take problem-solving to the next level, request a demo with BetterUp . Our expert coaches specialize in helping teams develop and implement strategies that work.

Understand Yourself Better:

Big 5 Personality Test

Elizabeth Perry, ACC

Elizabeth Perry is a Coach Community Manager at BetterUp. She uses strategic engagement strategies to cultivate a learning community across a global network of Coaches through in-person and virtual experiences, technology-enabled platforms, and strategic coaching industry partnerships. With over 3 years of coaching experience and a certification in transformative leadership and life coaching from Sofia University, Elizabeth leverages transpersonal psychology expertise to help coaches and clients gain awareness of their behavioral and thought patterns, discover their purpose and passions, and elevate their potential. She is a lifelong student of psychology, personal growth, and human potential as well as an ICF-certified ACC transpersonal life and leadership Coach.

8 creative solutions to your most challenging problems

5 problem-solving questions to prepare you for your next interview, 31 examples of problem solving performance review phrases, what are metacognitive skills examples in everyday life, what is lateral thinking 7 techniques to encourage creative ideas, leadership activities that encourage employee engagement, learn what process mapping is and how to create one (+ examples), how much do distractions cost 8 effects of lack of focus, 3 problem statement examples and steps to write your own, the pareto principle: how the 80/20 rule can help you do more with less, thinking outside the box: 8 ways to become a creative problem solver, 10 examples of principles that can guide your approach to work, contingency planning: 4 steps to prepare for the unexpected, stay connected with betterup, get our newsletter, event invites, plus product insights and research..

3100 E 5th Street, Suite 350 Austin, TX 78702

  • Platform Overview
  • Integrations
  • Powered by AI
  • BetterUp Lead™
  • BetterUp Manage™
  • BetterUp Care®
  • Sales Performance
  • Diversity & Inclusion
  • Case Studies
  • Why BetterUp?
  • About Coaching
  • Find your Coach
  • Career Coaching
  • Communication Coaching
  • Personal Coaching
  • News and Press
  • Leadership Team
  • Become a BetterUp Coach
  • BetterUp Labs
  • Center for Purpose & Performance
  • Leadership Training
  • Business Coaching
  • Contact Support
  • Contact Sales
  • Privacy Policy
  • Acceptable Use Policy
  • Trust & Security
  • Cookie Preferences

University of Cambridge logo white

Or search by topic

Number and algebra.

  • Place value and the number system
  • Fractions, decimals, percentages, ratio and proportion
  • Calculations and numerical methods
  • Algebraic expressions, equations and formulae
  • Coordinates, functions and graphs
  • Patterns, sequences and structure
  • Properties of numbers

Geometry and measure

  • 3D geometry, shape and space
  • Transformations and constructions
  • Vectors and matrices
  • Measuring and calculating with units
  • Pythagoras and trigonometry
  • Angles, polygons, and geometrical proof

Probability and statistics

  • Handling, processing and representing data
  • Probability (spec_group)

Working mathematically

  • Thinking mathematically
  • Mathematical mindsets

Advanced mathematics

  • Decision mathematics and combinatorics
  • Advanced probability and statistics

For younger learners

  • Early years foundation stage

Problem Solving

Problem solving and the new curriculum

Problem solving and the new curriculum

Developing a classroom culture that supports a problem-solving approach to mathematics

Developing a classroom culture that supports a problem-solving approach to mathematics

Developing excellence in problem solving with young learners

Developing excellence in problem solving with young learners

Using NRICH Tasks to Develop Key Problem-solving Skills

Using NRICH Tasks to Develop Key Problem-solving Skills

Trial and Improvement at KS1

Trial and Improvement at KS1

Trial and Improvement at KS2

Trial and Improvement at KS2

Working Systematically

Working Systematically - Primary teachers

Number Patterns

Number Patterns

Working Backwards at KS1

Working Backwards at KS1

Working Backwards at KS2

Working Backwards at KS2

Reasoning

Visualising at KS1 - Primary teachers

Visualising at KS2

Visualising at KS2 - Primary teachers

Conjecturing and Generalising at KS1

Conjecturing and Generalising at KS1 - Primary teachers

Conjecturing and Generalising at KS2

Conjecturing and Generalising at KS2 - Primary teachers

Mathematical Problem Solving in the Early Years

Mathematical Problem Solving in the Early Years

Low threshold high ceiling - an introduction.

I'm Stuck!

What's all the talking about?

Group-worthy tasks and their potential to support children to develop independent problem-solving skills

Group-worthy tasks and their potential to support children to develop independent problem-solving skills

Developing the classroom culture: using the Dotty Six Activity as a springboard for investigation

Developing the classroom culture: using the Dotty Six Activity as a springboard for investigation

Don’t Just Tell Students to Solve Problems. Teach Them How.

The positive impact of an innovative UC San Diego problem-solving educational curriculum continues to grow

Published Date

Share this:, article content.

Problem solving is a critical skill for technical education and technical careers of all types. But what are best practices for teaching problem solving to high school and college students? 

The University of California San Diego Jacobs School of Engineering is on the forefront of efforts to improve how problem solving is taught. This UC San Diego approach puts hands-on problem-identification and problem-solving techniques front and center. Over 1,500 students across the San Diego region have already benefited over the last three years from this program. In the 2023-2024 academic year, approximately 1,000 upper-level high school students will be taking the problem solving course in four different school districts in the San Diego region. Based on the positive results with college students, as well as high school juniors and seniors in the San Diego region, the project is getting attention from educators across the state of California, and around the nation and the world.

{/exp:typographee}

In Summer 2023, th e 27 community college students who took the unique problem-solving course developed at the UC San Diego Jacobs School of Engineering thrived, according to Alex Phan PhD, the Executive Director of Student Success at the UC San Diego Jacobs School of Engineering. Phan oversees the project. 

Over the course of three weeks, these students from Southwestern College and San Diego City College poured their enthusiasm into problem solving through hands-on team engineering challenges. The students brimmed with positive energy as they worked together. 

What was noticeably absent from this laboratory classroom: frustration.

“In school, we often tell students to brainstorm, but they don’t often know where to start. This curriculum gives students direct strategies for brainstorming, for identifying problems, for solving problems,” sai d Jennifer Ogo, a teacher from Kearny High School who taught the problem-solving course in summer 2023 at UC San Diego. Ogo was part of group of educators who took the course themselves last summer.

The curriculum has been created, refined and administered over the last three years through a collaboration between the UC San Diego Jacobs School of Engineering and the UC San Diego Division of Extended Studies. The project kicked off in 2020 with a generous gift from a local philanthropist.

Not getting stuck

One of the overarching goals of this project is to teach both problem-identification and problem-solving skills that help students avoid getting stuck during the learning process. Stuck feelings lead to frustration – and when it’s a Science, Technology, Engineering and Math (STEM) project, that frustration can lead students to feel they don’t belong in a STEM major or a STEM career. Instead, the UC San Diego curriculum is designed to give students the tools that lead to reactions like “this class is hard, but I know I can do this!” –  as Ogo, a celebrated high school biomedical sciences and technology teacher, put it. 

Three years into the curriculum development effort, the light-hearted energy of the students combined with their intense focus points to success. On the last day of the class, Mourad Mjahed PhD, Director of the MESA Program at Southwestern College’s School of Mathematics, Science and Engineering came to UC San Diego to see the final project presentations made by his 22 MESA students.

“Industry is looking for students who have learned from their failures and who have worked outside of their comfort zones,” said Mjahed. The UC San Diego problem-solving curriculum, Mjahed noted, is an opportunity for students to build the skills and the confidence to learn from their failures and to work outside their comfort zone. “And from there, they see pathways to real careers,” he said. 

What does it mean to explicitly teach problem solving? 

This approach to teaching problem solving includes a significant focus on learning to identify the problem that actually needs to be solved, in order to avoid solving the wrong problem. The curriculum is organized so that each day is a complete experience. It begins with the teacher introducing the problem-identification or problem-solving strategy of the day. The teacher then presents case studies of that particular strategy in action. Next, the students get introduced to the day’s challenge project. Working in teams, the students compete to win the challenge while integrating the day’s technique. Finally, the class reconvenes to reflect. They discuss what worked and didn't work with their designs as well as how they could have used the day’s problem-identification or problem-solving technique more effectively. 

The challenges are designed to be engaging – and over three years, they have been refined to be even more engaging. But the student engagement is about much more than being entertained. Many of the students recognize early on that the problem-identification and problem-solving skills they are learning can be applied not just in the classroom, but in other classes and in life in general. 

Gabriel from Southwestern College is one of the students who saw benefits outside the classroom almost immediately. In addition to taking the UC San Diego problem-solving course, Gabriel was concurrently enrolled in an online computer science programming class. He said he immediately started applying the UC San Diego problem-identification and troubleshooting strategies to his coding assignments. 

Gabriel noted that he was given a coding-specific troubleshooting strategy in the computer science course, but the more general problem-identification strategies from the UC San Diego class had been extremely helpful. It’s critical to “find the right problem so you can get the right solution. The strategies here,” he said, “they work everywhere.”

Phan echoed this sentiment. “We believe this curriculum can prepare students for the technical workforce. It can prepare students to be impactful for any career path.”

The goal is to be able to offer the course in community colleges for course credit that transfers to the UC, and to possibly offer a version of the course to incoming students at UC San Diego. 

As the team continues to work towards integrating the curriculum in both standardized high school courses such as physics, and incorporating the content as a part of the general education curriculum at UC San Diego, the project is expected to impact thousands more students across San Diego annually. 

Portrait of the Problem-Solving Curriculum

On a sunny Wednesday in July 2023, an experiential-learning classroom was full of San Diego community college students. They were about half-way through the three-week problem-solving course at UC San Diego, held in the campus’ EnVision Arts and Engineering Maker Studio. On this day, the students were challenged to build a contraption that would propel at least six ping pong balls along a kite string spanning the laboratory. The only propulsive force they could rely on was the air shooting out of a party balloon.

A team of three students from Southwestern College – Valeria, Melissa and Alondra – took an early lead in the classroom competition. They were the first to use a plastic bag instead of disposable cups to hold the ping pong balls. Using a bag, their design got more than half-way to the finish line – better than any other team at the time – but there was more work to do. 

As the trio considered what design changes to make next, they returned to the problem-solving theme of the day: unintended consequences. Earlier in the day, all the students had been challenged to consider unintended consequences and ask questions like: When you design to reduce friction, what happens? Do new problems emerge? Did other things improve that you hadn’t anticipated? 

Other groups soon followed Valeria, Melissa and Alondra’s lead and began iterating on their own plastic-bag solutions to the day’s challenge. New unintended consequences popped up everywhere. Switching from cups to a bag, for example, reduced friction but sometimes increased wind drag. 

Over the course of several iterations, Valeria, Melissa and Alondra made their bag smaller, blew their balloon up bigger, and switched to a different kind of tape to get a better connection with the plastic straw that slid along the kite string, carrying the ping pong balls. 

One of the groups on the other side of the room watched the emergence of the plastic-bag solution with great interest. 

“We tried everything, then we saw a team using a bag,” said Alexander, a student from City College. His team adopted the plastic-bag strategy as well, and iterated on it like everyone else. They also chose to blow up their balloon with a hand pump after the balloon was already attached to the bag filled with ping pong balls – which was unique. 

“I don’t want to be trying to put the balloon in place when it's about to explode,” Alexander explained. 

Asked about whether the structured problem solving approaches were useful, Alexander’s teammate Brianna, who is a Southwestern College student, talked about how the problem-solving tools have helped her get over mental blocks. “Sometimes we make the most ridiculous things work,” she said. “It’s a pretty fun class for sure.” 

Yoshadara, a City College student who is the third member of this team, described some of the problem solving techniques this way: “It’s about letting yourself be a little absurd.”

Alexander jumped back into the conversation. “The value is in the abstraction. As students, we learn to look at the problem solving that worked and then abstract out the problem solving strategy that can then be applied to other challenges. That’s what mathematicians do all the time,” he said, adding that he is already thinking about how he can apply the process of looking at unintended consequences to improve both how he plays chess and how he goes about solving math problems.

Looking ahead, the goal is to empower as many students as possible in the San Diego area and  beyond to learn to problem solve more enjoyably. It’s a concrete way to give students tools that could encourage them to thrive in the growing number of technical careers that require sharp problem-solving skills, whether or not they require a four-year degree. 

You May Also Like

Autism spectrum disorders linked to neurotransmitter switching in the brain, birch aquarium announces living seas transformation, matthew strauss, dedicated supporter of the arts, education and health care, has died, new center receives $18m from nsf to develop tools to investigate the pre-emergence phase of pandemics, stay in the know.

Keep up with all the latest from UC San Diego. Subscribe to the newsletter today.

You have been successfully subscribed to the UC San Diego Today Newsletter.

Campus & Community

Arts & culture, visual storytelling.

  • Media Resources & Contacts

Signup to get the latest UC San Diego newsletters delivered to your inbox.

Award-winning publication highlighting the distinction, prestige and global impact of UC San Diego.

Popular Searches: Covid-19   Ukraine   Campus & Community   Arts & Culture   Voices

Module 5: Thinking and Analysis

Problem-solving with critical thinking, learning outcomes.

  • Describe how critical thinking skills can be used in problem-solving

Most of us face problems that we must solve every day. While some problems are more complex than others, we can apply critical thinking skills to every problem by asking questions like, what information am I missing? Why and how is it important? What are the contributing factors that lead to the problem? What resources are available to solve the problem? These questions are just the start of being able to think of innovative and effective solutions. Read through the following critical thinking, problem-solving process to identify steps you are already familiar with as well as opportunities to build a more critical approach to solving problems.

Problem-Solving Process

Step 1: define the problem.

Albert Einstein once said, “If I had an hour to solve a problem, I’d spend 55 minutes thinking about the problem and five minutes thinking about solutions.”

Often, when we first hear of or learn about a problem, we do not have all the information. If we immediately try to find a solution without having a thorough understanding of the problem, then we may only be solving a part of the problem.  This is called a “band-aid fix,” or when a symptom is addressed, but not the actual problem. While these band-aid fixes may provide temporary relief, if the actual problem is not addressed soon, then the problem will continue and likely get worse. Therefore, the first step when using critical thinking to solve problems is to identify the problem. The goal during this step is to gather enough research to determine how widespread the problem is, its nature, and its importance.

Step 2: Analyze the Causes

This step is used to uncover assumptions and underlying problems that are at the root of the problem. This step is important since you will need to ensure that whatever solution is chosen addresses the actual cause, or causes, of the problem.

Asking “why” questions to uncover root causes

A common way to uncover root causes is by asking why questions. When we are given an answer to a why question, we will often need to question that answer itself. Thus the process of asking “why” is an  iterative process —meaning that it is a process that we can repeatedly apply. When we stop asking why questions depends on what information we need and that can differ depending on what the goals are. For a better understanding, see the example below:

Problem: The lamp does not turn on.

  • Why doesn’t the lamp turn on? The fuse is blown.
  • Why is the fuse blown? There was overloaded circuit.
  • Why was the circuit overloaded? The hair dryer was on.

If one is simply a homeowner or tenant, then it might be enough to simply know that if the hair dryer is on, the circuit will overload and turn off.  However, one can always ask further why questions, depending on what the goal is. For example, suppose someone wants to know if all hair dryers overload circuits or just this one. We might continue thus:

  • Why did this hair dryer overload the circuit? Because hair dryers in general require a lot of electricity.

But now suppose we are an electrical engineer and are interested in designing a more environmentally friendly hair dryer. In that case, we might ask further:

  • Why do hair dryers require so much energy?

As you can see from this example, what counts as a root cause depends on context and interests. The homeowner will not necessarily be interested in asking the further why questions whereas others might be.

Step 3: Generate Solutions

The goal of this step is to generate as many solutions as possible. In order to do so, brainstorm as many ideas as possible, no matter how outrageous or ineffective the idea might seem at the time. During your brainstorming session, it is important to generate solutions freely without editing or evaluating any of the ideas. The more solutions that you can generate, the more innovative and effective your ultimate solution might become upon later review.

You might find that setting a timer for fifteen to thirty minutes will help you to creatively push past the point when you think you are done. Another method might be to set a target for how many ideas you will generate. You might also consider using categories to trigger ideas. If you are brainstorming with a group, consider brainstorming individually for a while and then also brainstorming together as ideas can build from one idea to the next.

Step 4: Select a Solution

Once the brainstorming session is complete, then it is time to evaluate the solutions and select the more effective one.  Here you will consider how each solution will address the causes determined in step 2. It is also helpful to develop the criteria you will use when evaluating each solution, for instance, cost, time, difficulty level, resources needed, etc. Once your criteria for evaluation is established, then consider ranking each criterion by importance since some solutions might meet all criteria, but not to equally effective degrees.

In addition to evaluating by criteria, ensure that you consider possibilities and consequences of all serious contenders to address any drawbacks to a solution. Lastly, ensure that the solutions are actually feasible.

Step 6: Put Solution into Action

While many problem-solving models stop at simply selecting a solution, in order to actually solve a problem, the solution must be put into action. Here, you take responsibility to create, communicate, and execute the plan with detailed organizational logistics by addressing who will be responsible for what, when, and how.

Step 7: Evaluate progress

The final step when employing critical thinking to problem-solving is to evaluate the progress of the solution. Since critical thinking demands open-mindedness, analysis, and a willingness to change one’s mind, it is important to monitor how well the solution has actually solved the problem in order to determine if any course correction is needed.

While we solve problems every day, following the process to apply more critical thinking approaches in each step by considering what information might be missing; analyzing the problem and causes; remaining open-minded while brainstorming solutions; and providing criteria for, evaluating, and monitoring solutions can help you to become a better problem-solver and strengthen your critical thinking skills.

iterative process: one that can be repeatedly applied

  • Problem solving. Authored by : Anne Fleischer. Provided by : Lumen Learning. License : CC BY: Attribution
  • College Success. Authored by : Matthew Van Cleave. Provided by : Lumen Learning. License : CC BY: Attribution
  • wocintech stock - 178. Authored by : WOCinTech Chat. Located at : https://flic.kr/p/FiGVWt . License : CC BY-SA: Attribution-ShareAlike
  • Five whys. Provided by : Wikipedia. Located at : https://en.wikipedia.org/wiki/Five_whys . License : CC BY-SA: Attribution-ShareAlike

Footer Logo Lumen Waymaker

  • Our Mission

3 Simple Strategies to Improve Students’ Problem-Solving Skills

These strategies are designed to make sure students have a good understanding of problems before attempting to solve them.

Two students in math class

Research provides a striking revelation about problem solvers. The best problem solvers approach problems much differently than novices. For instance, one meta-study showed that when experts evaluate graphs , they tend to spend less time on tasks and answer choices and more time on evaluating the axes’ labels and the relationships of variables within the graphs. In other words, they spend more time up front making sense of the data before moving to addressing the task.

While slower in solving problems, experts use this additional up-front time to more efficiently and effectively solve the problem. In one study, researchers found that experts were much better at “information extraction” or pulling the information they needed to solve the problem later in the problem than novices. This was due to the fact that they started a problem-solving process by evaluating specific assumptions within problems, asking predictive questions, and then comparing and contrasting their predictions with results. For example, expert problem solvers look at the problem context and ask a number of questions:

  • What do we know about the context of the problem?
  • What assumptions are underlying the problem? What’s the story here?
  • What qualitative and quantitative information is pertinent?
  • What might the problem context be telling us? What questions arise from the information we are reading or reviewing?
  • What are important trends and patterns?

As such, expert problem solvers don’t jump to the presented problem or rush to solutions. They invest the time necessary to make sense of the problem.

Now, think about your own students: Do they immediately jump to the question, or do they take time to understand the problem context? Do they identify the relevant variables, look for patterns, and then focus on the specific tasks?

If your students are struggling to develop the habit of sense-making in a problem- solving context, this is a perfect time to incorporate a few short and sharp strategies to support them.

3 Ways to Improve Student Problem-Solving

1. Slow reveal graphs: The brilliant strategy crafted by K–8 math specialist Jenna Laib and her colleagues provides teachers with an opportunity to gradually display complex graphical information and build students’ questioning, sense-making, and evaluating predictions.

For instance, in one third-grade class, students are given a bar graph without any labels or identifying information except for bars emerging from a horizontal line on the bottom of the slide. Over time, students learn about the categories on the x -axis (types of animals) and the quantities specified on the y -axis (number of baby teeth).

The graphs and the topics range in complexity from studying the standard deviation of temperatures in Antarctica to the use of scatterplots to compare working hours across OECD (Organization for Economic Cooperation and Development) countries. The website offers a number of graphs on Google Slides and suggests questions that teachers may ask students. Furthermore, this site allows teachers to search by type of graph (e.g., scatterplot) or topic (e.g., social justice).

2. Three reads: The three-reads strategy tasks students with evaluating a word problem in three different ways . First, students encounter a problem without having access to the question—for instance, “There are 20 kangaroos on the grassland. Three hop away.” Students are expected to discuss the context of the problem without emphasizing the quantities. For instance, a student may say, “We know that there are a total amount of kangaroos, and the total shrinks because some kangaroos hop away.”

Next, students discuss the important quantities and what questions may be generated. Finally, students receive and address the actual problem. Here they can both evaluate how close their predicted questions were from the actual questions and solve the actual problem.

To get started, consider using the numberless word problems on educator Brian Bushart’s site . For those teaching high school, consider using your own textbook word problems for this activity. Simply create three slides to present to students that include context (e.g., on the first slide state, “A salesman sold twice as much pears in the afternoon as in the morning”). The second slide would include quantities (e.g., “He sold 360 kilograms of pears”), and the third slide would include the actual question (e.g., “How many kilograms did he sell in the morning and how many in the afternoon?”). One additional suggestion for teams to consider is to have students solve the questions they generated before revealing the actual question.

3. Three-Act Tasks: Originally created by Dan Meyer, three-act tasks follow the three acts of a story . The first act is typically called the “setup,” followed by the “confrontation” and then the “resolution.”

This storyline process can be used in mathematics in which students encounter a contextual problem (e.g., a pool is being filled with soda). Here students work to identify the important aspects of the problem. During the second act, students build knowledge and skill to solve the problem (e.g., they learn how to calculate the volume of particular spaces). Finally, students solve the problem and evaluate their answers (e.g., how close were their calculations to the actual specifications of the pool and the amount of liquid that filled it).

Often, teachers add a fourth act (i.e., “the sequel”), in which students encounter a similar problem but in a different context (e.g., they have to estimate the volume of a lava lamp). There are also a number of elementary examples that have been developed by math teachers including GFletchy , which offers pre-kindergarten to middle school activities including counting squares , peas in a pod , and shark bait .

Students need to learn how to slow down and think through a problem context. The aforementioned strategies are quick ways teachers can begin to support students in developing the habits needed to effectively and efficiently tackle complex problem-solving.

K-12 Resources By Teachers, For Teachers Provided by the K-12 Teachers Alliance

  • Teaching Strategies
  • Classroom Activities
  • Classroom Management
  • Technology in the Classroom
  • Professional Development
  • Lesson Plans
  • Writing Prompts
  • Graduate Programs

How to Build Resilience in Students

Janelle cox.

  • August 22, 2024

Building blocks forming stairs going upward say, “resilience.”

As a child, having the ability to bounce back after something goes wrong is not always easy. While some kids naturally seem more resilient, many others struggle. According to the Anxiety and Depression Association of America , anxiety disorders affect 31.9 percent of children aged 13 to 18.

Young children who suffer from anxiety often find it harder to cope and recover when things are not going well. Learning to develop resilience can be the key to helping them manage anxiety and other challenges. Here we’ll take a look at why it’s essential for students to build resilience, as well as share a few ways to help foster resilience in your students as an educator .

The Importance of Resilience in Education

Before we explore the how, let’s understand the why. Resilience is essential for students because it helps them face challenges, manage stress, and stay motivated in the face of obstacles. Our classrooms are filled with students from diverse backgrounds and experiences. Some face challenging home lives, while others might face academic or social challenges. Building resilience helps these students navigate their personal and educational paths more effectively. It leads to better mental health, improved grades, and overall well-being.

Develop Meaningful Teacher-Student Bonds

Building a positive student-teacher relationship enhances students’ overall well-being and academic achievement. This bond helps students feel safe in their learning environment and can significantly impact their social and academic outcomes. Just one caring adult can make a difference in a child’s life.

Take the time to nurture your relationship with your students, especially those who need it most. Try the 3 x 10 strategy: Spend three minutes a day for ten consecutive days just talking with a child to get to know them better. By the end of the ten days, you’ll have created a solid bond.

Teach Social and Emotional Learning (SEL) Skills

Social and emotional learning (SEL) provides students with the skills to be resilient. Teaching them to persevere, overcome obstacles, and express their emotions properly equips them for positive outcomes. Life’s unpredictability can be tough, but incorporating SEL into your curriculum helps students build resilience to handle changes.

Incorporate SEL by having morning meetings to check in with students and discuss important issues. The more open and honest your students are with their peers, the more they’ll learn to consider others’ emotional well-being.

Create a Supportive Learning Environment

Creating a supportive classroom environment is the foundation for fostering resilience in students. It’s essential to create a mentally healthy classroom where students feel respected, valued, and safe. Encourage a sense of belonging through morning meetings, school events, groups, sports teams, and functions. Encouraging open communication and active listening helps students feel heard and valued. Promoting collaboration and teamwork through group projects and activities fosters a sense of community and belonging. Cooperative learning groups also enhance peer relationships, making students feel connected and supported. When students feel safe, they can bounce back from adversity better because they know they have a support system.

Teach Coping Skills and Problem-Solving Skills

Coping skills and problem-solving are vital for student resilience. They help students face adversity, manage stress, and overcome challenges. Try integrating social-emotional learning (SEL) into your daily lessons. This teaches students how to manage their emotions, set goals, and show empathy to others. Also, encourage a growth mindset. You can do this by helping students view their mistakes as learning opportunities for growth.

Additionally, teach problem-solving skills . This typically involves guiding students through a step-by-step process: identifying the problem, brainstorming solutions, evaluating options, and implementing a plan.

Build a Sense of Purpose

Whether it’s schoolwork or life goals, having a sense of purpose provides students with direction and meaning in their lives. When students understand the “why” behind what they’re doing, they are more likely to be motivated and engaged. To help students build a sense of purpose try connecting learning to the real world by addressing real community issues or by inviting speakers into the classroom.

Provide opportunities for students to help others through charity events or mentoring. Create a classroom culture where students feel they have something to contribute. By doing these things, students will start to feel like they have a sense of purpose that can help guide them through school and life.

Develop Self-Efficacy and Independence

Cultivating self-confidence and independence is vital for developing resilience in students. Challenge students to set realistic, short-term goals, which build their confidence by breaking down larger tasks into smaller, more manageable steps. Provide opportunities for independence, such as allowing students to take ownership of their learning through choices in assignments and projects.

Additionally, acknowledging and celebrating both small and large accomplishments can boost students’ confidence. By guiding students to set realistic goals, giving them choices in their learning, and celebrating their achievements, you can empower them to take charge of their educational journey and face challenges with confidence and determination.

Building resilience takes time. Students won’t automatically overcome obstacles just because you started having morning meetings or taught them problem-solving skills. Consistently creates opportunities to build resilience throughout the school year. The more you foster resilience, the closer your students will get to being resilient all of the time.

Educators never stop learning; check out our available graduate degree programs  to hone your skills and promote lifelong learning and academic excellence.

  • #HowtoBuildResilienceinStudents , #Resilience

More in Teaching Strategies

A girl sits on the ground with books and a pencil, smiling.

Teacher Hacks You Need to Try This School Year

As you gear up for another exciting year of learning and fun it’s…

A student sits and solves a problem.

Empowering Students to Become Problem-Solving Champions

Have you ever stood in front of the classroom and thought about all…

A girl sits at her desk with headphones on, listening to a podcast.

How Podcasts in the Classroom Can Power Up Learning

If you’re looking for a new and exciting way to engage learners while…

A teacher talks with a student and her mother.

Strategies for Effective Teacher-Parent Communication

Communication between parents and teachers is essential for a child’s academic success. It…

Google Translate

Original text

Google Translate

Academic difficulties are a common challenge that many students face during their educational journey. These challenges can stem from a variety of sources, such as learning disabilities, personal issues, or a lack of effective study strategies. Helping students cope with academic difficulties is essential for their success and well-being. 

Educators, parents, and counselors play a crucial role in providing the support and resources needed to overcome these obstacles. This article explores several effective ways to help students navigate academic challenges and thrive in their studies.

Leveraging Counseling Services

Counseling services can play a pivotal role in helping students cope with academic difficulties. Professional counselors are trained to provide emotional and psychological support, which can be particularly beneficial for students dealing with stress, anxiety, or other personal issues affecting their academic performance.

Counselors can work with students to develop coping strategies for managing stress and improving mental health. This might include techniques such as mindfulness, relaxation exercises, or cognitive-behavioral strategies to challenge negative thought patterns. By addressing mental health issues, counselors can help students build resilience and improve their overall well-being.

They can also assist students in developing academic skills. This might involve teaching effective study techniques, goal-setting, and time-management strategies. By helping students build these essential skills, counselors can empower them to take control of their learning and achieve their academic goals.

Counselors who have completed online counseling degrees are often more attuned to the nuances of today's academic challenges. Their unique educational backgrounds, which combine traditional learning with digital tools, enable them to effectively help students manage and overcome academic difficulties.

Providing Individualized Support

One of the most effective ways to help students cope with academic difficulties is to provide individualized support. Every student is unique, and their challenges and needs will vary. Tailoring support to address these specific needs can significantly enhance their learning experience and outcomes.

First, it’s essential to identify the root cause of the academic difficulties. This may involve assessing the student’s learning style, identifying any learning disabilities, or understanding personal or environmental factors affecting their performance. Once the underlying issues are identified, a personalized plan can be developed to address these challenges.

For example, students with learning disabilities may benefit from specialized instruction techniques, such as multi-sensory learning or the use of assistive technology. Those struggling with time management might need help developing effective organizational skills and creating a structured study schedule. Providing resources like tutoring, mentoring, or study groups can also offer additional support and help students stay on track.

Communication between educators, parents, and students is crucial in this process. Regular meetings and progress reviews can help monitor the student’s development and make necessary adjustments to the support plan. By fostering a collaborative environment, all parties can work together to ensure the student receives the most effective assistance.

Encouraging Parental Involvement

Parental involvement is a crucial factor in helping students cope with academic difficulties. Parents play a significant role in their child’s education, and their support and involvement can greatly influence a student’s academic success and well-being.

One way parents can support their children is by fostering a positive learning environment at home. This includes providing a quiet and organized space for studying, setting a consistent routine, and encouraging good study habits. Parents should also be proactive in communicating with teachers and staying informed about their child’s progress and any challenges they may be facing.

In addition to creating a supportive home environment, parents can help their children develop important skills such as time management, organization, and problem-solving. These skills are essential for academic success and can help students navigate their studies more effectively.

Moreover, parents should encourage their children to pursue their interests and strengths. This can boost their motivation and engagement in school. Supporting extracurricular activities, hobbies, and interests outside of academics can also provide a well-rounded experience and help students manage stress and maintain a healthy balance.

It's also important for parents to be aware of their child’s emotional and mental well-being. Regular check-ins and open conversations about their feelings and experiences can help parents identify any issues early and seek appropriate support. Being a source of emotional support and understanding can make a significant difference in a student's ability to cope with academic difficulties.

Helping students cope with academic difficulties requires a multifaceted approach that includes individualized support, counseling services, and parental involvement. By identifying and addressing the unique challenges each student faces, providing access to professional counseling, and fostering a supportive home and school environment, educators and parents can significantly enhance students' ability to overcome academic obstacles. 

These efforts not only improve academic performance but also contribute to students' overall well-being and development. By working together, we can create a nurturing and empowering educational experience that helps every student succeed

Copyright © 2024 SCORE Association, SCORE.org

Funded, in part, through a Cooperative Agreement with the U.S. Small Business Administration. All opinions, and/or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the SBA.

LiveChat

Manipulatives in Maths - A Classroom Guide for Teachers

Three glass jars filled with different maths manipulatives like coloured coins, linking cubes and marbles

Mathematical manipulatives are touted as essential tools for learning, but let's be honest—we've all experienced that moment of dread when we hand them out. Suddenly, your carefully planned lesson turns into chaos: One pupil starts building a fortress with the base ten blocks while another is hiding all the shiny counters.

Yet, despite these challenges, manipulatives play an important role in maths education. They bridge the gap between abstract concepts and tangible understanding, helping pupils grasp basic number sense. In fact, the National Curriculum emphasises their importance across all key stages, recognising that hands-on learning is vital for developing maths fluency, reasoning, and problem-solving skills.

So, how can we take advantage of these tools without losing control of the classroom? Let's explore the world of maths manipulatives—what they are, why they matter, and how to use them effectively in your primary school lessons.

What are manipulatives?

It can sound complicated, but manipulatives are simply hands-on tools that make abstract mathematical concepts concrete and visual . They're the building blocks, quite literally in some cases, that help pupils wrap their heads around tricky number ideas through good old-fashioned play, exploration, and modelling.

These learning aids come in all shapes and sizes, from the humble counter to the more elaborate Cuisenaire rods . Their key purpose? To give pupils something tangible to manipulate as they grapple with mathematical concepts. Whether it's using multilink cubes to understand place value or fraction circles to visualise parts of a whole, manipulatives help bridge the gap between 'maths on paper' and 'maths in real life'.

Common manipulatives you'll find in primary classrooms include:

Multilink cubes

Cuisenaire rods, base ten blocks, bead strings.

  • Balance scales

Clock faces

Digit cards, hundred squares.

a table strewn with many different sorts of maths manipulatives.

These tools align perfectly with the National Curriculum's aims of developing mathematical fluency, reasoning, and problem-solving skills. By allowing pupils to physically interact with mathematical ideas, manipulatives help build a strong foundation for more complex concepts down the line. They're not just toys or distractions—they're powerful learning tools that can transform how your pupils understand and engage with maths.

Why are they important?

Over the past two decades, research has consistently shown the positive impact of using manipulatives in the classroom. A 2013 report published in the Journal of Educational Psychology identified "statistically significant results" when teachers used manipulatives compared with when they only used abstract maths symbols. This highlights the role that manipulatives play in supporting conceptual understanding and facilitating the progression from concrete to abstract thinking.

Alignment with CPA approach

The NCETM agrees that physical manipulatives should play a central role in maths teaching. "Manipulatives are not just for young pupils, and also not just for those who can't understand something. They can always be of help to build or deepen understanding of a mathematical concept."

This approach aligns perfectly with the concrete-pictorial-abstract (CPA) progression. Once children are confident using manipulatives or 'concrete' resources, they can then move onto pictorial representations or the 'seeing' stage. Here, visual representations of concrete objects are used to model problems. This stage encourages children to make a mental connection between the physical object they just handled and the abstract pictures , diagrams or models that represent the objects from the maths problem.

Enhance problem solving

But manipulatives do more than just support understanding—they're powerful tools for enhancing problem-solving skills. By allowing pupils to physically manipulate and visualise mathematical concepts, they can more easily devise strategies to tackle complex problems. This hands-on approach often leads to those 'aha!' moments we all love to see in our classrooms.

Support engagement

Moreover, manipulatives play an important role in fostering engagement and motivation. Let's face it—maths can sometimes seem dry and abstract to young learners. But introduce some colourful counters or interlocking cubes, and suddenly you've got a room full of eager mathematicians. This increased engagement is key to developing a positive attitude towards maths, which in turn supports long-term learning.

This deep understanding allows pupils to move beyond mere memorisation of facts and procedures, towards true mathematical fluency—where they can apply their knowledge flexibly and efficiently across a range of contexts.

In essence, manipulatives are not just helpful additions to our maths teaching toolkit—they're essential components in building a comprehensive, engaging, and effective mathematics education.

Types of manipulatives in primary mathematics

In this section, we'll break it common types of manipulatives into bite-sized pieces, just like we do for our pupils.

Physical manipulatives: the classics

These are the tangible, grab-them-with-your-hands resources that have been the backbone of maths classrooms for years. They're the ones that inevitably end up stuck between classroom seats and occasionally in someone's shoe.

Below is a list of common physical manipulatives in the classroom:

Ideal for teaching place value, addition, and subtraction with regrouping.

Fraction tiles

Excellent for comparing fractions and understanding equivalence.

Great for exploring 2D shapes, symmetry, and area.

An example of two geoboards, one using plastic and another using wood with rubber bands making shapes on both

Images: Wikipedia.org

Versatile tools for counting, measuring, and understanding volume.

Fantastic for developing number sense and exploring number relationships.

Essential for basic counting, sorting, and introducing simple addition and subtraction.

Useful for teaching multiplication, division, and fractions.

A set of Cuisenaire rods from one to seven. Each number has the identical rod count inside

Image: Pinterest

Helpful for developing number sense and practicing skip counting.

Useful for probability exercises and generating random numbers for various activities.

Great for pattern recognition, matching, and basic addition facts.

Essential for teaching time-telling and understanding intervals.

Two examples of clock face ideas for the classroom. One using a hula hoop and hands, another using plates and printable clock faces

Images: Pinterest & Pinterest

Useful for place value activities and forming large numbers.

Excellent for identifying number patterns and supporting multiplication and division.

Virtual manipulatives: a new kind of tool

Manipulatives have gone digital! These are interactive, online versions of our physical favourites. Think of them as the maths equivalent of e-books.

Some popular virtual manipulatives include:

Online number lines

These number lines are zoomable, clickable, and free of the uneven lines that are often result of our hand-drawn versions.

Digital base ten blocks

All the functionality without the risk of losing pieces under desks.

Interactive fraction tools

Slice and dice up pieces in any way imaginable.

Whether physical or virtual, the best manipulative is the one that helps your pupils understand the concept at hand. Whether that's a handful of multilink cubes or a fancy online simulator, if it's making those mathematical lightbulbs flicker on, you're on the right track!

Implementing manipulatives in the classroom - let them play!

Whether you have a bumper pack of manipulatives, a shared bank of resources or your very own DIY versions, it's important to teach children how to use them independently. Here are some best practices for integrating manipulatives effectively into your lessons:

  • Introduce gradually : Bring in manipulatives one at a time. If you don't have enough for each child, set up a 'maths table' where pupils can take turns exploring. This works particularly well with younger years where 'choosing tables' are common.
  • Allow for exploration : Give children a chance to play with and explore the manipulatives before using them for instruction. Through this exploration, they can start to imagine how the resource might be useful.
  • How could you use this?
  • How might this help you when adding or subtracting?
  • Why do you think they're different sizes - what could that represent?
  • Model usage : Once children are familiar with a resource, introduce a simple maths problem and ask them to use the manipulatives to solve it. Model the problem-solving process step-by-step, then guide children through it.
  • Scaffold learning : Start with highly structured activities, then gradually reduce support as pupils gain confidence. For instance, begin with direct instruction on how to use base ten blocks for place value, then move to guided practice, and finally independent problem-solving.
  • Year 1: Using counters or number lines to support addition and subtraction within 20.
  • Year 2: Use fraction tiles to help pupils recognise, find, name and write fractions of a length, shape, set of objects or quantity.
  • Year 3: Utilising place value charts (physical or digital) so pupils can recognise 3-digit numbers (100s, 10s and 1s).
  • Integrate into lesson plans : Don't treat manipulatives as an add-on. Instead, weave them into your lessons as essential tools for understanding. Plan specific points in your lessons where manipulatives will be most beneficial.
  • Support diverse learners : Manipulatives can be particularly helpful for English Language Learners (ELLs) and pupils with learning disabilities. They provide a universal language of mathematics that transcends verbal communication barriers.

An image of a maths manipulatives toolbox

Images: The Average Teacher

Manipulatives across Key Stages 1 and 2

Next, let's breakdown more examples of manipulatives in the classroom by Key Stage.

Key Stage 1 (Years 1-2): Laying the foundations

In these early years, it's all about getting hands-on with numbers and shapes.

  • Number and Place Value : Introduce counters, number lines, and base ten blocks. Pupils can observe how 10 ones form a 'ten stick', helping them grasp place value concepts.
  • Addition and Subtraction : Utilise multilink cubes for hands-on learning. Pupils can physically join or separate cubes to represent addition and subtraction operations.
  • Fractions : Fraction tiles can be effective tools for teaching fractions. They provide a visual and tactile representation of concepts like 'half' and 'quarter'.
  • Geometry : Employ geoboards for creating 2-D shapes. Pupils can then be asked to match these shapes on a 3-D surface to enhance spatial understanding.

Key Stage 2 (Years 3-6): Progressing with Purpose

As our mathematicians-in-training grow, so does the sophistication of our manipulatives. We're not ditching the basics, just building on them.

  • Multiplication and Division : Array cards and Cuisenaire rods are useful for these operations. For multiplying by 6, pupils can line up 6 rods of 4 to visualise the concept.
  • Fractions, Decimals, and Percentages : Fraction circles can be used alongside decimal place value charts. The 100 square is effective for teaching percentages.
  • Geometry : The geoboard is a helpful tool for teaching perimeter, area, and symmetry concepts in a hands-on manner.
  • Statistics : Data can be represented using multilink cube bar charts or human pictograms, making statistics more engaging for pupils.

CPA Journey: From Concrete to Pictorial to Abstract

Remember, our end goal is for pupils to solve problems without relying on physical props. Here's how we might progress:

  • Concrete : Pupils physically manipulate objects to solve a problem. For example, using counters to work out 5 + 3.
  • Pictorial : They draw a picture or diagram to represent the problem. Our 5 + 3 might become five circles and three circles.
  • Abstract : Finally, they use mathematical symbols and numbers alone. "5 + 3 = 8."

The beauty of this approach? Pupils can always 'go back' a stage if they're struggling with a new concept. Stuck on an abstract problem? Draw a picture! Need more practise? Grab those counters!

Remember, every child's journey through these stages is unique. Some might race through, others might linger longer at certain points. The key is to ensure they have a solid understanding at each stage before moving on.

Moving from the concrete, to pictorial, to abstract stages

An example of moving from the concrete, to pictorial, to abstract stages.

Manipulative manners

Once you have introduced your resources, speak as a class and explain that they should come up with a set of rules for how they are treated and used. Giving children ownership over the manipulatives as well as the respect to make their own rules will make them feel accountable and lessen the likelihood of negative behaviours when using manipulatives. Write the rules up as a class and display them so they can be referred to.

Storing manipulatives

NRICH recommends children having access to manipulatives “Give open access to all the resources and allow the children free reign in choosing what to use to model any problem they may be tackling. I would make sure that children of all ages had this access from 3 to 11 years old and beyond.” While this is exactly what teachers would like to replicate in their classrooms, not all classes learn in the same way and this isn’t always achievable due to space, budgets and children’s prior experiences of manipulatives.

Once you have introduced a manipulative, decide as a class where you should store it . You know what works best for your class, so consider different options such as communal drawers, a maths table, individual packs or a collection of manipulatives for each table. Set clear rules around using and treating manipulatives to ensure they are not broken or lost. Additionally, you could create a monitor for each resource so the children can take ownership and make sure they stay tidy and accounted for.

Images of examples of maths mastery areas and tables to use in your classroom

Creating a classroom culture that uses manipulatives will aid children’s fluency and help develop their ability to solve problems, reason mathematically and share! If manipulatives are introduced in a considered and gradual way, with clear boundaries from an early age, children should see them as part of everyday learning and they will not be a novelty. They will be seen as tools instead of toys — and hopefully no more multilink towers!

For the community, by the community

Maths — No Problem! Community Event Conference, 28 November at The Royal Society, London.

Community Event 2024

Lily Lanigan

Browse by Topic

Your teaching practice.

Boost your teaching confidence with the latest musings on pedagogy, classroom management, and teacher mental health.

Maths Mastery Stories

You’re part of a growing community. Get smart implementation advice and hear inspiring maths mastery stories from teachers just like you.

Teaching Tips

Learn practical maths teaching tips and strategies you can use in your classroom right away — from teachers who’ve been there.

Classroom Assessment

Identify where your learners are at and where to take them next with expert assessment advice from seasoned educators.

Your Learners

Help every learner succeed with strategies for managing behaviour, supporting mental health, and differentiating instruction for all attainment levels.

Teaching Maths for Mastery

Interested in Singapore maths, the CPA approach, bar modelling, or number bonds? Learn essential maths mastery theory and techniques here.

Deepen your mastery knowledge with our biweekly newsletter

Image of Cookies

By clicking “Accept All” , you agree to the storing of cookies on your device to enhance site navigation, analyze site usage and assist in our marketing efforts.

Completing Long-Term Assignments

Develop problem-solving skills, “plan a” and “plan b” flexibility.

Your child procrastinates or feels anxious about starting lengthy projects. Or, your child gets derailed by unexpected wrinkles in the plan, like a dead laptop battery or misplaced assignment directions. As a result, your child fails to bring his vision for a project to completion or fails to demonstrate his true knowledge and ability.

Teenagers occasionally have difficulty finishing a long-term assignment because they are juggling other schoolwork or because a particular assignment seems overwhelming to them. But chronic struggles with planning and following through on long-term assignments can signal that your teenager is still struggling to develop a problem-solving ability.

Problem-solving is a key executive function: a skill that helps us execute daily tasks.

Solution: Devising a “Plan A” and a “Plan B”

Your child should write down two different plans for getting a long-term assignment accomplished. This forces your child to recognize and manage pressing needs in different ways — and before they are actually upon her causing her stress. The advance practice helps her to later shift to a different approach if needed. Your child learns problem-solving skills by harnessing and developing her flexibility.

Don’t do this : Ask your child to get her research paper done early so she’s not up the entire night before it’s due.

Do this instead : Ask her to sit down and write up Plan A and Plan B for getting the work done. If the paper is due in two weeks, your child should write down her plans for the week according to Plan A (what will ideally happen), and then write up her back-up Plan B for that same week. At the end of the week, she can write the next week’s set of plans until the assignment is due.

Maybe in Plan A she brings her computer to her sister’s all day recital to work on the paper during downtime.  She also chooses to DVR her favorite show to watch it after she completes her assignment.  In Plan B, if she wasn’t able to work on the paper during the recital she agrees to ask her coach if she can leave a practice early.

Remember : Successfully completing a project is a complex task. It doesn’t just depend on your child’s vision and talent — it depends on managing conflicts and being flexible about the plan that’s been put in place to get work done.

It is perfectly normal for children to experience some degree of difficulty and frustration as they learn to execute new tasks. Toddlers can tantrum, school-aged children can yell and argue, and teenagers can ignore instructions. When deciding if executive function weaknesses require intervention, ask yourself: “How frequently is this occurring? How intense is the experience/significant the impact?” If your answer to these questions is “too much,” “too often,” “I don’t know what to do to change this,” or “it’s only getting worse,” you may benefit from a face-to-face conversation to help problem-solve your concern. Effective problem solving will help you clearly identify the problem, goal, steps it will take to achieve your goal, possible barriers, and available supports.

Contact the Executive Function Consultation, Education and Skills (EXCEL) Clinic

IMAGES

  1. Developing Problem-Solving Skills for Kids

    how to develop problem solving skills in students

  2. 7 Steps to Improve Your Problem Solving Skills

    how to develop problem solving skills in students

  3. 15 Ways to Learn How to Improve Problem Solving Skills

    how to develop problem solving skills in students

  4. How to improve your problem solving skills and strategies

    how to develop problem solving skills in students

  5. 10 Examples Of Problem-Solving Skills In Action

    how to develop problem solving skills in students

  6. What are the problem solving skills?

    how to develop problem solving skills in students

COMMENTS

  1. Strategies To Develop Problem-Solving Skills In Students

    Another strategy to encourage the development of problem-solving skills in students is to allow for plenty of discussion and collaboration in the classroom setting. When students interact with one another, they are naturally developing problem solving skills. Rather than the teacher delivering information and requiring the students to passively ...

  2. Building Students' Problem-Solving Skills

    Our approach includes cooperative games and design challenges as well as good-to-know and problem jars. Each part is designed to allow our students to encounter consistent developmentally appropriate and varying types of conflict in order to build problem-solving skills. Throughout each activity, students are put in a variety of mixed groupings ...

  3. 6 Strategies To Foster Problem-Solving Skills In Students

    Support children's efforts throughout and share your input about their dilemmas. The importance of problem-solving skills in kids is evident. So, try to be an ideal role model for kids all the time. 6. Observe, Facilitate, And Share Feedback. Last but not least, be a guide and mentor for your students at all times.

  4. 4 Strategies to Build Your Students' Problem Solving Skills

    Here are a few effective strategies: Project-Based Learning: Projects that require planning, execution, and evaluation naturally involve problem-solving. For example, a project where students need to build a model bridge within a budget encourages them to solve logistical and financial problems. Group Work: Group work allows students to face ...

  5. Developing Problem-Solving Skills for Kids

    By doing this, students practice helpful 21st century skills like collaboration and communication, and can usually find the info they're looking for on the way. Problem-Solving Skills for Kids: Teacher Tips. These are tips that you, the teacher, can use to support students in developing creative problem-solving skills for kids. 1.

  6. Problem Solving Skills for Students: Top 8 Proven Strategies

    1. What are problem solving skills for students? Problem solving skills for students involve more than just applying learned procedures. entail understanding the environment, identifying complex problems, reviewing information, developing and evaluating strategies, and implementing solutions to achieve desired outcomes. True problem solving ...

  7. Teaching Problem Solving

    Helping students identify their own problem solving errors is part of helping them develop effective problem solving skills. Beverly Black and Elizabeth Axelson's list of common problem solving errors , adapted from Arthur Whimbey and Jack Lochhead's book Problem Solving and Comprehension (Lawrence Erlbaum, 1999), provides useful insight ...

  8. Why Every Educator Needs to Teach Problem-Solving Skills

    Resolve Conflicts. In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes "thinking outside the box" and approaching a conflict by searching for different solutions.

  9. Teaching Problem-Solving Skills

    One key aspect in problem solving is teaching students how to select, interpret, and use units and symbols. Emphasize the use of units whenever applicable. Develop a habit of using appropriate units and symbols yourself at all times. Constraints. All problems have some stated or implied constraints.

  10. 6 Tips for Teaching Math Problem-Solving Skills

    1. Link problem-solving to reading. When we can remind students that they already have many comprehension skills and strategies they can easily use in math problem-solving, it can ease the anxiety surrounding the math problem. For example, providing them with strategies to practice, such as visualizing, acting out the problem with math tools ...

  11. Helping Students Hone Their Critical Thinking Skills

    One way to teach reasoning is to use problem-solving activities that require students to apply their skills to practical contexts. For example, give students a real problem to solve, and ask them to use reasoning skills to develop a solution. They can then present their solution and defend their reasoning to the class and engage in discussion ...

  12. Teaching problem solving: Let students get 'stuck' and 'unstuck'

    Problem solving skills do not necessarily develop naturally; they need to be explicitly taught in a way that can be transferred across multiple settings and contexts. Experts Events

  13. 5 Problem-Solving Activities for the Classroom

    2. Problem-solving as a group. Have your students create and decorate a medium-sized box with a slot in the top. Label the box "The Problem-Solving Box.". Invite students to anonymously write down and submit any problem or issue they might be having at school or at home, ones that they can't seem to figure out on their own.

  14. 7 Ways to Cultivate Students' Problem-Solving Skills

    Encourage "playing with" the problem. Encourage young people to throw out lots of ideas, make conjectures, and consider many different possibilities-even some that are outlandish. Look at the problem from many perspectives. This flexible thinking is an important skill for forming better solutions than the first that come to mind.

  15. 12 Ways to Improve Problem Solving Skills

    On the other hand, you might try to save by cutting your spending or by lowering other costs. Use some strategies to help you come up with solutions: Divide and conquer. Break the problem into smaller problems and brainstorm solutions for them separately, one by one. Use analogies and similarities.

  16. Creative problem solving tools and skills for students and teachers

    So, in this case, it may be beneficial to teach the individual parts of the process in isolation first. 1. Clarify: Before beginning to seek creative solutions to a problem, it is important to clarify the exact nature of that problem. To do this, students should do the following three things: i. Identify the Problem.

  17. Strategies to Increase Critical Thinking Skills in students

    Some essential skills that are the basis for critical thinking are: Communication and Information skills. Thinking and Problem-Solving skills. Interpersonal and Self- Directional skills. Collaboration skills. These four bullets are skills students are going to need in any field and in all levels of education.

  18. 5.3: John Van de Walle's Strategy

    By promoting a classroom environment where students are encouraged to discuss and share their ideas, Van de Walle's strategy helps students develop a robust understanding of mathematics. His methods are designed to be student-centered, focusing on the development of problem-solving skills through real-world applications and collaborative learning.

  19. How to Develop Problem Solving Skills: 4 Tips

    How to Develop Problem Solving Skills: 4 Tips. Learning problem-solving techniques is a must for working professionals in any field. No matter your title or job description, the ability to find the root cause of a difficult problem and formulate viable solutions is a skill that employers value. Learning the soft skills and critical thinking ...

  20. 10 Problem-solving strategies to turn challenges on their head

    2. Break the problem down. Identifying the problem allows you to see which steps need to be taken to solve it. First, break the problem down into achievable blocks. Then, use strategic planning to set a time frame in which to solve the problem and establish a timeline for the completion of each stage. 3.

  21. Problem Solving

    In this article for teachers, Jennie Pennant outlines how group-worthy tasks support the development of children's problem-solving skills. article Developing the classroom culture: using the Dotty Six Activity as a springboard for investigation

  22. Don't Just Tell Students to Solve Problems. Teach Them How

    The UC San Diego problem-solving curriculum, Mjahed noted, is an opportunity for students to build the skills and the confidence to learn from their failures and to work outside their comfort zone. "And from there, they see pathways to real careers," he said. Jennifer Ogo, a teacher from Kearny High School, taught the problem-solving course ...

  23. How to Improve Your Problem-Solving Skills

    1. IDENTIFY the problem. In a nutshell, my definition of problem-solving skills is very simple: it is the ability to identify the nature of a problem, deconstruct it (break it down) and develop an effective set of actions to address the challenges related to it. Indeed, in some challenging situations many students are overwhelmed with emotions ...

  24. Problem-Solving with Critical Thinking

    Problem-Solving Process Step 1: Define the problem. Albert Einstein once said, "If I had an hour to solve a problem, I'd spend 55 minutes thinking about the problem and five minutes thinking about solutions." Often, when we first hear of or learn about a problem, we do not have all the information. If we immediately try to find a solution ...

  25. 3 Ways to Improve Student Problem-Solving

    3. Three-Act Tasks: Originally created by Dan Meyer, three-act tasks follow the three acts of a story. The first act is typically called the "setup," followed by the "confrontation" and then the "resolution.". This storyline process can be used in mathematics in which students encounter a contextual problem (e.g., a pool is being ...

  26. 9 problem-solving examples for students (plus benefits)

    Students develop problem-solving skills throughout their lives as they learn to solve day-to-day problems. Understanding different problem-solving examples for students can help in the success of your teaching career. In this article, we discuss nine different problem-solving examples for students and list their benefits.

  27. How to Build Resilience in Students

    Also, encourage a growth mindset. You can do this by helping students view their mistakes as learning opportunities for growth. Additionally, teach problem-solving skills. This typically involves guiding students through a step-by-step process: identifying the problem, brainstorming solutions, evaluating options, and implementing a plan. Build ...

  28. Ways of Helping Students Cope with Academic Difficulties

    Counselors can work with students to develop coping strategies for managing stress and improving mental health. This might include techniques such as mindfulness, relaxation exercises, or cognitive-behavioral strategies to challenge negative thought patterns. ... and problem-solving. These skills are essential for academic success and can help ...

  29. Manipulatives in Maths

    These tools align perfectly with the National Curriculum's aims of developing mathematical fluency, reasoning, and problem-solving skills. By allowing pupils to physically interact with mathematical ideas, manipulatives help build a strong foundation for more complex concepts down the line.

  30. Completing Long-Term Assignments

    Develop Problem-Solving Skills "Plan A" and "Plan B" Flexibility. Your child procrastinates or feels anxious about starting lengthy projects. Or, your child gets derailed by unexpected wrinkles in the plan, like a dead laptop battery or misplaced assignment directions. As a result, your child fails to bring his vision for a project to ...